The Inhibition of Microcystin Adsorption by Microplastics in the Presence of Algal Organic Matters
Abstract
:1. Introduction
2. Materials and Methods
2.1. MPs Particles, IOM Samples, and Chemicals
2.2. Batch Adsorption Experiments
2.3. Adsorption Model
2.4. Instrumental Analyses
2.5. Statistical Analysis
3. Results and Discussion
3.1. MPs Characterization
3.2. Adsorption Behavior between MC-LR, IOM, and MPs
3.2.1. Adsorption Kinetics
3.2.2. Adsorption Isotherms
3.3. Interaction Mechanism
3.4. Potential Environmental Impact
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ivar Do Sul, J.A.; Costa, M.F. The present and future of microplastic pollution in the marine environment. Environ. Pollut. 2014, 185, 352–364. [Google Scholar] [CrossRef] [PubMed]
- Weithmann, N.; Möller, J.N.; Löder, M.G.J.; Piehl, S.; Laforsch, C.; Freitag, R. Organic fertilizer as a vehicle for the entry of microplastic into the environment. Sci. Adv. 2018, 4, eaap8060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivleva, N.P.; Wiesheu, A.C.; Niessner, R. Microplastic in Aquatic Ecosystems. Angew. Chem. Int. Ed. 2016, 56, 1720–1739. [Google Scholar] [CrossRef] [PubMed]
- Cole, M.; Lindeque, P.; Halsband, C.; Galloway, T.S. Microplastics as contaminants in the marine environment: A review. Mar. Pollut. Bull. 2011, 62, 2588–2597. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Rong, L.; Xu, J.; Lian, J.; Wang, L.; Sun, H. Sorption of five organic compounds by polar and nonpolar microplastics. Chemosphere 2020, 257, 127206. [Google Scholar] [CrossRef]
- McDougall, L.; Thomson, L.; Brand, S.; Wagstaff, A.; Lawton, L.A.; Petrie, B. Adsorption of a diverse range of pharmaceuticals to polyethylene microplastics in wastewater and their desorption in environmental matrices. Sci. Total Environ. 2021, 808, 152071. [Google Scholar] [CrossRef]
- Camacho, M.; Herrera, A.; Gómez, M.; Acosta-Dacal, A.; Martínez, I.; Henríquez-Hernández, L.A.; Luzardo, O.P. Organic pollutants in marine plastic debris from Canary Islands beaches. Sci. Total Environ. 2019, 662, 22–31. [Google Scholar] [CrossRef]
- Lin, L.; Tang, S.; Wang, X.; Sun, X.; Yu, A. Adsorption of malachite green from aqueous solution by nylon microplastics: Reaction mechanism and the optimum conditions by response surface methodology. Process Saf. Environ. Prot. 2020, 140, 339–347. [Google Scholar] [CrossRef]
- Bao, Z.-Z.; Chen, Z.-F.; Lu, S.-Q.; Wang, G.; Qi, Z.; Cai, Z. Effects of hydroxyl group content on adsorption and desorption of anthracene and anthrol by polyvinyl chloride microplastics. Sci. Total Environ. 2021, 790, 148077. [Google Scholar] [CrossRef]
- Bao, Z.-Z.; Chen, Z.-F.; Zhong, Y.; Wang, G.; Qi, Z.; Cai, Z. Adsorption of phenanthrene and its monohydroxy derivatives on polyvinyl chloride microplastics in aqueous solution: Model fitting and mechanism analysis. Sci. Total Environ. 2020, 764, 142889. [Google Scholar] [CrossRef]
- Munoz, M.; Ortiz, D.; Nieto-Sandoval, J.; de Pedro, Z.M.; Casas, J.A. Adsorption of micropollutants onto realistic microplastics: Role of microplastic nature, size, age, and NOM fouling. Chemosphere 2021, 283, 131085. [Google Scholar] [CrossRef]
- Godoy, V.; Martín-Lara, M.; Calero, M.; Blázquez, G. The relevance of interaction of chemicals/pollutants and microplastic samples as route for transporting contaminants. Process Saf. Environ. Prot. 2020, 138, 312–323. [Google Scholar] [CrossRef]
