Acute and Subacute Safety Evaluation of Black Tea Extract (Herbt Tea Essences) in Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of HTE
2.3. Content Determination of Components in HTE
2.3.1. Determination of Caffeine Content
2.3.2. Determination of TB Content
2.3.3. Determination of the TP Contents
2.4. Mice
2.5. Experiment of Acute Administration
2.6. Experiment of Subacute Administration
2.7. Serological Assays
2.8. Kidney Staining
2.9. Western Blot
2.10. Real-Time Quantitative PCR (RT-qPCR)
2.11. Statistical Analysis
3. Results
3.1. Identification of HTE Ingredients
3.2. Acute Oral Administration Study
3.3. Subacute Oral Administration Study
3.3.1. Effect of HTE on Body Weight Changes and Organ Somatic Index
3.3.2. Effect of HTE on Serum Biochemical Parameters
3.3.3. The Histopathological Examination of the Kidneys
3.3.4. High Doses of HTE Exposure Promoted Inflammatory Response by Activating Renal NF-κB Signaling Pathway
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, D.; Dou, Q.P. Tea polyphenols and their roles in cancer prevention and chemotherapy. Int. J. Mol. Sci. 2008, 9, 1196–1206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, L.S.; Kim, Y.C.; Park, J.D.; Kim, Y.B.; Kim, S.H. Changes in major polyphenolic compounds of tea (Camellia sinensis) leaves during the production of black tea. Food Sci. Biotechnol. 2016, 25, 1523–1527. [Google Scholar] [CrossRef] [PubMed]
- Hayat, K.; Iqbal, H.; Malik, U.; Bilal, U.; Mushtaq, S. Tea and its consumption: Benefits and risks. Crit. Rev. Food Sci. Nutr. 2015, 55, 939–954. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Shibahara, A.; Matsuo, Y.; Tanaka, T.; Kouno, I. Reaction of the black tea pigment theaflavin during enzymatic oxidation of tea catechins. J. Nat. Prod. 2010, 73, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Zheng, X.; Ma, X.; Jiang, R.; Zhou, W.; Zhou, S.; Zhang, Y.; Lei, S.; Wang, S.; Kuang, J.; et al. Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism. Nat. Commun. 2019, 10, 4971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, J.S.; Tang, C.; Peng, C.X. Characterization of the chemical differences between solvent extracts from Pu-erh tea and Dian Hong black tea by CP–Py–GC/MS. J. Anal. Appl. Pyrol. 2012, 95, 189–197. [Google Scholar] [CrossRef]
- Wang, D.; Xu, K.; Zhong, Y.; Luo, X.; Xiao, R.; Hou, Y.; Bao, W.; Yang, W.; Yan, H.; Yao, P.; et al. Acute and subchronic oral toxicities of Pu-erh black tea extract in Sprague-Dawley rats. J. Ethnopharmacol. 2011, 134, 156–164. [Google Scholar] [CrossRef]
- Xu, J.; Yan, B.; Zhang, L.; Zhou, L.; Zhang, J.; Yu, W.; Dong, X.; Yao, L.; Shan, L. Theabrownin induces apoptosis and tumor inhibition of hepatocellular carcinoma Huh7 cells through ASK1-JNK-c-Jun pathway. Onco. Targets Ther. 2020, 13, 8977–8987. [Google Scholar] [CrossRef]
