An Investigation into Which Methods Best Explain Children’s Exposure to Traffic-Related Air Pollution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Personal PM2.5 Monitoring and Sampling Methods
2.2. Laboratory Analyses of Hopanes
2.3. Proxy Methods for TRAP Exposure
2.4. Factors of Personal Activity and Home Characteristics
2.5. Statistical Analyses
3. Results
3.1. Demographics, Personal Activity, and Personal, Indoor, and Outdoor NO2 Levels
3.2. Hopane Concentrations, Seasonality, and Ratios
3.3. Relationships between Personal Hopane Measures and Typical TRAP Proxy Measures
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Atkinson, R.W.; Analitis, A.; Samoli, E.; Fuller, G.W.; Green, D.; Mudway, I.S.; Anderson, H.R.; Kelly, F.J. Short-term exposure to traffic-related air pollution and daily mortality in London, UK. J. Expo. Sci. Environ. Epidemiol. 2015, 26, 125–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brauer, M.; Lencar, C.; Tamburic, L.; Koehoorn, M.; Demers, P.; Karr, C. A Cohort Study of Traffic-Related Air Pollution Impacts on Birth Outcomes. Environ. Health Perspect. 2008, 116, 680–686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunekreef, B.; Beelen, R.; Hoek, G.; Schouten, L.; Bausch-Goldbohm, S.; Fischer, P.; Armstrong, B.; Hughes, E.; Jerrett, M.; van den Brandt, P. Effects of long-term exposure to traffic-related air pollution on respiratory and cardiovascular mortality in the Netherlands: The NLCS-AIR study. Res. Rep. Health Eff. Inst. 2009, 139, 5–71. [Google Scholar]
- Clark, N.A.; Demers, P.A.; Karr, C.J.; Koehoorn, M.; Lencar, C.; Tamburic, L.; Brauer, M. Effect of Early Life Exposure to Air Pollution on Development of Childhood Asthma. Environ. Health Perspect. 2010, 118, 284–290. [Google Scholar] [CrossRef] [Green Version]
- Hystad, P.; Villeneuve, P.J.; Goldberg, M.S.; Crouse, D.L.; Johnson, K. Exposure to traffic-related air pollution and the risk of developing breast cancer among women in eight Canadian provinces: A case–control study. Environ. Int. 2015, 74, 240–248. [Google Scholar] [CrossRef]
- Crouse, D.L.; Goldberg, M.S.; Ross, N.A.; Chen, H.; Labrèche, F. Postmenopausal Breast Cancer Is Associated with Exposure to Traffic-Related Air Pollution in Montreal, Canada: A Case–Control Study. Environ. Health Perspect. 2010, 118, 1578–1583. [Google Scholar] [CrossRef] [Green Version]
- Dales, R.; Wheeler, A.J.; Mahmud, M.; Frescura, A.-M.; Liu, L. The Influence of Neighborhood Roadways on Respiratory Symptoms Among Elementary Schoolchildren. J. Occup. Environ. Med. 2009, 51, 654–660. [Google Scholar] [CrossRef]
- Hoek, G.; Brunekreef, B.; Goldbohm, S.; Fischer, P.; van den Brandt, P.A. Association between mortality and indicators of traffic-related air pollution in the Netherlands: A cohort study. Lancet 2002, 360, 1203–1209. [Google Scholar] [CrossRef] [Green Version]
- Gan, W.Q.; Tamburic, L.; Davies, H.W.; Demers, P.A.; Koehoorn, M.; Brauer, M. Changes in Residential Proximity to Road Traffic and the Risk of Death From Coronary Heart Disease. Epidemiology 2010, 21, 642–649. [Google Scholar] [CrossRef]
