Public Health Implications and Possible Sources of Lead (Pb) as a Contaminant of Poorly Regulated Kratom Products in the United States
Abstract
:1. Introduction
2. Overview of Pb as an Environmental Health Problem
3. Legal Status of Kratom and Overview of the Kratom Industry in the USA
4. Potential Levels of Pb Exposure in Kratom Users
5. Possible Role of Pb in “Kratom” Toxicity
6. Potential Sources of Pb in Kratom
7. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adkins, J.E.; Boyer, E.W.; McCurdy, C.R. Mitragyna speciosa, a psychoactive tree from Southeast Asia with opioid activity. Curr. Top. Med. Chem. 2011, 11, 1165–1175. [Google Scholar] [CrossRef] [PubMed]
- Jansen, K.L.; Prast, C.J. Ethnopharmacology of kratom and the Mitragyna alkaloids. J. Ethnopharmacol. 1988, 23, 115–119. [Google Scholar] [CrossRef]
- Prozialeck, W.C.; Jivan, J.K.; Andurkar, S.V. Pharmacology of kratom: An emerging botanical agent with stimulant, analgesic and opioid-like effects. J. Osteopath. Med. 2012, 112, 792–799. [Google Scholar] [CrossRef]
- Brown, P.N.; Lund, J.A.; Murch, S.J. A botanical, phytochemical and ethnomedicinal review of the genus Mitragyna korth: Implications for products sold as kratom. J. Ethnopharmacol. 2017, 202, 302–325. [Google Scholar] [CrossRef]
- Cinosi, E.; Martinotti, G.; Simonato, P.; Singh, D.; Demetrovics, Z.; Roman-Urrestarazu, A.; Bersani, F.S.; Vicknasingam, B.; Piazzon, G.; Li, J.H.; et al. Following “the Roots” of Kratom (Mitragyna speciosa): The Evolution of an Enhancer from a Traditional Use to Increase Work and Productivity in Southeast Asia to a Recreational Psychoactive Drug in Western Countries. BioMed Res. Int. 2015, 2015, 968786. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.; Narayanan, S.; Vicknasingam, B. Traditional and non-traditional uses of Mitragynine (Kratom): A survey of the literature. Brain Res. Bull. 2016, 126, 41–46. [Google Scholar] [CrossRef]
- Vicknasingam, B.; Narayanan, S.; Beng, G.T.; Mansor, S.M. The informal use of kratom (Mitragyna speciosa) for opioid withdrawal in the northern states of peninsular Malaysia and implications for drug substitution therapy. Int. J. Drug Policy 2010, 21, 283–288. [Google Scholar] [CrossRef]
- Kruegel, A.C.; Grundmann, O. The medicinal chemistry and neuropharmacology of kratom: A preliminary discussion of a promising medicinal plant and analysis of its potential for abuse. Neuropharmacology 2018, 134, 108–120. [Google Scholar] [CrossRef]
- Kruegel, A.C.; Gassaway, M.M.; Kapoor, A.; Varadi, A.; Majumdar, S.; Filizola, M.; Javitch, J.A.; Sames, D. Synthetic and Receptor Signaling Explorations of the Mitragyna Alkaloids: Mitragynine as an Atypical Molecular Framework for Opioid Receptor Modulators. J. Am. Chem. Soc. 2016, 138, 6754–6764. [Google Scholar] [CrossRef] [Green Version]
- Varadi, A.; Marrone, G.F.; Palmer, T.C.; Narayan, A.; Szabo, M.R.; Le, R.V.; Grinnell, S.G.; Subrath, J.J.; Warner, E.; Kalra, S.; et al. Mitragynine/Corynantheidine Pseudoindoxyls As Opioid Analgesics with Mu Agonism and Delta Antagonism, Which Do Not Recruit beta-Arrestin-2. J. Med. Chem 2016, 59, 8381–8397. [Google Scholar] [CrossRef] [Green Version]