- Gu, X.P.; Pan, B.; Wu, Z.; Zhao, Y.F.; Tu, P.F.; Zheng, J. Progress in research for pharmacological effects of Pu-erh tea. Zhongguo Zhong Yao Za Zhi 2017, 42, 2038–2041. [Google Scholar]
- Wang, Y.; Zhang, M.; Zhang, Z.; Lu, H.; Gao, X.; Yue, P. High-theabrownins instant dark tea product by Aspergillus niger via submerged fermentation: α-glucosidase and pancreatic lipase inhibition and antioxidant activity. J. Sci. Food Agric. 2017, 97, 5100–5106. [Google Scholar] [CrossRef]
- Wang, Q.; Gong, J.; Chisti, Y.; Sirisansaneeyakul, S. Production of theabrownins using a crude fungal enzyme concentrate. J. Biotechnol. 2016, 231, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Tang, G.Y.; Meng, X.; Gan, R.Y.; Zhao, C.N.; Liu, Q.; Feng, Y.B.; Li, S.; Wei, X.L.; Atanasov, A.G.; Corke, H.; et al. Health functions and related molecular mechanisms of tea components: An update review. Int. J. Mol. Sci. 2019, 20, 6196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.; Xiao, R.; Hu, X.; Xu, K.; Hou, Y.; Zhong, Y.; Meng, J.; Fan, B.; Liu, L. Comparative safety evaluation of Chinese Pu-erh green tea extract and Pu-erh black tea extract in Wistar rats. J. Agric. Food Chem. 2010, 58, 1350–1358. [Google Scholar] [CrossRef] [PubMed]
- Gardner, E.J.; Ruxton, C.H.; Leeds, A.R. Black tea-helpful or harmful? A review of the evidence. Eur. J. Clin. Nutr. 2007, 61, 3–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Lin, X.; Wang, L.X.; Shao, J.L.; Chen, X.L.; Liu, H.C.; Mei, W.Q. Determination and analysis of multifunctional components in tea. J. Food Saf. Qual. 2019, 10, 7779–7786. [Google Scholar]
- Wang, Q.; Peng, C.; Gong, J. Effects of enzymatic action on the formation of theabrownin during solid state fermentation of Pu-erh tea. J. Sci. Food Agric. 2011, 91, 2412–2418. [Google Scholar] [CrossRef] [PubMed]
- Nair, A.B.; Jacob, S. A simple practice guide for dose conversion between animals and human. J. Basic Clin. Pharm. 2016, 7, 27–31. [Google Scholar] [CrossRef] [Green Version]
- Wojcikowski, K.; Gobe, G. Animal studies on medicinal herbs: Predictability, dose conversion and potential value. Phytother. Res. 2014, 28, 22–27. [Google Scholar] [CrossRef]
- He, C.; Ruan, F.; Jiang, S.; Zeng, J.; Yin, H.; Liu, R.; Zhang, Y.; Huang, L.; Wang, C.; Ma, S.; et al. Black phosphorus quantum dots cause nephrotoxicity in organoids, mice, and human cells. Small 2020, 16, e2001371. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, Y.; Zhang, W.; Lai, X.; Li, Q.; Zhang, L.; Sun, S. Green tea and black tea inhibit proliferation and migration of HepG2 cells via the PI3K/Akt and MMPs signalling pathway. Biomed. Pharmacother. 2020, 125, 109893. [Google Scholar] [CrossRef]
