Dynamic Olfactometry and Oil Refinery Odour Samples: Application of a New Method for Occupational Risk Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Chemical Analysis
2.3. Risk Assessment
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fischer, G.; Albrecht, A.; Jäckel, U.; Kämpfer, P. Analysis of airborne microorganisms, MVOC and odour in the surrounding of composting facilities and implications for future investigations. Int. J. Hyg. Environ. Health 2008, 211, 132–142. [Google Scholar] [CrossRef]
- Guadalupe-Fernandez, V.; De Sario, M.; Vecchi, S.; Bauleo, L.; Michelozzi, P.; Davoli, M.; Ancona, C. Industrial odour pollution and human health: A systematic review and meta-analysis. Environ. Heal. A Glob. Access Sci. Source 2021, 20, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Schauberger, G.; Piringer, M.; Wu, C.; Koziel, J.A. Environmental Odour. Atmosphere 2021, 12, 1293. [Google Scholar] [CrossRef]
- Fetisov, V.; Pshenin, V.; Nagornov, D.; Lykov, Y.; Mohammadi, A.H. Evaluation of Pollutant Emissions into the Atmosphere during the Loading of Hydrocarbons in Marine Oil Tankers in the Arctic Region. J. Mar. Sci. Eng. 2020, 8, 917. [Google Scholar] [CrossRef]
- Invernizzi, M.; Roveda, L.; Polvara, E.; Sironi, S. Lights and Shadows of the Voc Emission Quantification. Chem. Eng. Trans. 2021, 85, 109–114. [Google Scholar] [CrossRef]
- Polvara, E.; Roveda, L.; Invernizzi, M.; Capelli, L.; Sironi, S. Estimation of Emission Factors for Hazardous Air Pollutants from Petroleum Refineries. Atmosphere 2021, 12, 1531. [Google Scholar] [CrossRef]
- Roveda, L.; Polvara, E.; Invernizzi, M.; Capelli, L.; Sironi, S. Definition of an Emission Factor for VOC Emitted from Italian and European Refineries. Atmosphere 2020, 11, 564. [Google Scholar] [CrossRef]
- Lv, D.; Lu, S.; He, S.; Song, K.; Shao, M.; Xie, S.; Gong, Y. Research on accounting and detection of volatile organic compounds from a typical petroleum refinery in Hebei, North China. Chemosphere 2021, 281, 130653. [Google Scholar] [CrossRef]
- Wei, W.; Cheng, S.; Li, G.; Wang, G.; Wang, H. Characteristics of volatile organic compounds (VOCs) emitted from a petroleum refinery in Beijing, China. Atmos. Environ. 2014, 89, 358–366. [Google Scholar] [CrossRef]
- Invernizzi, M.; Ilare, J.; Capelli, L.; Sironi, S. Proposal of a method for evaluating odour emissions from refinery storage tanks. Chem. Eng. Trans. 2018, 68, 49–54. [Google Scholar] [CrossRef]
- Polvara, E.; Capelli, L.M.T.; Sironi, S. Non-carcinogenic occupational exposure risk related to foundry emissions: Focus on the workers involved in olfactometric assessments. J. Environ. Sci. Health Part A Toxic Hazardous Subst. Environ. Eng. 2021, 56, 646–659. [Google Scholar] [CrossRef]
- Bokowa, A.; Diaz, C.; Koziel, J.A.; McGinley, M.; Barclay, J.; Schauberger, G.; Guillot, J.-M.; Sneath, R.; Capelli, L.; Zorich, V.; et al. Summary and Overview of the Odour Regulations Worldwide. Atmosphere 2021, 12, 206. [Google Scholar] [CrossRef]
- Brancher, M.; Griffiths, K.D.; Franco, D.; de Melo Lisboa, H. A review of odour impact criteria in selected countries around the world. Chemosphere 2017, 168, 1531–1570. [Google Scholar] [CrossRef] [PubMed]
- Standard EN 13725:2022; Stationary Source Emissions—Determination of Odour Concentration by Dynamic Olfactometry and Odour. CEN: Brussels, Belgium, 2022.