- Nishiwaki-Matsushima, R.; Ohta, T.; Nishiwaki, S.; Suganuma, M.; Kohyama, K.; Ishikawa, T.; Carmichael, W.W.; Fujiki, H. Liver tumor promotion by the cyanobacterial cyclic peptide toxin microcystin-LR. J. Cancer Res. Clin. Oncol. 1992, 118, 420–424. [Google Scholar] [CrossRef] [PubMed]
- Ye, W.; Liu, X.; Tan, J.; Li, D.; Yang, H. Diversity and dynamics of microcystin—Producing cyanobacteria in China’s third largest lake, Lake Taihu. Harmful Algae 2009, 8, 637–644. [Google Scholar] [CrossRef]
- Kang, L.; He, Y.; Dai, L.; He, Q.; Ai, H.; Yang, G.; Liu, M.; Jiang, W.; Li, H. Interactions between suspended particulate matter and algal cells contributed to the reconstruction of phytoplankton communities in turbulent waters. Water Res. 2018, 149, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Pestana, C.J.; Moura, D.S.; Capelo-Neto, J.; Edwards, C.; Dreisbach, D.; Spengler, B.; Lawton, L.A. Potentially Poisonous Plastic Particles: Microplastics as a Vector for Cyanobacterial Toxins Microcystin-LR and Microcystin-LF. Environ. Sci. Technol. 2021, 55, 15940–15949. [Google Scholar] [CrossRef]
- Moura, D.S.; Pestana, C.J.; Moffat, C.F.; Hui, J.; Irvine, J.T.; Edwards, C.; Lawton, L.A. Adsorption of cyanotoxins on polypropylene and polyethylene terephthalate: Microplastics as vector of eight microcystin analogues. Environ. Pollut. 2022, 303, 119135. [Google Scholar] [CrossRef]
- Liu, G.; Sheng, H.; Fu, Y.; Song, Y.; Redmile-Gordon, M.; Qiao, Y.; Gu, C.; Xiang, L.; Wang, F. Extracellular polymeric substances (EPS) modulate adsorption isotherms between biochar and 2,2′,4,4′-tetrabromodiphenyl ether. Chemosphere 2019, 214, 176–183. [Google Scholar] [CrossRef]
- Ye, T.; Fang, T.; Wang, Y.; Zhang, S.; Bai, L.; Xu, H.; Guo, M.; Sheng, G. The release inhibition of organic substances from microplastics in the presence of algal derived organic matters: Influence of the molecular weight-dependent inhibition heterogeneities. Environ. Res. 2021, 200, 111424. [Google Scholar] [CrossRef]
- Xu, H.; Lv, H.; Liu, X.; Wang, P.; Jiang, H. Electrolyte Cations Binding with Extracellular Polymeric Substances Enhanced Microcystis Aggregation: Implication for Microcystis Bloom Formation in Eutrophic Freshwater Lakes. Environ. Sci. Technol. 2016, 50, 9034–9043. [Google Scholar] [CrossRef]
- Gao, X.; Middepogu, A.; Deng, R.; Liu, J.; Hao, Z.; Lin, D. Adsorption of extracellular polymeric substances from two microbes by TiO2 nanoparticles. Sci. Total Environ. 2019, 694, 133778. [Google Scholar] [CrossRef] [PubMed]
- Rinta-Kanto, J.; Saxton, M.A.; DeBruyn, J.M.; Smith, J.L.; Marvin, C.H.; Krieger, K.; Sayler, G.S.; Boyer, G.L.; Wilhelm, S.W. The diversity and distribution of toxigenic Microcystis spp. in present day and archived pelagic and sediment samples from Lake Erie. Harmful Algae 2009, 8, 385–394. [Google Scholar] [CrossRef]
- Strungaru, S.-A.; Jijie, R.; Nicoara, M.; Plavan, G.I.; Faggio, C. Micro-(nano) plastics in freshwater ecosystems: Abundance, toxicological impact and quantification methodology. TrAC Trends Anal. Chem. 2018, 110, 116–128. [Google Scholar] [CrossRef]
- Li, L.; Gao, N.; Deng, Y.; Yao, J.; Zhang, K. Characterization of intracellular & extracellular algae organic matters (AOM) of Microcystic aeruginosa and formation of AOM-associated disinfection byproducts and odor & taste compounds. Water Res. 2012, 46, 1233–1240. [Google Scholar] [CrossRef]