- Obeng, S.; Kamble, S.H.; Reeves, M.E.; Restrepo, L.F.; Patel, A.; Behnke, M.; Chear, N.J.; Ramanathan, S.; Sharma, A.; Leon, F.; et al. Investigation of the Adrenergic and Opioid Binding Affinities, Metabolic Stability, Plasma Protein Binding Properties, and Functional Effects of Selected Indole-Based Kratom Alkaloids. J. Med. Chem. 2020, 63, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Suhaimi, F.W.; Yusoff, N.H.; Hassan, R.; Mansor, S.M.; Navaratnam, V.; Muller, C.P.; Hassan, Z. Neurobiology of Kratom and its main alkaloid mitragynine. Brain Res. Bull. 2016, 126, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Grundmann, O. Patterns of Kratom use and health impact in the US-Results from an online survey. Drug Alcohol. Depend. 2017, 176, 63–70. [Google Scholar] [CrossRef]
- Schimmel, J.; Dart, R.C. Kratom (Mitragyna speciosa) Liver Injury: A Comprehensive Review. Drugs 2020, 80, 263–283. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Romeu, A.; Cox, D.J.; Smith, K.E.; Dunn, K.E.; Griffiths, R.R. Kratom (Mitragyna speciosa): User demographics, use patterns, and implications for the opioid epidemic. Drug Alcohol. Depend. 2020, 208, 107849. [Google Scholar] [CrossRef] [PubMed]
- Prozialeck, W.C.; Avery, B.A.; Boyer, E.W.; Grundmann, O.; Henningfield, J.E.; Kruegel, A.C.; McMahon, L.R.; McCurdy, C.R.; Swogger, M.T.; Veltri, C.A.; et al. Kratom policy: The challenge of balancing therapeutic potential with public safety. Int. J. Drug Policy 2019, 70, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.E.; Lawson, T. Prevalence and motivations for kratom use in a sample of substance users enrolled in a residential treatment program. Drug Alcohol. Depend. 2017, 180, 340–348. [Google Scholar] [CrossRef]
- Swogger, M.T.; Hart, E.; Erowid, F.; Erowid, E.; Trabold, N.; Yee, K.; Parkhurst, K.A.; Priddy, B.M.; Walsh, Z. Experiences of Kratom Users: A Qualitative Analysis. J. Psychoact. Drugs 2015, 47, 360–367. [Google Scholar] [CrossRef]
- Swogger, M.T.; Walsh, Z. Kratom use and mental health: A systematic review. Drug Alcohol. Depend. 2018, 183, 134–140. [Google Scholar] [CrossRef]
- Anwar, M.; Law, R.; Schier, J. Notes from the Field: Kratom (Mitragyna speciosa) Exposures Reported to Poison Centers—United States, 2010–2015. MMWR Morb. Mortal. Wkly. Rep. 2016, 65, 748–749. [Google Scholar] [CrossRef] [Green Version]
- Olsen, E.O.; O’Donnell, J.; Mattson, C.L.; Schier, J.G.; Wilson, N. Notes from the Field: Unintentional Drug Overdose Deaths with Kratom Detected—27 States, July 2016–December 2017. MMWR Morb. Mortal. Wkly. Rep. 2019, 68, 326–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warner, M.L.; Kaufman, N.C.; Grundmann, O. The pharmacology and toxicology of kratom: From traditional herb to drug of abuse. Int. J. Legal Med. 2016, 130, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Prozialeck, W.C. Update on the Pharmacology and Legal Status of Kratom. J. Am. Osteopath. Assoc. 2016, 116, 802–809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DEA. Schedules of Controlled Substances: Temporary Placement of Mitragynine and 7-Hydroxymitragynine Into Schedule I. Notes: Document number: 2016-20803. Available online: https://www.federalregister.gov/documents/2016/08/31/2016-20803/schedules-of-controlled-substances-temporary-placement-of-mitragynine-and-7-hydroxymitragynine-into (accessed on 31 August 2016).