- Biswas, D.K.; Da, I.S.C.; Cruz, A.; Weiser, B.; Graner, E.; Pardee, A.B. The nuclear factor κB (NF-κB): A potential therapeutic target for estrogen receptor negative breast cancers. Proc. Natl. Acad. Sci. USA 2001, 98, 10386–10391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Wei, Q.; Wan, X. Does tea drinking promote health of older adults: Evidence from the China health and nutrition survey. J. Prev. Alzheimers Dis. 2021, 8, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Xie, G.; Ye, M.; Wang, Y.; Ni, Y.; Su, M.; Huang, H.; Qiu, M.; Zhao, A.; Zheng, X.; Chen, T.; et al. Characterization of pu-erh tea using chemical and metabolic profiling approaches. J. Agric. Food Chem. 2009, 57, 3046–3054. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.L.; Lin, Y.; Liu, Z.H. Research on acute and subacute toxicity evaluation of Liupao tea. J. Tea Sci. 2017, 37, 9. [Google Scholar]
- Liu, Q.J.; Chen, W.P.; Bai, W.X. Acute toxicity evaluation of Pu’er tea. J. Tea Sci. 2003, 23, 5. [Google Scholar]
- Deng, X.; Hou, Y.; Zhou, H.; Li, Y.; Xue, Z.; Xue, X.; Huang, G.; Huang, K.; He, X.; Xu, W. Hypolipidemic, anti-inflammatory, and anti-atherosclerotic effects of tea before and after microbial fermentation. Food Sci. Nutr. 2021, 9, 1160–1170. [Google Scholar]
- Huang, H.C.; Lin, J.K. Pu-erh tea, green tea, and black tea suppresses hyperlipidemia, hyperleptinemia and fatty acid synthase through activating AMPK in rats fed a high-fructose diet. Food Funct. 2012, 3, 170–177. [Google Scholar] [CrossRef]
- Komada, T.; Muruve, D.A. The role of inflammasomes in kidney disease. Nat. Rev. Nephrol. 2019, 15, 501–520. [Google Scholar] [CrossRef]
- Lawrence, T. The nuclear factor NF-κB pathway in inflammation. Cold Spring Harb. Perspect. Biol. 2009, 1, a001651. [Google Scholar] [CrossRef] [Green Version]
- Liang, H.; Yang, X.; Liu, C.; Sun, Z.; Wang, X. Effect of NF-κB signaling pathway on the expression of MIF, TNF-α, IL-6 in the regulation of intervertebral disc degeneration. J. Musculoskelet. Neuronal. Interact. 2018, 18, 551–556. [Google Scholar]
- Ramos, C.; Cañedo-Mondragón, R.; Becerril, C.; González-Ávila, G.; Esquivel, A.L.; Torres-Machorro, A.L.; Montaño, M. Short-term exposure to wood smoke increases the expression of pro-inflammatory cytokines, gelatinases, and TIMPs in guinea pigs. Toxics 2021, 9, 227. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Liu, S.; Wan, R.; Chen, Y. Combined treatment with sinomenine and acupuncture on collagen-induced arthritis through the NF-κB and MAPK signaling pathway. Oncol. Lett. 2018, 15, 8770–8776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, P.K.; Chen, S.P.; Huang-Liu, R.; Chen, C.J.; Chen, W.Y.; Ng, Y.Y.; Kuan, Y.H. Proinflammatory responses of 1-nitropyrene against RAW264.7 macrophages through Akt phosphorylation and NF-κB pathways. Toxics 2021, 9, 276. [Google Scholar] [CrossRef] [PubMed]