- He, Y.; Wei, G.; Tang, B.; Salam, M.; Shen, A.; Wei, Y.; Zhou, X.; Liu, M.; Yang, Y.; Li, H.; et al. Microplastics benefit bacteria colonization and induce microcystin degradation. J. Hazard. Mater. 2022, 431, 128524. [Google Scholar] [CrossRef]
- Zhou, Z.; Sun, Y.; Wang, Y.; Yu, F.; Ma, J. Adsorption behavior of Cu(II) and Cr(VI) on aged microplastics in antibiotics-heavy metals coexisting system. Chemosphere 2021, 291, 132794. [Google Scholar] [CrossRef]
- Liu, Y.-L.; Walker, H.W.; Lenhart, J.J. The effect of natural organic matter on the adsorption of microcystin-LR onto clay minerals. Colloids Surf. A Physicochem. Eng. Asp. 2019, 583, 123964. [Google Scholar] [CrossRef]
- Lee, J.; Walker, H.W. Adsorption of microcystin-Lr onto iron oxide nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2011, 373, 94–100. [Google Scholar] [CrossRef]
- Díez-Quijada, L.; Prieto, A.I.; Guzmán-Guillén, R.; Jos, A.; Cameán, A.M. Occurrence and toxicity of microcystin congeners other than MC-LR and MC-RR: A review. Food Chem. Toxicol. 2018, 125, 106–132. [Google Scholar] [CrossRef]
- Stark, N.M.; Matuana, L.M. Characterization of weathered wood–plastic composite surfaces using FTIR spectroscopy, contact angle, and XPS. Polym. Degrad. Stab. 2007, 92, 1883–1890. [Google Scholar] [CrossRef]
- Xie, R.; Qu, B.; Hu, K. Dynamic FTIR studies of thermo-oxidation of expandable graphite-based halogen-free flame retardant LLDPE blends. Polym. Degrad. Stab. 2001, 72, 313–321. [Google Scholar] [CrossRef]
- Vlachos, N.; Skopelitis, Y.; Psaroudaki, M.; Konstantinidou, V.; Chatzilazarou, A.; Tegou, E. Applications of Fourier transform-infrared spectroscopy to edible oils. Anal. Chim. Acta 2006, 573–574, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Niu, X.; Tang, M.; Zhang, B.-T.; Wang, G.; Yue, W.; Kong, X.; Zhu, J. Distribution of microplastics in surface water of the lower Yellow River near estuary. Sci. Total Environ. 2019, 707, 135601. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, R.; Li, Z.; Yan, B. Adsorption properties and influencing factors of Cu(II) on polystyrene and polyethylene terephthalate microplastics in seawater. Sci. Total Environ. 2021, 812, 152573. [Google Scholar] [CrossRef]
- Yu, X.; Lang, M.; Huang, D.; Yang, C.; Ouyang, Z.; Guo, X. Photo-transformation of microplastics and its toxicity to Caco-2 cells. Sci. Total Environ. 2021, 806, 150954. [Google Scholar] [CrossRef]
- Lee, J.; Choi, Y.; Jeong, J.; Chae, K.-J. Eye-glass polishing wastewater as significant microplastic source: Microplastic identification and quantification. J. Hazard. Mater. 2020, 403, 123991. [Google Scholar] [CrossRef]
- Liu, G.; Zhu, Z.; Yang, Y.; Sun, Y.; Yu, F.; Ma, J. Sorption behavior and mechanism of hydrophilic organic chemicals to virgin and aged microplastics in freshwater and seawater. Environ. Pollut. 2018, 246, 26–33. [Google Scholar] [CrossRef]
- Yuan, R.; Li, Y.; Li, J.; Ji, S.; Wang, S.; Kong, F. The allelopathic effects of aqueous extracts from Spartina alterniflora on controlling the Microcystis aeruginosa blooms. Sci. Total Environ. 2019, 712, 136332. [Google Scholar] [CrossRef]
- Browne, M.; Lubarsky, G.; Davidson, M.; Bradley, R. Protein adsorption onto polystyrene surfaces studied by XPS and AFM. Surf. Sci. 2004, 553, 155–167. [Google Scholar] [CrossRef]