- Griffin, O.H.; Webb, M.E. The Scheduling of Kratom and Selective Use of Data. J. Psychoact. Drugs 2018, 50, 114–120. [Google Scholar] [CrossRef]
- Corkery, J.M.; Streete, P.; Claridge, H.; Goodair, C.; Papanti, D.; Orsolini, L.; Schifano, F.; Sikka, K.; Korber, S.; Hendricks, A. Characteristics of deaths associated with kratom use. J. Psychopharmacol. 2019, 33, 1102–1123. [Google Scholar] [CrossRef]
- Kuehn, B. Kratom-Related Deaths. JAMA 2019, 321, 1966. [Google Scholar] [CrossRef]
- Griffin, O.H., III; Daniels, J.A.; Gardner, E.A. Do You Get What You Paid For? An Examination of Products Advertised as Kratom. J. Psychoact. Drugs 2016, 48, 330–335. [Google Scholar] [CrossRef]
- Scott, T.M.; Yeakel, J.K.; Logan, B.K. Identification of mitragynine and O-desmethyltramadol in Kratom and legal high products sold online. Drug Test. Anal. 2014, 6, 959–963. [Google Scholar] [CrossRef]
- WHO. WHO Expert Committee on Drug Dependence: Forty Fourth Report; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- FDA. Laboratory Analysis of Kratom Products for Heavy Metals. Available online: https://www.fda.gov/news-events/public-health-focus/laboratory-analysis-kratom-products-heavy-metals (accessed on 22 May 2022).
- Prozialeck, W.C.; Edwards, J.R.; Lamar, P.C.; Plotkin, B.J.; Sigar, I.M.; Grundmann, O.; Veltri, C.A. Evaluation of the mitragynine content, levels of toxic metals and the tresence of microbes in Kratom products purchased in the western suburbs of Chicago. Int. J. Environ. Res. Public Health 2020, 17, 5512. [Google Scholar] [CrossRef]
- ATSDR. Toxicologic Profile for Lead. Available online: https://semspub.epa.gov/work/05/930045.pdf (accessed on 18 June 2020).
- FDA. Q3D(R1) Elemental Impurities Guidance for Industry. Available online: https://www.fda.gov/media/135956/download (accessed on 20 May 2022).
- Gu, H.; Territo, P.R.; Persohn, S.A.; Bedwell, A.A.; Eldridge, K.; Speedy, R.; Chen, Z.; Zheng, W.; Du, Y. Evaluation of chronic lead effects in the blood brain barrier system by DCE-CT. J. Trace Elem. Med. Biol. 2020, 62, 126648. [Google Scholar] [CrossRef]
- Chibowska, K.; Korbecki, J.; Gutowska, I.; Metryka, E.; Tarnowski, M.; Goschorska, M.; Barczak, K.; Chlubek, D.; Baranowska-Bosiacka, I. Pre- and Neonatal Exposure to Lead (Pb) Induces Neuroinflammation in the Forebrain Cortex, Hippocampus and Cerebellum of Rat Pups. Int. J. Mol. Sci. 2020, 21, 1083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CDC. Childhood Lead Poisoning Prevention. Available online: https://www.cdc.gov/nceh/lead/data/blood-lead-reference-value.htm (accessed on 16 May 2022).