- Goodin, M.G.; Bray, B.J.; Rosengren, R.J. Sex- and strain-dependent effects of epigallocatechin gallate (EGCG) and epicatechin gallate (ECG) in the mouse. Food Chem. Toxicol. 2006, 44, 1496–1504. [Google Scholar] [CrossRef]
- Nehlig, A.; Debry, G. Potential teratogenic and neurodevelopmental consequences of coffee and caffeine exposure: A review on human and animal data. Neurotox. Teratol. 1994, 16, 531–543. [Google Scholar] [CrossRef]
- Finley, B.L.; Monnot, A.D.; Paustenbach, D.J.; Gaffney, S.H. Derivation of a chronic oral reference dose for cobalt. Regul. Toxicol. Pharmacol. 2012, 64, 491–503. [Google Scholar] [CrossRef]
- Bhat, V.S.; Ball, G.L.; McLellan, C.J. Derivation of a melamine oral reference dose (RfD) and drinking-water total allowable concentration. J. Toxicol. Environ. Health B Crit. Rev. 2010, 13, 16–50. [Google Scholar] [CrossRef]
- Thompson, C.M.; Fitch, S.E.; Ring, C.; Rish, W.; Cullen, J.M.; Haws, L.C. Development of an oral reference dose for the perfluorinated compound GenX. J. Appl. Toxicol. 2019, 39, 1267–1282. [Google Scholar] [CrossRef]
- Chiu, W.A.; Axelrad, D.A.; Dalaijamts, C.; Dockins, C.; Shao, K.; Shapiro, A.J.; Paoli, G. Beyond the RfD: Broad application of a probabilistic approach to improve chemical dose-response assessments for noncancer effects. Environ. Health Perspect. 2018, 126, 067009. [Google Scholar] [CrossRef] [Green Version]
- OECD. Test No. 408: Repeated Dose 90-Day Oral Toxicity Study in Rodents; OECD Publishing: Paris, France, 1998. [Google Scholar]
HTE Dose (g/kg) | Logarithm (Dose) | Sex | N | Mortality | Ratio |
---|---|---|---|---|---|
12 | 1.0792 | ♂ | 5 | 0 | 0% |
♀ | 5 | 0 | |||
14 | 1.1544 | ♂ | 5 | 0 | 0% |
♀ | 5 | 0 | |||
17.7 | 1.2297 | ♂ | 5 | 0 | 0% |
♀ | 5 | 0 | |||
20.2 | 1.3049 | ♂ | 5 | 1 | 10% |
♀ | 5 | 0 | |||
24 | 1.3802 | ♂ | 5 | 5 | 100% |
♀ | 5 | 5 |
Organ Somatic Index (%) | Sex | Control | 40 mg/kg | 400 mg/kg | 4000 mg/kg |
---|---|---|---|---|---|
Liver | ♂ | 4.04 ± 0.07 | 3.84 ± 0.1 | 3.83 ± 0.07 | 3.86 ± 0.09 |
♀ | 3.90 ± 0.18 | 3.97 ± 0.15 | 4.11 ± 0.19 | 4.01 ± 0.12 | |
Brain | ♂ | 1.15 ± 0.03 | 1.14 ± 0.03 | 1.13 ± 0.04 | 1.12 ± 0.01 |
♀ | 1.32 ± 0.04 | 1.46 ± 0.02 * | 1.40 ± 0.03 | 1.33 ± 0.03 | |
Spleen | ♂ | 0.21 ± 0.01 | 0.22 ± 0.01 | 0.21 ± 0.01 | 0.20 ± 0.008 |
♀ | 0.30 ± 0.02 | 0.32 ± 0.03 | 0.31 ± 0.02 | 0.28 ± 0.02 | |
Pancreas | ♂ | 0.51 ± 0.07 | 0.47 ± 0.05 | 0.52 ± 0.09 | 0.57 ± 0.07 |
♀ | 0.62 ± 0.05 | 0.66 ± 0.05 | 0.66 ± 0.03 | 0.64 ± 0.40 | |
Lungs | ♂ | 0.54 ± 0.008 | 0.54 ± 0.01 | 0.52 ± 0.01 | 0.54 ± 0.02 |
♀ | 0.54 ± 0.01 | 0.55 ± 0.01 | 0.54 ± 0.01 | 0.54 ± 0.03 | |
Heart | ♂ | 0.62 ± 0.02 | 0.66 ± 0.02 | 0.62 ± 0.04 | 0.54 ± 0.02 |
♀ | 0.50 ± 0.04 | 0.52 ± 0.05 | 0.57 ± 0.05 | 0.47 ± 0.03 | |
Testes | ♂ | 0.60 ± 0.006 | 0.56 ± 0.005 | 0.55 ± 0.008 | 0.60 ± 0.006 |
