In Vitro Bioaccessibility and Health Risk Assessment of Arsenic and Zinc Contaminated Soil Stabilized by Ferrous Sulfate: Effect of Different Dietary Components
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection and Pretreatment of Soil and Food Samples
2.2. Soil Properties and Heavy Metal Fractionations
2.3. In Vitro Bioaccessibility of Heavy Metals
2.4. Human Health Risk Assessment
2.5. Data Analysis
3. Results
3.1. Soil Characteristics and Stabilization Effects
3.2. Effect of Dietary Components on Soil As Bioaccessibility
3.3. Effect of Dietary Components on Soil Zn Bioaccessibility
3.4. As Speciation and Distribution
3.5. Zn Speciation and Distribution
3.6. Human Health Risk of Soil Heavy Metals
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shen, F.; Liao, R.; Ali, A.; Mahar, A.; Guo, D.; Li, R.; Xining, S.; Awasthi, M.K.; Wang, Q.; Zhang, Z. Spatial distribution and risk assessment of heavy metals in soil near a Pb/Zn smelter in Feng County, China. Ecotoxicol. Environ. Saf. 2017, 139, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Bundschuh, J.; Schneider, J.; Alam, M.A.; Niazi, N.K.; Herath, I.; Parvez, F.; Tomaszewska, B.; Guilherme, L.R.G.; Maity, J.P.; Lopez, D.L.; et al. Seven potential sources of arsenic pollution in Latin America and their environmental and health impacts. Sci. Total Environ. 2021, 780, 146274. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Xu, H.; Sun, S.; Xiong, W.; Yang, Z. Remediation of arsenic-spiked soil by biochar-loaded nanoscale zero-valent iron: Performance, mechanism, and microbial response. J. Clean. Prod. 2022, 380, 134985. [Google Scholar] [CrossRef]
- Fu, Z.; Wu, F.; Mo, C.; Deng, Q.; Meng, W.; Giesy, J.P. Comparison of arsenic and antimony biogeochemical behavior in water, soil and tailings from Xikuangshan, China. Sci. Total Environ. 2016, 539, 97–104. [Google Scholar] [CrossRef]
- Yang, T.; Tang, G.; Li, L.; Ma, L.; Zhao, Y.; Guo, Z. Interactions between bacteria and eukaryotic microorganisms and their response to soil properties and heavy metal exchangeability nearby a coal-fired power plant. Chemosphere 2022, 302, 134829. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Hu, T.; Mao, Y.; Shi, M.; Cheng, C.; Zhang, J.; Qi, S.; Chen, W.; Xing, X. The mechanistic investigation of geochemical fractionation, bioavailability and release kinetic of heavy metals in contaminated soil of a typical copper-smelter. Environ. Pollut. 2022, 306, 119391. [Google Scholar] [CrossRef]
- Zeng, J.; Luo, X.; Cheng, Y.; Ke, W.; Hartley, W.; Li, C.; Jiang, J.; Zhu, F.; Xue, S. Spatial distribution of toxic metal(loid)s at an abandoned zinc smelting site, Southern China. J. Hazard. Mater. 2022, 425, 127970. [Google Scholar] [CrossRef]
- Wu, J.; Li, Z.; Huang, D.; Liu, X.; Tang, C.; Parikh, S.J.; Xu, J. A novel calcium-based magnetic biochar is effective in stabilization of arsenic and cadmium co-contamination in aerobic soils. J. Hazard. Mater. 2020, 387, 122010. [Google Scholar] [CrossRef]
- Liu, M.; Zhu, J.; Yang, X.; Fu, Q.; Hu, H.; Huang, Q. Biochar produced from the straw of common crops simultaneously stabilizes soil organic matter and heavy metals. Sci. Total Environ. 2022, 828, 154494. [Google Scholar] [CrossRef]
- Hou, Q.; Han, D.; Zhang, Y.; Han, M.; Huang, G.; Xiao, L. The bioaccessibility and fractionation of arsenic in anoxic soils as a function of stabilization using low-cost Fe/Al-based materials: A long-term experiment. Ecotoxicol. Environ. Saf. 2020, 191, 110210. [Google Scholar] [CrossRef]
- Xu, D.M.; Fu, R.B.; Wang, J.X.; Shi, Y.X.; Guo, X.P. Chemical stabilization remediation for heavy metals in contaminated soils on the latest decade: Available stabilizing materials and associated evaluation methods—A critical review. J. Clean. Prod. 2021, 321, 128730. [Google Scholar] [CrossRef]