- Byliński, H.; Gębicki, J.; Namieśnik, J. Evaluation of health hazard due to emission of volatile organic compounds from various processing units of wastewater treatment plant. Int. J. Environ. Res. Public Health 2019, 16, 1712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martí, V.; Jubany, I.; Pérez, C.; Rubio, X.; De Pablo, J.; Giménez, J. Human health risk assessment of a landfill based on volatile organic compounds emission, immission and soil gas concentration measurements. Appl. Geochemistry 2014, 49, 218–224. [Google Scholar] [CrossRef]
- Davoli, E.; Zuccato, E.; Bianchi, G.; Palmiotto, M.; Il Grande, M.; Bonati, S.; Rossi, A.N. Dynamic Olfactometry and Potential Sample Toxicity. Guidelines for a Safe Occupational Health Approach. Chem. Eng. Trans. 2012, 30, 7–12. [Google Scholar] [CrossRef]
- Polvara, E.; Ashari, B.E.; Capelli, L.; Sironi, S. Evaluation of occupational exposure risk for employees working in dynamic olfactometry: Focus on non-carcinogenic effects correlated with exposure to landfill emissions. Atmosphere 2021, 12, 1325. [Google Scholar] [CrossRef]
- Davoli, E.; Zuccato, E.; Bianchi, G.; Il Grande, M.; Bonati, S.; Rossi, A.N.; Porporato, C.; Pereno, M.; Soldati, S. Dynamic olfactometry and sample toxicity. a case study for a MSW incinerator odour assessment project. Chem. Eng. Trans. 2016, 54, 13–18. [Google Scholar] [CrossRef]
- Gaffney, S.H.; Burns, A.M.; Kreider, M.L.; Unice, K.M.; Widner, T.E.; Paustenbach, D.J.; Booher, L.E.; Gelatt, R.H.; Panko, J.M. Occupational exposure to benzene at the ExxonMobil refinery in Beaumont, TX (1976–2007). Int. J. Hyg. Environ. Health 2010, 213, 285–301. [Google Scholar] [CrossRef]
- Ou-Yang, C.F.; Lin, T.L.; Chang, C.C.; Hsieh, H.C.; Wang, C.H.; Wang, J.L. Characterization of industrial plumes of volatile organic compounds by guided sampling. Chemosphere 2019, 241, 124957. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, H.; Chen, D.; Li, Q.; Thai, P.; Gong, D.; Li, Y.; Zhang, C.; Gu, Y.; Zhou, L.; et al. Emission characteristics of volatile organic compounds and their secondary organic aerosol formation potentials from a petroleum refinery in Pearl River Delta, China. Sci. Total Environ. 2017, 584–585, 1162–1174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barthe, P.; Chaugny, M.; Roudier, S.; Sancho, L.D. Best Available Techniques (BAT) Reference Document for the Refining of Mineral Oil and Gas; Publications Office of the European Union: Brussels, Belgium, 2015. [Google Scholar]
- Doty, R.L.; Cometto-Muñiz, J.E.; Jalowayski, A.A.; Dalton, P.; Kendal-Reed, M.; Hodgson, M. Assessment of Upper Respiratory Tract and Ocular Irritative Effects of Volatile Chemicals in Humans. Crit. Rev. Toxicol. 2008, 34, 85–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hjort, M.; den Haan, K.H.; Whale, G.; Koekkoek, J.; Leonards, P.E.G.; Redman, A.D.; Vaiopoulou, E. Conventional and high resolution chemical characterization to assess refinery effluent treatment performance. Chemosphere 2021, 278, 130383. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Ruan, W.; Cui, X.; Lu, Z.; Wang, D. Blood volatile organic aromatic compounds concentrations across adulthood in relation to total and cause specific mortality: A prospective cohort study. Chemosphere 2022, 286, 131590. [Google Scholar] [CrossRef]