- Mitra, P.; Sharma, S.; Purohit, P.; Sharma, P. Clinical and molecular aspects of lead toxicity: An update. Crit. Rev. Clin. Lab. Sci. 2017, 54, 506–528. [Google Scholar] [CrossRef] [PubMed]
- Geraldes, V.; Carvalho, M.; Goncalves-Rosa, N.; Tavares, C.; Laranjo, S.; Rocha, I. Lead toxicity promotes autonomic dysfunction with increased chemoreceptor sensitivity. Neurotoxicology 2016, 54, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Carrington, C.D.; Bolger, P.M. An assessment of the hazards of lead in food. Regul. Toxicol. Pharmacol. 1992, 16, 265–272. [Google Scholar] [CrossRef]
- Dolan, L.C.; Flannery, B.M.; Hoffman-Pennesi, D.; Gavelek, A.; Jones, O.E.; Kanwal, R.; Wolpert, B.; Gensheimer, K.; Dennis, S.; Fitzpatrick, S. A review of the evidence to support interim reference level for dietary lead exposure in adults. Regul. Toxicol. Pharmacol. 2020, 111, 104579. [Google Scholar] [CrossRef]
- Smith, K.E.; Rogers, J.M.; Dunn, K.E.; Grundmann, O.; McCurdy, C.R.; Schriefer, D.; Epstein, D.H. Searching for a signal: Self-reported Kratom dose-effect relationships among a sample of US adults with regular Kratom use histories. Front. Pharmacol. 2022, 13, 765917. [Google Scholar] [CrossRef]
- Swogger, M.T.; Smith, K.E.; Garcia-Romeu, A.; Grundmann, O.; Veltri, C.A.; Henningfield, J.E.; Busch, L.Y. Understanding Kratom use: A guide for healthcare providers. Front. Pharmacol. 2022, 13, 801855. [Google Scholar] [CrossRef]
- AKA. American Kratom Association Announces Good Manufacturing Practice (GMP) Standars for Vendors. Available online: https://www.prnewswire.com/news-releases/american-kratom-association-announces-good-manufacturing-practice-gmp-standards-for-vendors-300753751.html (accessed on 12 May 2018).
- Kowalczuk, A.P.; Lozak, A.; Zjawiony, J.K. Comprehensive methodology for identification of Kratom in police laboratories. Forensic Sci. Int. 2013, 233, 238–243. [Google Scholar] [CrossRef]
- Braley, C.; Hondrogiannis, E.M. Differentiation of commercially available Kratom by purported country of origin using inductively coupled plasma-mass spectrometry. J. Forensic Sci. 2020, 65, 428–437. [Google Scholar] [CrossRef]
- Tarrant, K. Heavy Metals in Kratom; Evaluating the FDA’s Warnings. Available online: https://smack-n-cheese.medium.com/heavy-metals-in-kratom-13af6f9b061b (accessed on 19 May 2022).
- FDA. FDA Announces Seizure of Adulterated Dietary Supplements Containing Kratom. Available online: https://www.drugs.com/fda/fda-announces-seizure-adulterated-dietary-supplements-containing-kratom-14452.html (accessed on 26 July 2021).
- Satarug, S.C.; Gobe, G.A.; Vesey, D.; Phelps, K.R. Cadmium and lead exposure, nephrotoxicity, and mortality. Toxics 2020, 8, 86. [Google Scholar] [CrossRef]
- Sekar, A.; Katzman, S.; O’Donnell, M.; Velani, S.; Conway, K.S. Suspected Fanconi syndrome from cadmium toxicity exacerbated by heavy kratom use. A rare occurrence. Clin. Toxicol. 2022. ahead-of-print. [Google Scholar] [CrossRef] [PubMed]
- Davidson, C.; Cao, D.; King, T.; Weiss, S.T.; Wongvisavakorn, S.; Ratprasert, N.; Trakulsrichai, S.; Srisuma, S. A comparative analysis of kratom exposure cases in Thailand and the United States from 2010–2017. Am. J. Drug Alcohol Abuse 2021, 47, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Eastlack, S.C.; Cornett, E.M.; Kaye, A.D. Kratom-pharmacology, clinical implications, and outlook: A comprehensive review. Pain Ther. 2020, 9, 55–69. [Google Scholar] [CrossRef]
- Kerrigan, S.; Basiliere, S. Kratom: A systematic review of toxicologic issues. WIREs Forensic Sci. 2021, 4, e1420. [Google Scholar] [CrossRef]
- Eggleston, W.; Stoppacher, R.; Suen, K.; Marraffa, J.M.; Nelson, L.S. Kratom use and toxicities in the United States. Pharmacotherapy 2019, 39, 775–777. [Google Scholar] [CrossRef] [PubMed]
- Ramanathan, S.; McCurdy, C.R. Kratom (Mitragyna speciosa): Worldwide issues. Curr. Opin. Psychiatry 2020, 33, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Rusmana, Y.; Einhorn, B.U.S. Hunger for Opioid Alternative Drives Boom in Borneo Jungle. Available online: https://www.bloomberg.com/news/features/2018-06-05/u-s-hunger-for-opioid-alternative-drives-boom-in-borneo-jungle (accessed on 18 June 2020).