- Zhou, S.; Du, Y.; Feng, Y.; Sun, H.; Xia, W.; Yuan, H. Stabilization of arsenic and antimony Co-contaminated soil with an iron-based stabilizer: Assessment of strength, leaching and hydraulic properties and immobilization mechanisms. Chemosphere 2022, 301, 134644. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zeng, G.; Deng, H.; Liu, X.; Zhao, D. Microwave-enhanced simultaneous immobilization of lead and arsenic in a field soil using ferrous sulfate. Chemosphere 2022, 308, 136388. [Google Scholar] [CrossRef]
- Xenidis, A.; Stouraiti, C.; Papassiopi, N. Stabilization of Pb and As in soils by applying combined treatment with phosphates and ferrous iron. J. Hazard. Mater. 2010, 1771, 929–937. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, H.; Wang, L.; Chen, J.; Xu, S.; Hou, H.; Shi, Y.; Zhang, J.; Ma, M.; Tsang, D.C.W.; et al. Transformation of arsenic during realgar tailings stabilization using ferrous sulfate in a pilot-scale treatment. Sci. Total Environ. 2019, 668, 32–39. [Google Scholar] [CrossRef]
- Gu, Y.G.; Gao, Y.P. Bioaccessibilities and health implications of heavy metals in exposed-lawn soils from 28 urban parks in the megacity Guangzhou inferred from an in vitro physiologically-based extraction test. Ecotoxicol. Environ. Saf. 2018, 148, 747–753. [Google Scholar] [CrossRef]
- Karna, R.R.; Noerpel, M.R.; Nelson, C.; Elek, B.; Herbin-Davis, K.; Diamond, G.; Bradham, K.; Thomas, D.J.; Scheckel, K.G. Bioavailable soil Pb minimized by in situ transformation to plumbojarosite. Proc. Natl. Acad. Sci. USA 2021, 1183, 2020315117. [Google Scholar] [CrossRef]
- Liao, Q.; He, L.; Tu, G.; Yang, Z.; Yang, W.; Tang, J.; Cao, W.; Wang, H. Simultaneous immobilization of Pb, Cd and As in soil by hybrid iron-, sulfate- and phosphate-based bio-nanocomposite: Effectiveness, long-term stability and bioavailablity/bioaccessibility evaluation. Chemosphere 2021, 266, 128960. [Google Scholar] [CrossRef]
- Jusadi, D.; Aprilia, T.; Setiawati, M.; Suprayudi, M.A.; Ekasari, J. Dietary supplementation of fulvic acid for growth improvement and prevention of heavy metal accumulation in Nile tilapia fed with green mussel. Egypt. J. Aquat. Res. 2020, 46, 295–301. [Google Scholar] [CrossRef]
- Fan, J.; Zhao, L.; Kan, J.; Qiu, H.; Xu, X.; Cao, X. Uptake of vegetable and soft drink affected transformation and bioaccessibility of lead in gastrointestinal track exposed to lead-contaminated soil particles. Ecotoxicol. Environ. Saf. 2020, 194, 110411. [Google Scholar] [CrossRef]
- Ferruzzi, M.G.; Kruger, J.; Mohamedshah, Z.; Debelo, H.; Taylor, J.R.N. Insights from in vitro exploration of factors influencing iron, zinc and provitamin A carotenoid bioaccessibility and intestinal absorption from cereals. J. Cereal Sci. 2020, 96, 103126. [Google Scholar] [CrossRef]
- Qureshi, A.A.; Kazi, T.G.; Baig, J.A.; Arain, M.B.; Afridi, H.I. Exposure of heavy metals in coal gangue soil, in and outside the mining area using BCR conventional and vortex assisted and single step extraction methods. Impact on orchard grass. Chemosphere 2020, 255, 126960. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, W.W.; Kirchbaumer, N.; Prohaska, T.; Stingeder, G.; Lombi, E.; Adriano, D.C. Arsenic fractionation in soils using an improved sequential extraction procedure. Anal. Chim. Acta 2001, 4362, 309–323. [Google Scholar] [CrossRef]
- Helser, J.; Vassilieva, E.; Cappuyns, V. Environmental and human health risk assessment of sulfidic mine waste: Bioaccessibility, leaching and mineralogy. J. Hazard. Mater. 2022, 424, 127313. [Google Scholar] [CrossRef]
- Liu, Z.; Du, Q.; Guan, Q.; Luo, H.; Shan, Y.; Shao, W. A Monte Carlo simulation-based health risk assessment of heavy metals in soils of an oasis agricultural region in northwest China. Sci. Total Environ. 2023, 857, 159543. [Google Scholar] [CrossRef]
- Yin, N.; Zhao, Y.; Wang, P.; Du, H.; Yang, M.; Han, Z.; Chen, X.; Sun, G.X. Effect of gut microbiota on in vitro bioaccessibility of heavy metals and human health risk assessment from ingestion of contaminated soils. Environ. Pollut. 2021, 279, 116943. [Google Scholar] [CrossRef]
