Complexation of 5-Fluorouracil with β-Cyclodextrin and Sodium Dodecyl Sulfate: A Useful Tool for Encapsulating and Removing This Polluting Drug
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Diffusion Measurements: Short Description of the Taylor Dispersion Method
3. Results and Discussion
3.1. Ternary Mutual Diffusion Coefficients of Aqueous 5-FU (C1) + β-CD (C2) Solutions
3.2. Ternary Mutual Diffusion Coefficients of Aqueous 5-FU (C1) + SDS (C2) Solutions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Malet-Martino, M.; Martino, R. Clinical Studies of Three Oral Prodrugs of 5-Fluorouracil (Capecitabine, UFT, S-1): A Review. Oncologist 2002, 7, 288–323. [Google Scholar] [CrossRef] [Green Version]
- Lam, P.-L.; Lee, K.K.-H.; Wong, R.S.-M.; Cheng, G.Y.M.; Cheng, S.Y.; Yuen, M.C.-W.; Lam, K.-H.; Gambari, R.; Kok, S.H.-L.; Chui, C.-H. Development of hydrocortisone succinic acid/and 5-fluorouracil/chitosan microcapsules for oral and topical drug deliveries. Bioorg. Med. Chem. Lett. 2012, 22, 3213–3218. [Google Scholar] [CrossRef]
- Brunton, L.L.; Randa Hilal-Dandan, R.; Knollman, B.C. (Eds.) Goodman and Gilman’s: The Pharmacological Basis of Therapeutics, 13th ed.; McGraw Hill: New York, NY, USA, 2017. [Google Scholar]
- Heidelberger, C.; Chaudhuri, N.K.; Danneberg, P.; Mooren, D.; Griesbach, L.; Duschinsky, R.; Schnitzer, R.J.; Pleven, E.; Scheiner, J. Fluorinated Pyrimidines, A New Class of Tumour-Inhibitory Compounds. Nature 1957, 179, 663–666. [Google Scholar] [CrossRef]
- Yan, S.; Zhu, J.; Wang, Z.; Yin, J.; Zheng, Y.; Chen, X. Layer-by-layer assembly of poly(l-glutamic acid)/chitosan microcapsules for high loading and sustained release of 5-fluorouracil. Eur. J. Pharm. Biopharm. 2011, 78, 336–345. [Google Scholar] [CrossRef]
- Prince, G.T.; Cameron, M.C.; Fathi, R.; Alkousakis, T. Topical 5-fluorouracil in dermatologic disease. Int. J. Dermatol. 2018, 57, 1259–1264. [Google Scholar] [CrossRef]
- Yen Moore, A. Clinical applications for topical 5-fluorouracil in the treatment of dermatological disorders. J. Dermatolog. Treat. 2009, 20, 328–335. [Google Scholar] [CrossRef]
- Abdelwahab, M.; Salah, M.; Samy, N.; Rabie, A.; Farrag, A.R. Effect of Topical 5-Fluorouracil Alone versus Its Combination with Erbium:YAG (2940 nm) Laser in Treatment of Vitiligo. Clin. Cosmet. Investig. Dermatol. 2020, 13, 77–85. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.K.; Weiss, J.S.; Jorizzo, J.L. 5-fluorouracil 0.5% cream for multiple actinic or solar keratoses of the face and anterior scalp. Ski. Ther. Lett. 2001, 6, 1–4. [Google Scholar]
- Diasio, R.B.; Harris, B.E. Clinical Pharmacology of 5-Fluorouracil. Clin. Pharmacokinet. 1989, 16, 215–237. [Google Scholar] [CrossRef]
- Negreira, N.; de Alda, M.L.; Barceló, D. Cytostatic drugs and metabolites in municipal and hospital wastewaters in Spain: Filtration, occurrence, and environmental risk. Sci. Total Environ. 2014, 497–498, 68–77. [Google Scholar] [CrossRef]
- Mahnik, S.N.; Lenz, K.; Weissenbacher, N.; Mader, R.M.; Fuerhacker, M. Fate of 5-fluorouracil, doxorubicin, epirubicin, and daunorubicin in hospital wastewater and their elimination by activated sludge and treatment in a membrane-bio-reactor system. Chemosphere 2007, 66, 30–37. [Google Scholar] [CrossRef]