- Rajabi, H.; Hadi Mosleh, M.; Mandal, P.; Lea-Langton, A.; Sedighi, M. Emissions of volatile organic compounds from crude oil processing—Global emission inventory and environmental release. Sci. Total Environ. 2020, 727, 138654. [Google Scholar] [CrossRef] [Green Version]
- Tompa, A.; Jakab, M.G.; Major, J. Risk management among benzene-exposed oil refinery workers. Int. J. Hyg. Environ. Health 2005, 208, 509–516. [Google Scholar] [CrossRef]
- Polvara, E.; Invernizzi, M.; Sironi, S. Occupational Safety for Panellists Involved in Dynamic Olfactometry: A Comparison of Available Risk Assessment Models. Chem. Eng. Trans. 2021, 85, 91–96. [Google Scholar] [CrossRef]
- Polvara, E.; Spinazzè, A.; Invernizzi, M.; Cattaneo, A.; Sironi, S.; Cavallo, D.M. Toxicological assessment method for evaluating the occupational risk of dynamic olfactometry assessors. Regul. Toxicol. Pharmacol. 2021, 125, 105003. [Google Scholar] [CrossRef]
- Capelli, L.; Sironi, S.; Del Rosso, R.; Guillot, J.M. Measuring odours in the environment vs. dispersion modelling: A review. Atmos. Environ. 2013, 79, 731–743. [Google Scholar] [CrossRef]
- Invernizzi, M.; Bellini, A.; Miola, R.; Capelli, L.; Busini, V.; Sironi, S. Assessment of the chemical-physical variables affecting the evaporation of organic compounds from aqueous solutions in a sampling wind tunnel. Chemosphere 2019, 220, 353–361. [Google Scholar] [CrossRef]
- Organisation for Economic Co-operation and Development (OECD). Considerations for Assessing the Risks of Combined Exposure to Multiple Chemicals. Series on Testing and Assessment No. 296; Environment, Health and Safety Division, Environment Directorate: Paris, France, 2018.
- ACGIH®. Threshold Limit Values (TLVs®) and Biological Exposure Indices (BEIs®); Signature Pubblications: Cincinnati, OH, USA, 2021; ISBN 978-1-607261-45-2. [Google Scholar]
- McKee, R.H.; Adenuga, M.D.; Carrillo, J.C. The reciprocal calculation procedure for setting occupational exposure limits for hydrocarbon solvents: An update. J. Occup. Environ. Hyg. 2017, 14, 575–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- US EPA Exposure Assessment Tools by Routes—Inhalation. Available online: https://www.epa.gov/expobox/exposure-assessment-tools-routes-inhalation (accessed on 8 April 2021).
- European Parliament and of the Council. Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32008R1272 (accessed on 10 January 2022).
- Motalebi Damuchali, A.; Guo, H. Developing an odour emission factor for an oil refinery plant using reverse dispersion modeling. Atmos. Environ. 2020, 222, 117167. [Google Scholar] [CrossRef]
- Motalebi Damuchali, A.; Guo, H. Evaluation of odour properties, their relationships, and impact of an oil refinery plant on the surrounding environment using field measurements. Atmos. Environ. 2020, 230, 117480. [Google Scholar] [CrossRef]