- Galey, M.L.; van der Ent, A.; Iqbal, M.C.M.; Rajakaruna, N. Ultramafic geoecology of South and Southeast Asia. Bot. Stud. 2017, 58, 18. [Google Scholar] [CrossRef] [Green Version]
- Albalak, R.; Noonan, G.; Buchanan, S.; Flanders, W.D.; Gotway-Crawford, C.; Kim, D.; Jones, R.L.; Sulaiman, R.; Blumenthal, W.; Tan, R.; et al. Blood lead levels and risk factors for lead poisoning among children in Jakarta, Indonesia. Sci. Total Environ. 2003, 301, 75–85. [Google Scholar] [CrossRef]
- Budianta, W. Lead Contamination in Soil of Yogyakarta City, Indonesia. J. Appl. Geol. 2015, 4, 90–98. [Google Scholar] [CrossRef]
- Assa, A.; Noor, A.; Yunus, M.R.; Misnawi; Djide, M.N. Heavy metal concentrations in cocoa beans (Theobroma cacao L.) originating from East Luwu, South Sulawesi, Indonesia. J. Phys. Conf. Ser. 2018, 979, 012011. [Google Scholar] [CrossRef]
- Rankin, C.W.; Nriagu, J.O.; Aggarwal, J.K.; Arowolo, T.A.; Adebayo, K.; Flegal, A.R. Lead contamination in cocoa and cocoa products: Isotopic evidence of global contamination. Environ. Health Perspect. 2005, 113, 1344–1348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Organ System | Kratom | Pb |
---|---|---|
Central Nervous System | Dose-dependent: stimulation, analgesia, sedation and seizures | Behavioral changes, developmental and cognitive impairment, ADHD, seizures, encephalopathy |
Peripheral Nervous System | Tremors | Extensor muscle neuropathies and tremors |
Gastrointestinal System | Constipation | Pain and colic |
Hepatic | Multiple forms of injury | Multiple forms of injury |
Cardiovascular | Arrythmias | Cardiomyopathy and hypertension |
Renal | Unknown | Decreased glomerular filtration rate and tubular injury |
Hematopoietic | Unknown | Microcytic hypochromic anemia |
Skeletal | Unknown | Main site of accumulation; bone loss and periodontal disease |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prozialeck, W.; Fowler, A.; Edwards, J. Public Health Implications and Possible Sources of Lead (Pb) as a Contaminant of Poorly Regulated Kratom Products in the United States. Toxics 2022, 10, 398. https://doi.org/10.3390/toxics10070398
Prozialeck W, Fowler A, Edwards J. Public Health Implications and Possible Sources of Lead (Pb) as a Contaminant of Poorly Regulated Kratom Products in the United States. Toxics. 2022; 10(7):398. https://doi.org/10.3390/toxics10070398
Chicago/Turabian StyleProzialeck, Walter, Alexandra Fowler, and Joshua Edwards. 2022. "Public Health Implications and Possible Sources of Lead (Pb) as a Contaminant of Poorly Regulated Kratom Products in the United States" Toxics 10, no. 7: 398. https://doi.org/10.3390/toxics10070398
APA StyleProzialeck, W., Fowler, A., & Edwards, J. (2022). Public Health Implications and Possible Sources of Lead (Pb) as a Contaminant of Poorly Regulated Kratom Products in the United States. Toxics, 10(7), 398. https://doi.org/10.3390/toxics10070398