- Tiwari, R.; Tiwari, G.; Wal, A.; Gupta, C. Entrega liposomal de 5 fluorouracilo y tretinoína: Un aspecto del tratamiento tópico de las verrugas cutáneas. Ars Pharm. 2019, 60, 139–146. [Google Scholar] [CrossRef]
- Jha, A.K.; Sonthalia, S. 5-Fluorouracil as an adjuvant therapy along with microneedling in vitiligo. J. Am. Acad. Dermatol. 2019, 80, e75–e76. [Google Scholar] [CrossRef]
- Petrilli, R.; Eloy, J.O.; Saggioro, F.P.; Chesca, D.L.; de Souza, M.C.; Dias, M.V.S.; DaSilva, L.L.P.; Lee, R.J.; Lopez, R.F.V. Skin cancer treatment effectiveness is improved by iontophoresis of EGFR-targeted liposomes containing 5-FU compared with subcutaneous injection. J. Control. Release 2018, 283, 151–162. [Google Scholar] [CrossRef]
- Mahnik, S.; Rizovski, B.; Fuerhacker, M.; Mader, R. Determination of 5-fluorouracil in hospital effluents. Anal. Bioanal. Chem. 2004, 380, 31–35. [Google Scholar] [CrossRef]
- Straub, J.O. Combined Environmental Risk Assessment for 5-Fluorouracil and Capecitabine in Europe. Integr. Environ. Assess. Manag. 2007, 6, 540–566. [Google Scholar] [CrossRef]
- Arbós, P.; Campanero, M.A.; Arangoa, M.A.; Irache, J.M. Nanoparticles with specific bioadhesive properties to circumvent the pre-systemic degradation of fluorinated pyrimidines. J. Control. Release 2004, 96, 55–65. [Google Scholar] [CrossRef]
- Ewert de Oliveira, B.; Junqueira Amorim, O.H.; Lima, L.L.; Rezende, R.A.; Mestnik, N.C.; Bagatin, E.; Leonardi, G.R. 5-Fluorouracil, innovative drug delivery systems to enhance bioavailability for topical use. J. Drug Deliv. Sci. Technol. 2021, 61, 102155. [Google Scholar] [CrossRef]
- Lakkakula, J.R.; Krause, R.W.M.; Divakaran, D.; Barage, S.; Srivastava, R. 5-Fu inclusion complex capped gold nanoparticles for breast cancer therapy. J. Mol. Liq. 2021, 341, 117262. [Google Scholar] [CrossRef]
- Wang, X.-H.; Lin, A.Y.-C. Is the phototransformation of pharmaceuticals a natural purification process that decreases ecological and human health risks? Environ. Pollut. 2014, 186, 203–215. [Google Scholar] [CrossRef]
- Zounkova, R.; Kovalova, L.; Blaha, L.; Dott, W. Ecotoxicity and genotoxicity assessment of cytotoxic antineoplastic drugs and their metabolites. Chemosphere 2010, 81, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Kümmerer, K.; Al-Ahmad, A.; Bertram, B.; Wießler, M. Biodegradability of antineoplastic compounds in screening tests: Influence of glucosidation and of stereochemistry. Chemosphere 2000, 40, 767–773. [Google Scholar] [CrossRef]
- Johnson, A.C.; Jürgens, M.D.; Williams, R.J.; Kümmerer, K.; Kortenkamp, A.; Sumpter, J.P. Do cytotoxic chemotherapy drugs discharged into rivers pose a risk to the environment and human health? An overview and UK case study. J. Hydrol. 2008, 348, 167–175. [Google Scholar] [CrossRef]
- Barros, M.C.F.; Luísa Ramos, M.; Burrows, H.D.; Esteso, M.A.; Leaist, D.G.; Ribeiro, A.C.F. Ternary mutual diffusion coefficients of aqueous {l-dopa (1)+β-CD (2)} solutions at T = 298.15K. J. Chem. Thermodyn. 2015, 90, 169–173. [Google Scholar] [CrossRef]