- Shaikh, N.; Taujale, S.; Zhang, H.; Artyushkova, K.; Ali, A.-M.S.; Cerrato, J.M. Spectroscopic Investigation of Interfacial Interaction of Manganese Oxide with Triclosan, Aniline, and Phenol. Environ. Sci. Technol. 2016, 50, 10978–10987. [Google Scholar] [CrossRef]
- da Costa, J.P.; Santos, P.; Duarte, A.; Rocha-Santos, T. (Nano)plastics in the environment—Sources, fates and effects. Sci. Total Environ. 2016, 566–567, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Zhao, J.; Zhu, Z.; Li, L.; Yu, F. Effect of microplastic size on the adsorption behavior and mechanism of triclosan on polyvinyl chloride. Environ. Pollut. 2019, 254, 113104. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Li, Y.; Jiang, L.; Chen, X.; Wang, L.; An, S.; Zhang, F. Influence of microplastics occurrence on the adsorption of 17β-estradiol in soil. J. Hazard. Mater. 2020, 400, 123325. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Tan, Z.; Qi, Y.; Ouyang, C. Sorption of tri-n-butyl phosphate and tris(2-chloroethyl) phosphate on polyethylene and polyvinyl chloride microplastics in seawater. Mar. Pollut. Bull. 2019, 149, 110490. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Lu, K.; Li, J.; Wu, X.; Qian, L.; Wang, M.; Gao, S. Effect of aging on adsorption behavior of polystyrene microplastics for pharmaceuticals: Adsorption mechanism and role of aging intermediates. J. Hazard. Mater. 2019, 384, 121193. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Yu, C.; Chu, Q.; Wang, F.; Lan, T.; Wang, J. Adsorption behavior and mechanism of five pesticides on microplastics from agricultural polyethylene films. Chemosphere 2019, 244, 125491. [Google Scholar] [CrossRef]
- Li, H.; Wang, F.; Li, J.; Deng, S.; Zhang, S. Adsorption of three pesticides on polyethylene microplastics in aqueous solutions: Kinetics, isotherms, thermodynamics, and molecular dynamics simulation. Chemosphere 2020, 264, 128556. [Google Scholar] [CrossRef]
- Guo, X.; Wang, J. Sorption of antibiotics onto aged microplastics in freshwater and seawater. Mar. Pollut. Bull. 2019, 149, 110511. [Google Scholar] [CrossRef]
- Atugoda, T.; Wijesekara, H.; Werellagama, D.; Jinadasa, K.; Bolan, N.S.; Vithanage, M. Adsorptive interaction of antibiotic ciprofloxacin on polyethylene microplastics: Implications for vector transport in water. Environ. Technol. Innov. 2020, 19, 100971. [Google Scholar] [CrossRef]
- Guo, X.; Pang, J.; Chen, S.; Jia, H. Sorption properties of tylosin on four different microplastics. Chemosphere 2018, 209, 240–245. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, J.; Zhou, B.; Zhou, Y.; Dai, Z.; Zhou, Q.; Christie, P.; Luo, Y. Enhanced adsorption of oxytetracycline to weathered microplastic polystyrene: Kinetics, isotherms and influencing factors. Environ. Pollut. 2018, 243, 1550–1557. [Google Scholar] [CrossRef]
- Qiu, Y.; Zheng, M.; Wang, L.; Zhao, Q.; Lou, Y.; Shi, L.; Qu, L. Sorption of polyhalogenated carbazoles (PHCs) to microplastics. Mar. Pollut. Bull. 2019, 146, 718–728. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Chen, C.; Wang, J. Sorption of sulfamethoxazole onto six types of microplastics. Chemosphere 2019, 228, 300–308. [Google Scholar] [CrossRef]
- Fang, S.; Yu, W.; Li, C.; Liu, Y.; Qiu, J.; Kong, F. Adsorption behavior of three triazole fungicides on polystyrene microplastics. Sci. Total Environ. 2019, 691, 1119–1126. [Google Scholar] [CrossRef] [PubMed]