- Liu, F.; Ma, C.; Mcclements, D.J.; Gao, Y. Development of polyphenol-protein-polysaccharide ternary complexes as emulsifiers for nutraceutical emulsions: Impact on formation, stability, and bioaccessibility of β-carotene emulsions. Food Hydrocoll. 2016, 61, 578–588. [Google Scholar] [CrossRef]
- Mohapatra, D.; Mishra, D.; Rout, M.; Chaudhury, G.R. Adsorption kinetics of natural dissolved organic matter and its impact on arsenic (V) leachability from arsenic-loaded ferrihydrite and Al-ferrihydrite. J. Environ. Health 2007, 421, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Yin, N.; Cai, X.; Du, H.; Li, Z.; Sun, G.; Cui, Y. Nutritional status affects the bioaccessibility and speciation of arsenic from soils in a simulator of the human intestinal microbial ecosystem. Sci. Total Environ. 2018, 644, 815–821. [Google Scholar] [CrossRef] [PubMed]
- Piedra, C.J.; Sanchez, V.M.; Vélez, D.; Devesa, V. Reduction of mercury bioaccessibility using dietary strategies. LWT 2016, 71, 10–16. [Google Scholar] [CrossRef]
- Bouayed, J.; Deußer, H.; Hoffmann, L.; Bohn, T. Bioaccessible and dialysable polyphenols in selected apple varieties following in vitro digestion vs. their native patterns. Food Chem. 2012, 1314, 1466–1472. [Google Scholar] [CrossRef]
- Maulvault, A.L.; Machado, R.; Afonso, C.; Lourenço, H.M.; Nunes, M.L.; Coelho, I.; Langerholc, T.; Marques, A. Bioaccessibility of Hg, Cd and As in cooked black scabbard fish and edible crab. Food Chem. Toxicol. 2011, 4911, 2808–2815. [Google Scholar] [CrossRef]
- He, M.; Ke, C.H.; Wang, W.X. Effects of cooking and subcellular distribution on the bioaccessibility of trace elements in two marine fish species. J. Agric. Food Chem. 2010, 586, 3517–3523. [Google Scholar] [CrossRef]
- Xu, D.M.; Fu, R.B. The mechanistic understanding of potential bioaccessibility of toxic heavy metals in the indigenous zinc smelting slags with multidisciplinary characterization. J. Hazard. Mater. 2022, 425, 127864. [Google Scholar] [CrossRef]
- Bouayed, J.; Hoffmann, L.; Bohn, T. Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chem. 2011, 1281, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Jiang, Y.; Xu, X.; Cao, X. In vitro bioaccessibility and health risk assessment of heavy metals in atmospheric particulate matters from three different functional areas of Shanghai, China. Sci. Total Environ. 2018, 610-611, 546–554. [Google Scholar] [CrossRef]
- Covelo, E.F.; Vega, F.A.; Andrade, M.L. Simultaneous sorption and desorption of Cd, Cr, Cu, Ni, Pb, and Zn in acid soils I. Selectivity sequences. J. Hazard. Mater. 2007, 147, 852–861. [Google Scholar] [CrossRef]
- Hemalatha, S.; Gautam, S.; Platel, K.; Srinivasan, K. Influence of exogenous iron, calcium, protein and common salt on the bioaccessibility of zinc from cereals and legumes. J. Trace Elem. Med. Biol. 2009, 232, 75–83. [Google Scholar] [CrossRef]
- Gautam, S.; Platel, K.; Srinivasan, K. Influence of β-carotene-rich vegetables on the bioaccessibility of zinc and iron from food grains. Food Chem. 2010, 1223, 668–672. [Google Scholar] [CrossRef]
- Mendoza, C.J.; Garrido, R.T.; Quilodrán, R.; Segovia, C.M.; Parada, A.J. Evaluation of the bioaccessible gastric and intestinal fractions of heavy metals in contaminated soils by means of a simple bioaccessibility extraction test. Chemosphere 2017, 176, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.J.; Yoo, J.C.; Baek, K. Arsenic speciation and bioaccessibility in arsenic-contaminated soils: Sequential extraction and mineralogical investigation. Environ. Pollut. 2014, 186, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Chi, H.; Hou, Y.; Li, G.; Zhang, Y.; Coulon, F.; Cai, C. In vitro model insights into the role of human gut microbiota on arsenic bioaccessibility and its speciation in soils. Environ. Pollut. 2020, 263, 114580. [Google Scholar] [CrossRef] [PubMed]