OELs for Groups of Chemicals Adopted in the 2nd Method | ||
---|---|---|
Family or Group of Chemicals | OEL-15 min [mg/m3] | Country |
Hydrocarbons, aliphatic, C6–C8 | 1400 | Germany (AGS) |
Hydrocarbons, aliphatic, C9–C14 | 600 | Germany (AGS) |
Hydrocarbon mixtures, aliphatic C5–C8 | 300 | Latvia |
Hydrocarbons, aromatic, C9–C14 | 100 | Germany (AGS) |
Hydrocarbon mixtures, aromatic C7–C8 | 300 | Latvia |
Petroleum, industrial-heptane type | 1200 | Sweden |
Petroleum, industrial-hexane type | 250 | Sweden |
Petroleum, industrial-octane type | 1400 | Sweden |
Area/Location | N° of Samples | Non-Carcinogenic Risk | Carcinogenic Risk | ||
---|---|---|---|---|---|
HI | IR (Commercial Lab) | IR (Institutional Lab) | |||
Wastewater treatment | Wastewater collection tank | 2 | 0.227 | 1.78 × 10−5 | 3.22 × 10−6 |
0.152 | 9.38 × 10−6 | 1.70 × 10−6 | |||
Oil–water separation tank | 1 | 0.174 | 1.17 × 10−5 | 2.11 × 10−6 | |
Flocculation tank | 2 | 0.383 | 2.52 × 10−5 | 4,57 × 10−6 | |
0.149 | 1.01 × 10−5 | 1.83 × 10−6 | |||
Flotation tank | 2 | 0.418 | 2.80 × 10−5 | 5.07 × 10−6 | |
0.164 | 1.07 × 10−5 | 1.94 × 10−6 | |||
Oily sludge tank | 1 | 0.287 | 1.84 × 10−5 | 3.33 × 10−6 | |
Activated-sludge treatment tank | 2 | 0.794 | 5.00 × 10−5 | 9.05 × 10−6 | |
0.349 | 2.49 × 10−5 | 4.51 × 10−6 | |||
Sedimentation tank | 2 | 0.290 | 2.01 × 10−5 | 3.64 × 10−6 | |
0.618 | 4.52 × 10−5 | 8.18 × 10−6 | |||
Sludge thickener tank | 1 | 0.382 | 2.77 × 10−5 | 5,01 × 10−6 | |
Final collection | 1 | 0.484 | 3.51 × 10−5 | 6.35 × 10−6 | |
Vapour recovery unit system | Vapour recovery unit outlet | 3 | 0.325 | 2.22 × 10−5 | 4.02 × 10−6 |
0.278 | 1.32 × 10−5 | 2.39 × 10−6 | |||
0.258 | 1.62 × 10−5 | 2.94 × 10−6 | |||
Tanks | Fuel oil tank | 1 | 0.128 | 7.51 × 10−6 | 1.36 × 10−6 |
Mean (±standard deviation) | 18 | 0.326 (±0.174) | 2.19 × 10−5 (±1.21 × 10−5) | 3.96 × 10−6 (±2.18 × 10−6) | |
Median (min; max) | 0.288 (0.128; 0.794) | 1.93 × 10−5 (7.51 × 10−6; 5.00 × 10−5) | 3.49 × 10−6 (1.36 × 10−6; 9.05 × 10−6) |
Area/Location | N° of Sample | 1st Method (Compound-Specific OEL) | 2nd Method (1st Method + OELs for Groups of Chemicals) | 3rd Method (1st Method + RCP Method) | ||||
---|---|---|---|---|---|---|---|---|
HI | N.C. (%) | HI | N.C. (%) | HI | N.C. (%) | |||
Wastewater treatment | Wastewater collection tank | 2 | 0.227 | 35.0% | 0.248 | 4.5% | 0.230 | 4.5% |
0.152 | 1.2% | 0.152 | 1.2% | 0.152 | 1.2% | |||
Oil–water separation tank | 1 | 0.174 | 5.7% | 0.175 | 0.4% | 0.174 | 0.4% | |
Flocculation tank | 2 | 0.383 | 5.0% | 0.385 | 1.5% | 0.383 | 2.3% | |
0.149 | 6.2% | 0.150 | 1.0% | 0.149 | 2.0% | |||
Flotation tank | 2 | 0.418 | 3.2% | 0.418 | 1.5% | 0.418 | 2.7% | |
0.164 | 5.2% | 0.165 | 1.4% | 0.164 | 2.5% | |||
Oily sludge tank | 1 | 0.287 | 4.5% | 0.287 | 1.8% | 0.287 | 1.8% | |
Activated-sludge treatment tank | 2 | 0.794 | 2.6% | 0.794 | 0.3% | 0.794 | 2.2% | |
0.349 | 3.5% | 0.349 | 1.3% | 0.349 | 2.8% | |||
Sedimentation tank | 2 | 0.290 | 24.8% | 0.292 | 19.3% | 0.290 | 20.2% | |
0.618 | 3.2% | 0.619 | 0.9% | 0.618 | 2.5% | |||