- Mo, Q.; Yang, X.; Wang, J.; Xu, H.; Li, W.; Fan, Q.; Gao, S.; Yang, W.; Gao, C.; Liao, D.; et al. Adsorption mechanism of two pesticides on polyethylene and polypropylene microplastics: DFT calculations and particle size effects. Environ. Pollut. 2021, 291, 118120. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Liu, F.; Brookes, P.C.; Xu, J. Microplastics play a minor role in tetracycline sorption in the presence of dissolved organic matter. Environ. Pollut. 2018, 240, 87–94. [Google Scholar] [CrossRef]
- Wang, W.; Wang, J. Comparative evaluation of sorption kinetics and isotherms of pyrene onto microplastics. Chemosphere 2018, 193, 567–573. [Google Scholar] [CrossRef]
- Sun, M.; Yang, Y.; Huang, M.; Fu, S.; Hao, Y.; Hu, S.; Lai, D.; Zhao, L. Adsorption behaviors and mechanisms of antibiotic norfloxacin on degradable and nondegradable microplastics. Sci. Total Environ. 2021, 807, 151042. [Google Scholar] [CrossRef]
- Cui, R.; Jong, M.-C.; You, L.; Mao, F.; Yao, D.; Gin, K.Y.-H.; He, Y. Size-dependent adsorption of waterborne Benzophenone-3 on microplastics and its desorption under simulated gastrointestinal conditions. Chemosphere 2022, 286, 131735. [Google Scholar] [CrossRef]
- Chen, Y.; Li, J.; Wang, F.; Yang, H.; Liu, L. Adsorption of tetracyclines onto polyethylene microplastics: A combined study of experiment and molecular dynamics simulation. Chemosphere 2021, 265, 129133. [Google Scholar] [CrossRef]
- Chen, Y.; Qian, Y.; Shi, Y.; Wang, X.; Tan, X.; An, D. Accumulation of chiral pharmaceuticals (ofloxacin or levofloxacin) onto polyethylene microplastics from aqueous solutions. Sci. Total Environ. 2022, 823, 153765. [Google Scholar] [CrossRef] [PubMed]
MPs | Molecular Formula | Structure | d(0.5) (μm) | Specific Surface Area (m2/g) | Contact Angles (°) | Crystallinity (%) |
---|---|---|---|---|---|---|
PE | (C2H4)n | 43.06 | 1.281 | 108.8 ± 3.8 | 35 | |
PS | (C8H8)n | 49.96 | 5.136 | 106.3 ± 2.3 | 3.7 | |
PMMA | (C5H8O2)n | 55.47 | 0.118 | 85.1 ± 1.9 | 6.1 |
MPs | Adsorbate | Freundlich | Langmuir | ||||
---|---|---|---|---|---|---|---|
kf | 1/n | R2 | qm (μg/g) | ka | R2 | ||
PE | MC-LR | 45.1 | 2.40 | 0.857 | 722 | 0.00719 | 0.951 |
IOM | 293 | 6.13 | 0.868 | 1400 | 0.00132 | 0.982 | |
MC-LR (+IOM) | 30.5 | 2.19 | 0.920 | 558 | 0.00875 | 0.979 | |
PS | MC-LR | 75.1 | 2.66 | 0.837 | 843 | 0.0108 | 0.946 |
IOM | 409 | 7.46 | 0.930 | 1470 | 0.00176 | 0.988 | |
MC-LR (+IOM) | 46.2 | 2.47 | 0.924 | 655 | 0.00867 | 0.979 | |
PMMA | MC-LR | 23.2 | 2.16 | 0.853 | 521 | 0.00584 | 0.933 |
IOM | 191 | 4.98 | 0.935 | 1330 | 0.000940 | 0.992 | |
MC-LR (+IOM) | 41.3 | 2.56 | 0.808 | 493 | 0.0110 | 0.923 |
MP Type | MP Size | Organic Pollutants | Adsorption Amount (μg/g) | Adsorption Mechanism | References |
---|---|---|---|---|---|
PS PE | 200 ± 10 μm | 17β-estradiol | 92.4 86.3 | hydrogen bonds and π–π interaction | [43] |
PE | 0.125–0.425 mm | Tri-n-butyl phosphate | 1.426 | pore–filling, monolayer coverage | [44] |
Tris(2-chloroethyl) phosphate) | 0.532 | ||||
PS | 50.4 ± 11.9 μm | Atorvastatin | 1610 | hydrophobic and π–π interaction | [45] |
Amlodipine | 460 | ||||
PE | <5 mm | Carbendazim | 4.444 | hydrophobic interactions | [46] |
Dipterex | 2.873 | ||||
Diflubenzuron | 74.129 | ||||
Malathion | 25.907 | ||||
Difenoconazole | 273.224 | ||||
PE | 0.71–0.85 mm | Imidacloprid | 2.630 | surface adsorption | [47] |
Buprofezin | 1.892 | ||||
Difenoconazole | 2.365 | ||||