- Samoli, E.; Atkinson, R.W.; Analitis, A.; Fuller, G.W.; Green, D.C.; Mudway, I.; Anderson, H.R.; Kelly, F.J. Associations of short-term exposure to traffic-related air pollution with cardiovascular and respiratory hospital admissions in London, UK. Occup. Environ. Med. 2016, 73, 300–307. [Google Scholar] [CrossRef] [Green Version]
- Venn, A.J.; Lewis, S.A.; Cooper, M.; Hubbard, R.; Britton, J. Living Near a Main Road and the Risk of Wheezing Illness in Children. Am. J. Respir. Crit. Care Med. 2001, 164, 2177–2180. [Google Scholar] [CrossRef]
- Wilhelm, M.; Ritz, B. Residential proximity to traffic and adverse birth outcomes in Los Angeles county, California, 1994–1996. Environ. Health Perspect. 2003, 111, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Kwong, J.C.; Copes, R.; Tu, K.; Villeneuve, P.; van Donkelaar, A.; Hystad, P.; Martin, R.V.; Murray, B.; Jessiman, B.; et al. Living near major roads and the incidence of dementia, Parkinson’s disease, and multiple sclerosis: A population-based cohort study. Lancet 2017, 389, 718–726. [Google Scholar] [CrossRef]
- HEI. Traffic-Related Air Pollution: A Critical Review of the Literature on Emissions, Exposure, and Health Effects; HEI Special Report 17; Health Effects Institute: Boston, MA, USA, 2010. [Google Scholar]
- Brook, J.R.; Burnett, R.T.; Dann, T.F.; Cakmak, S.; Goldberg, M.S.; Fan, X.; Wheeler, A.J. Further interpretation of the acute effect of nitrogen dioxide observed in Canadian time-series studies. J. Expo. Sci. Environ. Epidemiol. 2007, 17, S36–S44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brook, J.R.; Graham, L.; Charland, J.P.; Cheng, Y.; Fan, X.; Lu, G.; Li, S.M.; Lillyman, C.; MacDonald, P.; Caravaggio, G.; et al. Investigation of the motor vehicle exhaust contribution to primary fine particle organic carbon in urban air. Atmos. Environ. 2007, 41, 119–135. [Google Scholar] [CrossRef]
- Clements, A.L.; Jia, Y.; Denbleyker, A.; McDonald-Buller, E.; Fraser, M.P.; Allen, D.T.; Collins, D.R.; Michel, E.; Pudota, J.; Sullivan, D.; et al. Air pollutant concentrations near three Texas roadways, part II: Chemical characterization and transformation of pollutants. Atmos. Environ. 2009, 43, 4523–4534. [Google Scholar] [CrossRef]
- Charron, A.; Polo-Rehn, L.; Besombes, J.-L.; Golly, B.; Buisson, C.; Chanut, H.; Marchand, N.; Guillaud, G.; Jaffrezo, J.-L. Identification and quantification of particulate tracers of exhaust and non-exhaust vehicle emissions. Atmos. Chem. Phys. 2019, 19, 5187–5207. [Google Scholar] [CrossRef] [Green Version]
- Jang, E.; Alam, M.S.; Harrison, R.M. Source apportionment of polycyclic aromatic hydrocarbons in urban air using positive matrix factorization and spatial distribution analysis. Atmos. Environ. 2013, 79, 271–285. [Google Scholar] [CrossRef]
- Olson, D.A.; McDow, S.R. Near roadway concentrations of organic source markers. Atmos. Environ. 2009, 43, 2862–2867. [Google Scholar] [CrossRef]
- Pant, P.; Harrison, R.M. Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: A review. Atmos. Environ. 2013, 77, 78–97. [Google Scholar] [CrossRef]