Sludge thickener tank | 1 | 0.382 | 4.5% | 0.383 | 1.5% | 0.382 | 2.7% | |
Final collection | 1 | 0.484 | 2.7% | 0.485 | 1.1% | 0.484 | 2.4% | |
Vapour recovery unit system | Vapour recovery unit outlet | 3 | 0.325 | 11.1% | 0.329 | 1.5% | 0.325 | 4.1% |
0.278 | 3.5% | 0.298 | 0.1% | 0.278 | 0.1% | |||
0.258 | 6.4% | 0.261 | 0.7% | 0.259 | 1.5% | |||
Tanks | Fuel oil tank | 1 | 0.128 | 2.5% | 0.131 | 0.4% | 0.128 | 0.9% |
Mean (±standard deviation) | 18 | 0.326 (±0.174) | 7.8 (±8.7) | 0.329 (±0.173) | 2.2 (±4.4) | 0.326 (±0.174) | 3.2 (±4.4) | |
Median (min; max) | 0.288 (0.128; 0.794) | 4.5. (1.2; 35.0) | 0.295 (0.131; 0.794) | 1.2. (0.1; 19.3) | 0.288 (0.128; 0.794) | 2.4 (0.1; 20.2) |
Area/Location | N° of Samples | Minimum Dilution Value | |||
---|---|---|---|---|---|
HI | IR (Commercial Lab) | IR (Institutional Lab) | |||
Wastewater treatment | Wastewater collection tank | 2 | Not necessary | 1.78 | Not necessary |
Not necessary | Not necessary | Not necessary | |||
Oil–water separation tank | 1 | Not necessary | 1.17 | Not necessary | |
Flocculation tank | 2 | Not necessary | 2.52 | Not necessary | |
Not necessary | 1.01 | Not necessary | |||
Flotation tank | 2 | Not necessary | 2.80 | Not necessary | |
Not necessary | 1.07 | Not necessary | |||
Oily sludge tank | 1 | Not necessary | 1.84 | Not necessary | |
Activated-sludge treatment tank | 2 | Not necessary | 5.00 | Not necessary | |
Not necessary | 2.49 | Not necessary | |||
Sedimentation tank | 2 | Not necessary | 2.01 | Not necessary | |
Not necessary | 4.52 | Not necessary | |||
Sludge thickener tank | 1 | Not necessary | 2.77 | Not necessary | |
Final collection | 1 | Not necessary | 3.51 | Not necessary | |
Vapour recovery unit system | Vapour recovery unit outlet | 3 | Not necessary | 2.22 | Not necessary |
Not necessary | 1.32 | Not necessary | |||
Not necessary | 1.62 | Not necessary | |||
Tanks | Fuel oil tank | 1 | Not necessary | Not necessary | Not necessary |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spinazzè, A.; Polvara, E.; Cattaneo, A.; Invernizzi, M.; Cavallo, D.M.; Sironi, S. Dynamic Olfactometry and Oil Refinery Odour Samples: Application of a New Method for Occupational Risk Assessment. Toxics 2022, 10, 202. https://doi.org/10.3390/toxics10050202
Spinazzè A, Polvara E, Cattaneo A, Invernizzi M, Cavallo DM, Sironi S. Dynamic Olfactometry and Oil Refinery Odour Samples: Application of a New Method for Occupational Risk Assessment. Toxics. 2022; 10(5):202. https://doi.org/10.3390/toxics10050202
Chicago/Turabian StyleSpinazzè, Andrea, Elisa Polvara, Andrea Cattaneo, Marzio Invernizzi, Domenico Maria Cavallo, and Selena Sironi. 2022. "Dynamic Olfactometry and Oil Refinery Odour Samples: Application of a New Method for Occupational Risk Assessment" Toxics 10, no. 5: 202. https://doi.org/10.3390/toxics10050202
APA StyleSpinazzè, A., Polvara, E., Cattaneo, A., Invernizzi, M., Cavallo, D. M., & Sironi, S. (2022). Dynamic Olfactometry and Oil Refinery Odour Samples: Application of a New Method for Occupational Risk Assessment. Toxics, 10(5), 202. https://doi.org/10.3390/toxics10050202