- Santos, C.I.A.V.; Teijeiro, C.; Ribeiro, A.C.F.; Rodrigues, D.F.S.L.; Romero, C.M.; Esteso, M.A. Drug delivery systems: Study of inclusion complex formation for ternary caffeine– β -cyclodextrin–water mixtures from apparent molar volume values at 298.15 K and 310.15 K. J. Mol. Liq. 2016, 223, 209–216. [Google Scholar] [CrossRef]
- Musilová, L.; Mráček, A.; Azevedo, E.F.G.; Rodrigo, M.M.; Valente, A.J.M.; Esteso, M.A.; Ribeiro, A.C.F. Dependence of Viscosity and Diffusion on β-Cyclodextrin and Chloroquine Diphosphate Interactions. Processes 2021, 9, 1433. [Google Scholar] [CrossRef]
- El Maghraby, G.M.; Barry, B.W.; Williams, A.C. Liposomes and skin: From drug delivery to model membranes. Eur. J. Pharm. Sci. 2008, 34, 203–222. [Google Scholar] [CrossRef]
- Pal, A.; Roy, S.; Kumar, A.; Mahmood, S.; Khodapanah, N.; Thomas, S.; Agatemor, C.; Ghosal, K. Physicochemical Characterization, Molecular Docking, and In Vitro Dissolution of Glimepiride−Captisol Inclusion Complexes. ACS Omega 2020, 5, 19968–19977. [Google Scholar] [CrossRef]
- Singh, R.P.; Gangadharappa, H.V.; Mruthunjaya, K. Phospholipids: Unique carriers for drug delivery systems. J. Drug Deliv. Sci. Technol. 2017, 39, 166–179. [Google Scholar] [CrossRef]
- Kumar, B.; Jalodia, K.; Kumar, P.; Gautam, H.K. Recent advances in nanoparticle-mediated drug delivery. J. Drug Deliv. Sci. Technol. 2017, 41, 260–268. [Google Scholar] [CrossRef]
- Petrilli, R.; Eloy, J.; Lopez, R.; Lee, R. Cetuximab Immunoliposomes Enhance Delivery of 5-FU to Skin Squamous Carcinoma Cells. Anticancer Agents Med. Chem. 2017, 17, 301–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chetty, P.; Choi, F.; Mitchell, T. Primary Care Review of Actinic Keratosis and Its Therapeutic Options: A Global Perspective. Dermatol. Ther. 2015, 5, 19–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Micali, G.; Lacarrubba, F.; Nasca, M.R.; Ferraro, S.; Schwartz, R.A. Topical pharmacotherapy for skin cancer. J. Am. Acad. Dermatol. 2014, 70, 979.e1–979.e12. [Google Scholar] [CrossRef] [PubMed]
- Longley, D.B.; Harkin, D.P.; Johnston, P.G. 5-Fluorouracil: Mechanisms of action and clinical strategies. Nat. Rev. Cancer 2003, 3, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Glavas-Dodov, M.; Fredro-Kumbaradzi, E.; Goracinova, K.; Calis, S.; Simonoska, M.; Hin-cal, A.A. 5-Fluorouracil in topical liposome gels for anticancer treatment—Formulation and evalua-tion. Acta Pharm. 2003, 53, 241–250. [Google Scholar] [PubMed]
- Santos, C.I.A.V.; Ribeiro, A.C.F.; Esteso, M.A. Drug Delivery Systems: Study of Inclusion Complex Formation between Methylxanthines and Cyclodextrins and Their Thermodynamic and Transport Properties. Biomolecules 2019, 9, 196. [Google Scholar] [CrossRef] [Green Version]
- Qiao, Y.; Zhang, S.; Lin, O.; Deng, L.; Dong, A. Complexation between Sodium Dodecyl Sulfate and Amphoteric Polyurethane Nanoparticles. J. Phys. Chem. B 2007, 111, 11134–11139. [Google Scholar] [CrossRef]
- Asuman Bozkır, B.D. Design and Evaluation of Hydrophobic Ion-Pairing Complexation of Lysozyme with Sodium Dodecyl Sulfate for Improved Encapsulation of Hydrophilic Peptides/Proteins by Lipid-Polymer Hybrid Nanoparticles. J. Nanomed. Nanotechnol. 2015, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- Santos, C.I.A.V.; Ribeiro, A.C.F.; Veríssimo, L.M.P.; Lobo, V.M.M.; Esteso, M.A. Influence of potassium chloride on diffusion of 2-hydroxypropyl-β-cyclodextrin and β-cyclodextrin at T = 298.15 K and T = 310.15 K. J. Chem. Thermodyn. 2013, 57, 220–223. [Google Scholar] [CrossRef]