- Weitkamp, E.A.; Lambe, A.T.; Donahue, N.M.; Robinson, A. Laboratory Measurements of the Heterogeneous Oxidation of Condensed-Phase Organic Molecular Makers for Motor Vehicle Exhaust. Environ. Sci. Technol. 2008, 42, 7950–7956. [Google Scholar] [CrossRef] [PubMed]
- Omar, N.Y.M.J.; Bin Abas, M.R.; Rahman, N.A.; Tahir, N.M.; Rushdi, A.I.; Simoneit, B.R.T. Levels and distributions of organic source tracers in air and roadside dust particles of Kuala Lumpur, Malaysia. Environ. Earth Sci. 2007, 52, 1485–1500. [Google Scholar] [CrossRef]
- Pakbin, P.; Ning, Z.; Schauer, J.J.; Sioutas, C. Characterization of Particle Bound Organic Carbon from Diesel Vehicles Equipped with Advanced Emission Control Technologies. Environ. Sci. Technol. 2009, 43, 4679–4686. [Google Scholar] [CrossRef]
- Zakaria, M.P.; Okuda, T.; Takada, H. Polycyclic Aromatic Hydrocarbon (PAHs) and Hopanes in Stranded Tar-balls on the Coasts of Peninsular Malaysia: Applications of Biomarkers for Identifying Sources of Oil Pollution. Mar. Pollut. Bull. 2001, 42, 1357–1366. [Google Scholar] [CrossRef]
- Alves, C.A.; Oliveira, C.; Martins, N.; Mirante, F.; Caseiro, A.; Pio, C.; Matos, M.; Silva, H.F.; Oliveira, C.; Camões, F. Road tunnel, roadside, and urban background measurements of aliphatic compounds in size-segregated particulate matter. Atmos. Res. 2016, 168, 139–148. [Google Scholar] [CrossRef]
- Lin, L.; Lee, M.L.; Eatough, D.J. Review of recent advances in detection of organic markers in fine particulate matter and their use for source apportionment. J. Air Waste Manag. Assoc. 2010, 60, 3–25. [Google Scholar] [CrossRef] [Green Version]
- Rogge, W.F.; Hildemann, L.M.; Mazurek, M.A.; Cass, G.R.; Simoneit, B.R.T. Sources of fine organic aerosol. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks. Environ. Sci. Technol. 1993, 27, 636–651. [Google Scholar] [CrossRef]
- Tian, Y.; Liu, X.; Huo, R.; Shi, Z.; Sun, Y.; Feng, Y.; Harrison, R.M. Organic compound source profiles of PM2.5 from traffic emissions, coal combustion, industrial processes and dust. Chemosphere 2021, 278, 130429. [Google Scholar] [CrossRef]
- Irei, S.; Stupak, J.; Gong, X.; Chan, T.-W.; Cox, M.; McLaren, R.; Rudolph, J. Molecular Marker Study of Particulate Organic Matter in Southern Ontario Air. J. Anal. Methods Chem. 2017, 2017, 3504274. [Google Scholar] [CrossRef] [Green Version]
- Kleeman, M.J.; Riddle, S.G.; Robert, M.A.; Jakober, C. Lubricating Oil and Fuel Contributions To Particulate Matter Emissions from Light-Duty Gasoline and Heavy-Duty Diesel Vehicles. Environ. Sci. Technol. 2007, 42, 235–242. [Google Scholar] [CrossRef]
- Sbihi, H.; Brook, J.R.; Allen, R.W.; Curran, J.H.; Dell, S.; Mandhane, P.; Scott, J.A.; Sears, M.R.; Subbarao, P.; Takaro, T.K.; et al. A new exposure metric for traffic-related air pollution? An analysis of determinants of hopanes in settled indoor house dust. Environ Health. 2013, 12, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turlington, J.M.; Olson, D.A.; Stockburger, L.; McDow, S.R. Trueness, precision, and detectability for sampling and analysis of organic species in airborne particulate matter. Anal. Bioanal. Chem. 2010, 397, 2451–2463. [Google Scholar] [CrossRef] [PubMed]