- Finlay, N.C.; Peacock, C.L.; Hudson-Edwards, K.A.; Johnson, K.L. Characteristics and mechanisms of Pb (II) sorption onto Fe-rich waste water treatment residue (WTR): A potential sustainable Pb immobilisation technology for soils. J. Hazard. Mater. 2021, 402, 123433. [Google Scholar] [CrossRef]
- Komárek, M.; Vaněk, A.; Ettler, V. Chemical stabilization of metals and arsenic in contaminated soils using oxides–a review. Environ. Pollut. 2013, 172, 9–22. [Google Scholar] [CrossRef]
- Wang, Y.; Zeng, X.; Lu, Y.; Bai, L.; Su, S.; Wu, C. Dynamic arsenic aging processes and their mechanisms in nine types of Chinese soils. Chemosphere 2017, 187, 404–412. [Google Scholar] [CrossRef]
- Zhang, Q.; Pei, L.; Liu, C.; Han, M.; Wang, W. Impact of redox condition on fractionation and bioaccessibility of arsenic in arsenic-contaminated soils remediated by iron amendments: A long-term experiment. Geofluids 2018, 2018, 1468–8115. [Google Scholar] [CrossRef] [Green Version]
- Juhasz, A.L.; Smith, E.; Weber, J.; Rees, M.; Rofe, A.; Kuchel, T.; Sansom, L.; Naidu, R. Application of an in vivo swine model for the determination of arsenic bioavailability in contaminated vegetables. Chemosphere 2008, 7110, 1963–1969. [Google Scholar] [CrossRef]
- Shen, M.; Guo, H.; Jia, Y.; Cao, Y.; Zhang, D. Partitioning and reactivity of iron oxide minerals in aquifer sediments hosting high arsenic groundwater from the Hetao basin, P.R. China. Appl. Geochem. 2018, 89, 190–201. [Google Scholar] [CrossRef]
- Huang, J.; Wu, Y.; Sun, J.; Li, X.; Geng, X.; Zhao, M.; Sun, T.; Fan, Z. Health risk assessment of heavy metal(loid)s in park soils of the largest megacity in China by using Monte Carlo simulation coupled with Positive matrix factorization model. J. Hazard. Mater. 2021, 415, 125629. [Google Scholar] [CrossRef]
- Sun, J.; Zhao, M.; Huang, J.; Liu, Y.; Wu, Y.; Cai, B.; Han, Z.; Huang, H.; Fan, Z. Determination of priority control factors for the management of soil trace metal(loid)s based on source-oriented health risk assessment. J. Hazard. Mater. 2022, 423, 127116. [Google Scholar] [CrossRef]
- Men, C.; Liu, R.; Wang, Q.; Miao, Y.; Wang, Y.; Jiao, L.; Li, L.; Cao, L.; Shen, Z.; Li, Y.; et al. Spatial-temporal characteristics, source-specific variation and uncertainty analysis of health risks associated with heavy metals in road dust in Beijing, China. Environ. Pollut. 2021, 278, 116866. [Google Scholar] [CrossRef]
Physicochemical Properties | Value ± SD |
---|---|
pH | 8.20 ± 0.01 |
CEC (cmol∙kg−1) | 11.30 ± 0.2 |
SOM (g∙kg−1) | 18.70 ± 0.6 |
TP (%) | 0.16 ± 0.00 |
TN (mg∙kg−1) | 108.00 ± 2.5 |
TK (mg∙kg−1) | 1.14 ± 0.01 |
Fe2O3 (%) | 30.84 ± 1.44 |
Tas (mg∙kg−1) | 201.77 ± 2.56 |
TZn (mg∙kg−1) | 1145.71 ± 13.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, Y.; Cui, Y.; Mou, X.; Lu, L.; Shentu, J.; Zhu, M. In Vitro Bioaccessibility and Health Risk Assessment of Arsenic and Zinc Contaminated Soil Stabilized by Ferrous Sulfate: Effect of Different Dietary Components. Toxics 2023, 11, 23. https://doi.org/10.3390/toxics11010023
Fang Y, Cui Y, Mou X, Lu L, Shentu J, Zhu M. In Vitro Bioaccessibility and Health Risk Assessment of Arsenic and Zinc Contaminated Soil Stabilized by Ferrous Sulfate: Effect of Different Dietary Components. Toxics. 2023; 11(1):23. https://doi.org/10.3390/toxics11010023
Chicago/Turabian StyleFang, Yi, Yuxue Cui, Xiaoli Mou, Li Lu, Jiali Shentu, and Min Zhu. 2023. "In Vitro Bioaccessibility and Health Risk Assessment of Arsenic and Zinc Contaminated Soil Stabilized by Ferrous Sulfate: Effect of Different Dietary Components" Toxics 11, no. 1: 23. https://doi.org/10.3390/toxics11010023
APA StyleFang, Y., Cui, Y., Mou, X., Lu, L., Shentu, J., & Zhu, M. (2023). In Vitro Bioaccessibility and Health Risk Assessment of Arsenic and Zinc Contaminated Soil Stabilized by Ferrous Sulfate: Effect of Different Dietary Components. Toxics, 11(1), 23. https://doi.org/10.3390/toxics11010023