Epididymides | ♂ | 0.18 ± 0.02 | 0.17 ± 0.02 | 0.18 ± 0.01 | 0.18 ± 0.03 |
Ovaries | ♀ | 0.10 ± 0.01 | 0.08 ± 0.01 | 0.06 ± 0.01 | 0.09 ± 0.01 |
Uterus | ♀ | 0.29 ± 0.02 | 0.33 ± 0.02 | 0.34 ± 0.03 | 0.27 ± 0.05 |
Parameter | Sex | Control | 40 mg/kg | 400 mg/kg | 4000 mg/kg |
---|---|---|---|---|---|
ALT(U/L) | ♂ | 39.1 ± 3.3 | 39.5 ± 1.8 | 38.8 ± 3.7 | 37.3 ± 3.6 |
♀ | 35.0 ± 3.6 | 36.2 ± 2.1 | 33.3 ± 2.8 | 34.3 ± 1.6 | |
AST(U/L) | ♂ | 128.9 ± 6.1 | 127.0 ± 9.3 | 134.3 ± 11.4 | 124.8 ± 10.6 |
♀ | 130.4 ± 9.6 | 139.1 ± 12.5 | 130.6 ± 13.9 | 134.0 ± 11.4 | |
AST/ALT | ♂ | 3.4 ± 0.2 | 2.8 ± 0.3 | 3.5 ± 0.2 | 4.0 ± 0.4 |
♀ | 3.8 ± 0.3 | 3.3 ± 0.2 | 3.9 ± 0.1 | 3.5 ± 0.2 | |
ALB (g/L) | ♂ | 49.1 ± 0.7 | 47.0 ± 0.7 | 47.0 ± 0.7 | 49.8 ± 1.3 |
♀ | 49.4 ± 0.7 | 51.8 ± 1.7 | 48.5 ± 0.7 | 48.2 ± 1.0 | |
GLO (g/L) | ♂ | 21.2 ± 0.3 | 20.6 ± 0.5 | 21.7 ± 0.4 | 19.8 ± 0.9 |
♀ | 17.1 ± 1.0 | 16.3 ± 0.3 | 18.7 ± 1.1 | 16.2 ± 0.8 | |
ALB/GLO | ♂ | 2.3 ± 0.04 | 2.2 ± 0.06 | 2.1 ± 0.06 | 2.5 ± 0.09 |
♀ | 2.94 ± 0.1 | 3.1 ± 0.09 | 2.6 ± 0.1 | 3.0 ± 0.1 | |
TP (g/L) | ♂ | 70.3 ± 0.89 | 67.7 ± 1.02 | 67.2 ± 0.86 | 69.7 ± 1.9 |
♀ | 66.6 ± 1.5 | 68.2 ± 0.7 | 67.3 ± 1.4 | 64.5 ± 1.6 | |
ALP (U/L) | ♂ | 186 ± 17.4 | 146.5 ± 13 | 141.7 ± 13.9 | 157.7 ± 10.4 |
♀ | 211.3 ± 12.0 | 192.4 ± 7.2 | 183.6 ± 8.3 | 212.2 ± 11.6 | |
GLU (mmol/L) | ♂ | 6.6 ± 0.3 | 5.4 ± 0.4 | 6.5 ± 0.6 | 7.7 ± 0.4 |
♀ | 4.99 ± 0.3 | 4.88 ± 0.2 | 5.81 ± 0.4 | 7.59 ± 0.4 *** | |
VLDL | ♂ | 0.81 ± 0.05 | 0.84 ± 0.07 | 0.61 ± 0.08 | 0.49 ± 0.05 *** |
♀ | 0.68 ± 0.06 | 0.56 ± 0.03 | 0.54 ± 0.05 | 0.50 ± 0.05 | |
TG (mmol/L) | ♂ | 1.79 ± 0.1 | 1.84 ± 0.1 | 1.35 ± 0.1 * | 1.09 ± 0.1 *** |
♀ | 1.51 ± 0.1 | 1.24 ± 0.08 | 1.19 ± 0.1 | 1.19 ± 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, X.; Han, C.; Hu, W.; Fu, C.; Zhou, Y.; Wang, Z.; Xu, Q.; Lv, R.; He, C.; Zuo, Z.; et al. Acute and Subacute Safety Evaluation of Black Tea Extract (Herbt Tea Essences) in Mice. Toxics 2022, 10, 286. https://doi.org/10.3390/toxics10060286
Ding X, Han C, Hu W, Fu C, Zhou Y, Wang Z, Xu Q, Lv R, He C, Zuo Z, et al. Acute and Subacute Safety Evaluation of Black Tea Extract (Herbt Tea Essences) in Mice. Toxics. 2022; 10(6):286. https://doi.org/10.3390/toxics10060286
Chicago/Turabian StyleDing, Xiaoyan, Changshun Han, Weiping Hu, Chengqing Fu, Yixi Zhou, Zheng Wang, Qingyan Xu, Rongfu Lv, Chengyong He, Zhenghong Zuo, and et al. 2022. "Acute and Subacute Safety Evaluation of Black Tea Extract (Herbt Tea Essences) in Mice" Toxics 10, no. 6: 286. https://doi.org/10.3390/toxics10060286
APA StyleDing, X., Han, C., Hu, W., Fu, C., Zhou, Y., Wang, Z., Xu, Q., Lv, R., He, C., Zuo, Z., & Huang, J. (2022). Acute and Subacute Safety Evaluation of Black Tea Extract (Herbt Tea Essences) in Mice. Toxics, 10(6), 286. https://doi.org/10.3390/toxics10060286