- Robinson, A.L.; Donahue, N.M.P.; Rogge, W.F. Photochemical oxidation and changes in molecular composition of organic aerosol in the regional context. J. Geophys. Res. Earth Surf. 2006, 111, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Ruehl, C.R.; Ham, W.A.; Kleeman, M.J. Temperature-induced volatility of molecular markers in ambient airborne particulate matter. Atmos. Chem. Phys. 2011, 11, 67–76. [Google Scholar] [CrossRef] [Green Version]
- Delfino, R.J.; Staimer, N.; Tjoa, T.; Gillen, D.; Kleinman, M.T.; Sioutas, C.; Cooper, D. Personal and Ambient Air Pollution Exposures and Lung Function Decrements in Children with Asthma. Environ. Health Perspect. 2008, 116, 550–558. [Google Scholar] [CrossRef]
- Wheeler, A.J.; Xu, X.; Kulka, R.; You, H.; Wallace, L.; Mallach, G.; Van Ryswyk, K.; MacNeill, M.; Kearney, J.; Dabek-Zlotorzynska, E.; et al. Windsor, Ontario exposure assessment study: Design and methods validation of personal, indoor, and outdoor air pollution monitoring. J. Air Waste Manag. Assoc. 2011, 61, 324–338. [Google Scholar] [CrossRef]
- Languille, B.; Gros, V.; Nicolas, B.; Honoré, C.; Kaufmann, A.; Zeitouni, K. Personal Exposure to Black Carbon, Particulate Matter and Nitrogen Dioxide in the Paris Region Measured by Portable Sensors Worn by Volunteers. Toxics 2022, 10, 33. [Google Scholar] [CrossRef]
- Kaur, S.; Nieuwenhuijsen, M.J. Determinants of personal exposure to PM 2.5, ultrafine particle counts, and CO in a transport microenvironment. Environ. Sci. Technol. 2009, 43, 4737–4743. [Google Scholar] [CrossRef]
- Nieuwenhuijsen, M.J.; Donaire-Gonzalez, D.; Foraster, M.; Martinez, D.; Cisneros, A. Using Personal Sensors to Assess the Exposome and Acute Health Effects. Int. J. Environ. Res. Public Health 2014, 11, 7805–7819. [Google Scholar] [CrossRef]
- Van Ryswyk, K.; Wheeler, A.J.; Wallace, L.; Kearney, J.; You, H.; Kulka, R.; Xu, X. Impact of microenvironments and personal activities on personal PM 2.5 exposures among asthmatic children. J. Expo. Sci. Environ. Epidemiol. 2014, 24, 260–268. [Google Scholar] [CrossRef] [Green Version]
- Matz, C.J.; Stieb, D.M.; Davis, K.; Egyed, M.; Rose, A.; Chou, B.; Brion, O. Effects of Age, Season, Gender and Urban-Rural Status on Time-Activity: Canadian Human Activity Pattern Survey 2 (CHAPS 2). Int. J. Environ. Res. Public Health 2014, 11, 2108–2124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graham, L.A.; Tong, A.; Poole, G.; Ding, L.; Ke, F.; Wang, D.; Caravaggio, G.; Charland, J.-P.; Macdonald, P.; Hall, A.; et al. A comparison of direct thermal desorption with solvent extraction for gas chromatography-mass spectrometry analysis of semivolatile organic compounds in diesel particulate matter. Int. J. Environ. Anal. Chem. 2010, 90, 511–534. [Google Scholar] [CrossRef]