- Price, W.E. Theory of the taylor dispersion technique for three-component-system diffusion measurements. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1988, 84, 2431. [Google Scholar] [CrossRef]
- Tyrrell, H.J.V.; Harris, K.R. Diffusion in Liquids: A Theoretical and Experimental Study; Butterworth: London, UK, 1984; ISBN 9780408175913. [Google Scholar]
- Callendar, R.; Leaist, D.G. Diffusion Coefficients for Binary, Ternary, and Polydisperse Solutions from Peak-Width Analysis of Taylor Dispersion Profiles. J. Solut. Chem. 2006, 35, 353–379. [Google Scholar] [CrossRef]
- Loh, W. A técnica de dispersão de taylor para estudos de difusão em líquidos e suas aplicações. Quim. Nova 1997, 20, 541–545. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, C.-H.; Banh, K.-S.; Dang, C.-H.; Nguyen, C.-H.; Nguyen, T.-D. β-cyclodextrin/alginate nanoparticles encapsulated 5-fluorouracil as an effective and safe anticancer drug delivery system. Arab. J. Chem. 2022, 15, 103814. [Google Scholar] [CrossRef]
- Paduano, L.; Sartorio, R.; Vitagliano, V.; Albright, J.G.; Miller, D.G.; Mitchell, J. Diffusion coefficients in systems with inclusion compounds. 1.. alpha.-Cyclodextrin-L-phenylalanine-water at 25 °C. J. Phys. Chem. 1990, 94, 6885–6888. [Google Scholar] [CrossRef]
- Ribeiro, A.C.; Musilová, L.; Mráček, A.; Cabral, A.M.; Santos, M.A.; Cabral, I.; Esteso, M.A.; Valente, A.J.; Leaist, D. Host-guest paracetamol/cyclodextrin complex formation evaluated from coupled diffusion measurements. J. Chem. Thermodyn. 2021, 161, 106551. [Google Scholar] [CrossRef]
- Verissimo, L.M.P.; Cabral, I.; Cabral, A.M.T.D.P.V.; Utzeri, G.; Veiga, F.J.B.; Valente, A.J.M.; Ribeiro, A.C.F. Transport properties of aqueous solutions of the oncologic drug 5-fluorouracil: A fundamental complement to therapeutics. J. Chem. Thermodyn. 2021, 161, 106533. [Google Scholar] [CrossRef]
- Ribeiro, A.C.F.; Lobo, V.M.M.; Azevedo, E.F.G.; da Miguel, M.G.; Burrows, H.D. Diffusion coefficients of sodium dodecylsulfate in aqueous solutions of sucrose and in aqueous solutions. J. Mol. Liq. 2001, 94, 193–201. [Google Scholar] [CrossRef] [Green Version]
- Leaist, D.G. Diffusion of ionic micelles in salt solutions: Sodium dodecyl sulfate + sodium chloride + water. J. Colloid Interface Sci. 1986, 111, 240–249. [Google Scholar] [CrossRef]
Chemical Name | Source | CAS Number | Mass Fraction Purity 1 |
---|---|---|---|
5-Fluorouracil | Sigma-Aldrich | 54-21-7 | >0.99 |
Sodium dodecyl sulfate | Merck | 7732-18-5 | >0.99 |
β-cyclodextrin | Sigma, Kawasaki, Japan (water mass fraction 0.131) | 7585-39-9 | ≥0.97 |
Water | Millipore-Q water (18.2 MΩ·cm at 298.15 K) | 7732-18-5 |
C11 | C21 | X12 | D11 ± SD 3 | D12 ± SD 3 | D21 ± SD 3 | D22 ± SD 3 |
---|---|---|---|---|---|---|
0.000 | 0.007 | 0.000 | 1.011 ± 0.020 | 0.013 ± 0.085 | −0.030 ± 0.019 | 0.399 ± 0.012 |
0.0035 | 0.0035 | 0.500 | 1.008 ± 0.010 | 0.030 ± 0.085 | −0.020 ± 0.029 | 0.405 ± 0.010 |