PS PE | 0.5–1 mm 0.1–0.2 mm | Cephalosporin C | 709 717 | hydrophobic interaction, van der Waals force, and electrostatic interactions | [48] |
PE | 100 μm | Ciprofloxacin | 5852 | hydrophobic interaction and electrostatic interactions | [49] |
PE PS | <200-mesh | Tylosin | 1666.67 3333.33 | electrostatic interactions, hydrophobic interactions, and surface complexation | [50] |
PS | 0.45–1 mm | Oxytetracycline | 1520 ± 120 | hydrophobic interaction or hydrogen bonding | [51] |
PE | <0.15 mm | 3,6-dibromocarbazole | 15.3 ± 3.57 | chemical sorption | [52] |
3,6-dichlorocarbazole | 24.8 ± 3.95 | ||||
3,6-diiodocarbazole | 118 ± 42.3 | ||||
2,7-dibromocarbazole | 16.6 ± 1.15 | ||||
3-bromocarbazole | 17.1 ± 1.85 | ||||
PE PS | 100–150 μm | Sulfamethoxazole | 660 712 | hydrogen bond | [53] |
PS | 100 μm | Triadimenol | 34.36 | hydrophobic and electrostatic interactions | [54] |
Hexaconazole | 185.18 | ||||
PE | 150 μm | Carbofuran | 10,729.6 | van der Waals force | [55] |
Carbendazim | 5458.5 | ||||
PE PS | 150 μm, <280 μm | Tetracycline | 109 ± 3.62, 167 ± 7.74 | hydrophobic interactions and other interactions (e.g., electrostatic interactions) | [56] |
PE PS | 100–150 μm | Pyrene | 333 127 | monolayer coverage | [57] |
PE PS | 25 μm | Norfloxacin | 444 758 | π–π conjugation, hydrogen bonds, ion exchange, and electrostatic interactions | [58] |
PS * PE | 550 μm | Benzophenone-3 | 53.193 *, 26.382 | liquid film diffusion and intraparticle diffusion | [59] |
250 μm | 62.544 *, 38.807 | ||||
75 μm | 78.609 *, 41.142 | ||||
5 μm | 89.291 *, NA | ||||
0.5 μm | 97.559 *, NA | ||||
PE | 0.15–0.425 mm | Chlortetracycline hydrochloride | 355.5 | intermolecular van der Waals force | [60] |
Oxytetracycline hydrochloride | 352.6 | ||||
Tetracycline hydrochloride | 253.9 | ||||
PS | ~75 μm | Ciprofloxacin | 10,200 | partition, hydrogen bonding, and electrostatic interaction | [37] |
PE | 28 μm | Ofloxacin | 40.8 | partitioning and van der Waals force | [61] |
48 μm | 15.2 | ||||
75 μm | 6.9 | ||||
250 μm | 1.8 | ||||
590 μm | 1.4 | ||||
28 μm | Levofloxacin | 39.5 | |||
48 μm | 13.6 | ||||
75 μm | 5.6 | ||||
250 μm | 1.4 | ||||
590 μm | 1.1 | ||||
PE | 50 μm | MC-LR | 722 | van der Waals force, electrostatic interaction and pore-filling | This study |
PS | 50 μm | MC-LR | 843 | van der Waals force, electrostatic interaction, and pore–filling, π–π bond | |
PMMA | 50 μm | MC-LR | 521 | van der Waals force, electrostatic interaction and pore-filling, hydrogen bond |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, B.; Tang, Y.; Zhou, X.; Liu, M.; Li, H.; Qi, J. The Inhibition of Microcystin Adsorption by Microplastics in the Presence of Algal Organic Matters. Toxics 2022, 10, 339. https://doi.org/10.3390/toxics10060339
Tang B, Tang Y, Zhou X, Liu M, Li H, Qi J. The Inhibition of Microcystin Adsorption by Microplastics in the Presence of Algal Organic Matters. Toxics. 2022; 10(6):339. https://doi.org/10.3390/toxics10060339
Chicago/Turabian StyleTang, Bingran, Ying Tang, Xin Zhou, Mengzi Liu, Hong Li, and Jun Qi. 2022. "The Inhibition of Microcystin Adsorption by Microplastics in the Presence of Algal Organic Matters" Toxics 10, no. 6: 339. https://doi.org/10.3390/toxics10060339
APA StyleTang, B., Tang, Y., Zhou, X., Liu, M., Li, H., & Qi, J. (2022). The Inhibition of Microcystin Adsorption by Microplastics in the Presence of Algal Organic Matters. Toxics, 10(6), 339. https://doi.org/10.3390/toxics10060339