- Johnson, M.; MacNeill, M.; Grgicak-Mannion, A.; Nethery, E.; Xu, X.; Dales, R.; Rasmussen, P.; Wheeler, A. Development of temporally refined land-use regression models predicting daily household-level air pollution in a panel study of lung function among asthmatic children. J. Expo. Sci. Environ. Epidemiol. 2013, 23, 259–267. [Google Scholar] [CrossRef]
- Wheeler, A.J.; Smith-Doiron, M.; Xu, X.; Gilbert, N.L.; Brook, J.R. Intra-urban variability of air pollution in Windsor, Ontario—Measurement and modeling for human exposure assessment. Environ. Res. 2008, 106, 7–16. [Google Scholar] [CrossRef] [PubMed]
- MacNeill, M.; Wallace, L.; Kearney, J.; Allen, R.; Van Ryswyk, K.; Judek, S.; Xu, X.; Wheeler, A. Factors influencing variability in the infiltration of PM2.5 mass and its components. Atmos. Environ. 2012, 61, 518–532. [Google Scholar] [CrossRef]
- Cole-Hunter, T.; de Nazelle, A.; Donaire-Gonzalez, D.; Kubesch, N.; Carrasco-Turigas, G.; Matt, F.; Foraster, M.; Martínez, T.; Ambros, A.; Cirach, M.; et al. Estimated effects of air pollution and space-time-activity on cardiopulmonary outcomes in healthy adults: A repeated measures study. Environ. Int. 2017, 111, 247–259. [Google Scholar] [CrossRef] [PubMed]
- Dons, E.; Panis, L.I.; Van Poppel, M.; Theunis, J.; Wets, G. Personal exposure to Black Carbon in transport microenvironments. Atmos. Environ. 2012, 55, 392–398. [Google Scholar] [CrossRef]
- Dons, E.; Panis, L.I.; Van Poppel, M.; Theunis, J.; Willems, H.; Torfs, R.; Wets, G. Impact of time–activity patterns on personal exposure to black carbon. Atmos. Environ. 2011, 45, 3594–3602. [Google Scholar] [CrossRef]
- Wu, J.; Tjoa, T.; Li, L.; Jaimes, G.; Delfino, R.J. Modeling personal particle-bound polycyclic aromatic hydrocarbon (pb-pah) exposure in human subjects in Southern California. Environ. Health 2012, 11, 47. [Google Scholar] [CrossRef] [Green Version]
- Stocco, C.; MacNeill, M.; Wang, D.; Xu, X.; Guay, M.; Brook, J.; Wheeler, A.J. Predicting personal exposure of Windsor, Ontario residents to volatile organic compounds using indoor measurements and survey data. Atmos. Environ. 2008, 42, 5905–5912. [Google Scholar] [CrossRef]
- Olson, D.A.; Turlington, J.; Duvall, R.M.; McDow, S.R.; Stevens, C.D.; Williams, R. Indoor and outdoor concentrations of organic and inorganic molecular markers: Source apportionment of PM2.5 using low-volume samples. Atmos. Environ. 2008, 42, 1742–1751. [Google Scholar] [CrossRef]
Characteristic | Winter | Summer | |
---|---|---|---|
Gender | Female | 5 | 9 |
Male | 12 | 16 | |
Age | 10 | 5 | 8 |
11 | 6 | 10 | |
12 | 6 | 7 | |
Ethnicity | Caucasian | 16 | 23 |
Other | 1 | 2 | |
Home Type | Detached | 14 | 21 |
Other | 3 | 4 | |
Heat Type | Forced Air | 16 | 23 |
Hot Water | 1 | 2 | |
Stove Type * | Electric | 12 | 17 |
Natural Gas | 5 | 7 | |
Temperature (°C) | Mean (Std Dev) | 0 (3) | 23(2) |
Season | Microenvironment | Descriptive Stats (%) | ||||
---|---|---|---|---|---|---|
Mean | Std.Dev | Min | Median | Max | ||
winter (n = 17) | indoors away from home | 5 | 4 | 0 | 4 | 14 |
indoors at home | 68 | 5 | 59 | 68 | 76 | |