0.007 | 0.000 | 1.000 | 1.010 ± 0.020 | −0.090 ± 0.015 | −0.008 ± 0.019 | 0.427 ± 0.012 |
0.000 | 0.010 | 0.000 | 1.023 ± 0.002 | 0.040 ± 0.030 | −0.020 ± 0.010 | 0.398 ± 0.010 |
0.012 | 0.008 | 0.375 | 1.015 ± 0.010 | 0.007 ± 0.001 | −0.025 ± 0.009 | 0.431 ± 0.001 |
0.018 | 0.002 | 0.900 | 1.055 ± 0.020 | −0.003 ± 0.001 | −0.020 ± 0.046 | 0.462 ± 0.001 |
0.020 | 0.000 | 1.000 | 1.050 ± 0.029 | −0.045 ± 0.007 | −0.012 ± 0.010 | 0.465 ± 0.007 |
Species | DS/(10−9 m2 s−1) |
---|---|
5-FU | 1.050 1 |
β-CD | 0.399 1 |
5-FU-β-CD | 0.390 2 |
C11 | C21 | X1 | s 2 |
---|---|---|---|
0.000 | 0.007 | 0.000 | 0.107 |
0.000 | 0.010 | 0.000 | 0.092 |
C11 | C21 | X12 | D11 ± SD 3 | D12 ± SD 3 | D21 ± SD 3 | D22 ± SD 3 |
---|---|---|---|---|---|---|
C2 < CMC 4 | ||||||
0.000 | 0.004 | 0.000 | 1.160 ± 0.020 | 0.050 ± 0.015 | −0.030 ± 0.069 | 0.789 ± 0.012 |
0.004 | 0.000 | 1.000 | 1.085 ± 0.020 | 0.010 ± 0.015 | −0.008 ± 0.019 | 0.830 ± 0.012 |
0.018 | 0.002 | 0.375 | 1.090 ± 0.020 | −0.016 ± 0.015 | −0.040 ± 0.019 | 0.693 ± 0.012 |
0.010 | 0.000 | 1.000 | 1.051 ± 0.004 | −0.012 ± 0.015 | −0.002 ± 0.019 | 0.870 ± 0.012 |
C2 > CMC 4 | ||||||
0.000 | 0.020 | 0.000 | 1.001 ± 0.010 | 0.010 ± 0.014 | −0.050 ± 0.009 | 0.378 ± 0.003 |
0.011 | 0.009 | 0.550 | 1.005 ± 0.010 | −0.078 ± 0.014 | −0.028 ± 0.009 | 0.367 ± 0.003 |
0.000 | 0.050 | 0.000 | 0.965 ± 0.012 | 0.025 ± 0.018 | −0.101 ± 0.010 | 0.504 ± 0.001 |
Species | DS/(10−9 m2 s−1) |
---|---|
5-FU | 1.050 1 |
SDS | 0.378 1 |
5-FU-SDS | 0.100 2 |
C11 | C21 | X1 | s 2 |
---|---|---|---|
0.000 | 0.020 | 0.000 | 0.156 |
0.000 | 0.050 | 0.000 | 0.190 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabral, A.M.T.D.P.V.; Fernandes, A.C.G.; Joaquim, N.A.M.; Veiga, F.; Sofio, S.P.C.; Paiva, I.; Esteso, M.A.; Rodrigo, M.M.; Valente, A.J.M.; Ribeiro, A.C.F. Complexation of 5-Fluorouracil with β-Cyclodextrin and Sodium Dodecyl Sulfate: A Useful Tool for Encapsulating and Removing This Polluting Drug. Toxics 2022, 10, 300. https://doi.org/10.3390/toxics10060300
Cabral AMTDPV, Fernandes ACG, Joaquim NAM, Veiga F, Sofio SPC, Paiva I, Esteso MA, Rodrigo MM, Valente AJM, Ribeiro ACF. Complexation of 5-Fluorouracil with β-Cyclodextrin and Sodium Dodecyl Sulfate: A Useful Tool for Encapsulating and Removing This Polluting Drug. Toxics. 2022; 10(6):300. https://doi.org/10.3390/toxics10060300
Chicago/Turabian StyleCabral, Ana M. T. D. P. V., Ana C. G. Fernandes, Neuza A. M. Joaquim, Francisco Veiga, Sara P. C. Sofio, Isabel Paiva, Miguel A. Esteso, M. Melia Rodrigo, Artur J. M. Valente, and Ana C. F. Ribeiro. 2022. "Complexation of 5-Fluorouracil with β-Cyclodextrin and Sodium Dodecyl Sulfate: A Useful Tool for Encapsulating and Removing This Polluting Drug" Toxics 10, no. 6: 300. https://doi.org/10.3390/toxics10060300
APA StyleCabral, A. M. T. D. P. V., Fernandes, A. C. G., Joaquim, N. A. M., Veiga, F., Sofio, S. P. C., Paiva, I., Esteso, M. A., Rodrigo, M. M., Valente, A. J. M., & Ribeiro, A. C. F. (2022). Complexation of 5-Fluorouracil with β-Cyclodextrin and Sodium Dodecyl Sulfate: A Useful Tool for Encapsulating and Removing This Polluting Drug. Toxics, 10(6), 300. https://doi.org/10.3390/toxics10060300