outdoors away from home | 4 | 2 | 0 | 3 | 8 | |
outdoors at home | 1 | 2 | 0 | 0 | 5 | |
at school | 19 | 3 | 13 | 19 | 23 | |
in transit | 4 | 2 | 1 | 4 | 6 | |
summer (n = 25) | indoors away from home | 9 | 9 | 0 | 7 | 27 |
indoors at home | 77 | 10 | 58 | 77 | 100 | |
outdoors away from home | 5 | 5 | 0 | 4 | 19 | |
outdoors at home | 6 | 5 | 0 | 5 | 19 | |
at school | 0 | 0 | 0 | 0 | 0 | |
in transit | 3 | 3 | 0 | 2 | 11 |
Season | Environment | r | (ppb) | ||||||
---|---|---|---|---|---|---|---|---|---|
Personal | Indoor | Outdoor | Mean | Sd | Min | Median | Max | ||
winter (n = 17) | personal | 1 | 0.74 | −0.09 | 12.6 | 4.5 | 7.3 | 11.3 | 22.6 |
indoor | 1 | 0.06 | 11.1 | 6.8 | 4.5 | 8.7 | 30.8 | ||
outdoor | 1 | 21.0 | 4.8 | 9.8 | 21.6 | 30.5 | |||
summer (n = 25) | personal | 1 | 0.75 | 0.22 | 8.0 | 3.3 | 2.8 | 7.0 | 16.8 |
indoor | 1 | 0.32 | 7.9 | 4.7 | 1.0 | 7.0 | 20.2 | ||
outdoor | 1 | 12.8 | 5.4 | 4.4 | 13.5 | 24.4 |
Season | Hopane | r | (ng/m3) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
H17a | a_b_nor | a_b_hop | H22S | H22R | Mean | SD | Min | Median | Max | ||
winter (n = 17) | H17a * | 1 | 0.80 | 0.75 | 0.63 | 0.71 | 67.3 | 31.3 | 28.5 | 61.1 | 150.8 |
a_b_nor | 1 | 0.97 | 0.85 | 0.85 | 179.2 | 72.3 | 92.1 | 155.7 | 346.8 | ||
a_b_hop | 1 | 0.91 | 0.89 | 157.0 | 59.5 | 88.1 | 143.3 | 319.1 | |||
H22S | 1 | 0.88 | 75.7 | 28.7 | 39.9 | 65.6 | 149.8 | ||||
H22R | 1 | 50.3 | 20.3 | 19.4 | 49.4 | 102.8 | |||||
summer (n = 25) | H17a * | 1 | 0.85 | 0.75 | 0.66 | 0.60 | 45.5 | 21.5 | 13.7 | 42.7 | 96.9 |
a_b_nor | 1 | 0.96 | 0.91 | 0.86 | 169.5 | 85.1 | 39.9 | 164.9 | 457.1 | ||
a_b_hop | 1.00 | 0.92 | 0.92 | 161.2 | 109.5 | 32.4 | 126.8 | 599.6 | |||
H22S | 1 | 0.97 | 80.9 | 51.7 | 12.7 | 68.9 | 236.2 | ||||
H22R | 1 | 54.7 | 37.3 | 5.6 | 43.0 | 176.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van Ryswyk, K.; Wheeler, A.J.; Grgicak-Mannion, A.; Xu, X.; Curran, J.; Caravaggio, G.; Hall, A.; MacDonald, P.; Brook, J.R. An Investigation into Which Methods Best Explain Children’s Exposure to Traffic-Related Air Pollution. Toxics 2022, 10, 284. https://doi.org/10.3390/toxics10060284
Van Ryswyk K, Wheeler AJ, Grgicak-Mannion A, Xu X, Curran J, Caravaggio G, Hall A, MacDonald P, Brook JR. An Investigation into Which Methods Best Explain Children’s Exposure to Traffic-Related Air Pollution. Toxics. 2022; 10(6):284. https://doi.org/10.3390/toxics10060284
Chicago/Turabian StyleVan Ryswyk, Keith, Amanda J. Wheeler, Alice Grgicak-Mannion, Xiaohong Xu, Jason Curran, Gianni Caravaggio, Ajae Hall, Penny MacDonald, and Jeffrey R. Brook. 2022. "An Investigation into Which Methods Best Explain Children’s Exposure to Traffic-Related Air Pollution" Toxics 10, no. 6: 284. https://doi.org/10.3390/toxics10060284
APA StyleVan Ryswyk, K., Wheeler, A. J., Grgicak-Mannion, A., Xu, X., Curran, J., Caravaggio, G., Hall, A., MacDonald, P., & Brook, J. R. (2022). An Investigation into Which Methods Best Explain Children’s Exposure to Traffic-Related Air Pollution. Toxics, 10(6), 284. https://doi.org/10.3390/toxics10060284