Assessing the Effects of Ozonation on the Concentrations of Personal Care Products and Acute Toxicity in Sludges of Wastewater Treatment Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Sampling
2.3. Sample Preparation
2.4. Ozone Treatment Procedure
2.5. Apparatus and Chromatographic Conditions
2.6. Biological Toxicity Test
2.7. Quality Assurance and Quality Control for Chemical Analysis
2.8. Biological Toxicity Test
2.9. Ecotoxicity Risk Assessment
3. Results and Discussion
3.1. Concentrations of Target Compounds in Wastewater Treatment Plant Sludges
3.2. Removal Efficiencies in WWTP Processes
3.3. Sludge Toxicity Test with Hyalella Azteca
3.4. Ecological Risk Quotient
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Su, C.; Cui, Y.; Liu, D.; Zhang, H.; Baninla, Y. Endocrine disrupting compounds, pharmaceuticals and personal care products in the aquatic environment of China: Which chemicals are the prioritized ones? Sci. Total Environ. 2020, 720, 137652. [Google Scholar] [CrossRef] [PubMed]
- Martín-Pozo, L.; del Carmen Gómez-Regalado, M.; Moscoso-Ruiz, I.; Zafra-Gómez, A. Analytical methods for the determination of endocrine disrupting chemicals in cosmetics and personal care products: A review. Talanta 2021, 234, 122642. [Google Scholar] [CrossRef] [PubMed]
- Darbre, P.D.; Harvey, P.W. Regulatory considerations for dermal application of endocrine disrupters in personal care products. In Endocrine Disruption and Human Health; Academic Press: Cambridge, MA, USA, 2022; pp. 463–484. [Google Scholar]
- Sun, X.; Liu, B.; Zhang, L.; Aketagawa, K.; Xue, B.; Ren, Y.; Dong, B. Partial ozonation of returned sludge via high-concentration ozone to reduce excess sludge production: A pilot study. Sci. Total Environ. 2022, 807, 150773. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Fang, W.; Yi, Q.; Zhang, J. A comprehensive review on reactive oxygen species (ROS) in advanced oxidation processes (AOPs). Chemosphere 2022, 308, 136205. [Google Scholar] [CrossRef]
- Yao, Z.; Wang, M.; Jia, R.; Zhao, Q.; Liu, L.; Sun, S. Comparison of UV-based advanced oxidation processes for the removal of different fractions of NOM from drinking water. Res. J. Environ. Sci. 2023, 126, 387–395. [Google Scholar] [CrossRef]
- Cheng, M.; Zeng, G.; Huang, D.; Lai, C.; Xu, P.; Zhang, C.; Liu, Y. Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: A review. J. Chem. Eng. 2016, 284, 582–598. [Google Scholar] [CrossRef]
- Verma, S.; Daverey, A.; Sharma, A. Slow sand filtration for water and wastewater treatment–a review. Environ. Technol. Rev. 2017, 6, 47–58. [Google Scholar] [CrossRef]
- Rai, C.L.; Rao, P.G. Influence of sludge disintegration by high pressure homogenizer on microbial growth in sewage sludge: An approach for excess sludge reduction. Clean Technol. Environ. Policy. 2009, 11, 437–446. [Google Scholar] [CrossRef]
- Carrère, H.; Dumas, C.; Battimelli, A.; Batstone, D.J.; Delgenes, J.P.; Steyer, J.P.; Ferrer, I. Pretreatment methods to improve sludge anaerobic degradability: A review. J. Hazard. Mater. 2010, 183, 1–15. [Google Scholar] [CrossRef]
- Casas-Beltran, D.A.; Hernández-Pedraza, M.; Alvarado-Flores, J. Estimation of the discharge of sunscreens in aquatic environments of the Mexican Caribbean. Environments 2020, 7, 15. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y. Degradation of Waterborne Contaminants by Ozone and Hydrogen Peroxide. Ph.D. Thesis, The University of Utah, Salt Lake City, UT, USA, 2010. [Google Scholar]
- Huang, Y.; Qin, S.; Zhang, D.; Li, L.; Mu, Y. Evaluation of cell disruption of Chlorella vulgaris by pressure-assisted ozonation and ultrasonication. Energies 2016, 9, 173. [Google Scholar] [CrossRef]
- Darwish, M.; Abuhabi, A.A.; Mohammad, H. Sustainable membranes with FNMs for pharmaceuticals and personal care products. In Membranes with Functionalized Nanomaterials; Elsevier: Amsterdam, The Netherlands, 2022; pp. 275–328. [Google Scholar]
- Klančič, V.; Gobec, M.; Jakopin, Ž. Halogenated ingredients of household and personal care products as emerging endocrine disruptors. Chemosphere 2022, 303, 134824. [Google Scholar] [CrossRef] [PubMed]
- ASTM (American Society for Testing and Materials). Standard Test Methods for Measuring the Toxicity of Sediment associated Contaminants with Freshwater Invertebrates; ASTM: Philadelphia, PA, USA, 2010. [Google Scholar]
- USEPA (United States Environmental Protection Agency). Methods for Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates; Report EPA 600/R-94/024, 133.Duluth, MN; USEPA (United States Environmental Protection Agency): Washington, WA, USA, 1994. [Google Scholar]
- Environment Canada. Biological Test Method: Test for Survival and Growth in Sediment and Water Using the Freshwater Amphipod Hyalella azteca, Project No. EPS1/RM/33; Environmental protection service: 2013.
- González, M.M.; Martín, J.; Santos, J.L.; Aparicio, I.; Alonso, E. Occurrence and risk assessment of nonylphenol and nonylphenol ethoxylates in sewage sludge from different conventional treatment processes. Sci. Total Environ. 2010, 408, 563–570. [Google Scholar] [CrossRef]
- Kingsley, O.; Witthayawirasak, B. Occurrence, ecological and health risk assessment of phthalate esters in surface water of U-Tapao Canal, southern, Thailand. Toxics 2020, 8, 58. [Google Scholar] [CrossRef]
- De Rosa, E.; Montuori, P.; Triassi, M.; Masucci, A.; Nardone, A. Occurrence and Distribution of Persistent Organic Pollutants (POPs) from Sele River, Southern Italy: Analysis of Polychlorinated Biphenyls and Organochlorine Pesticides in a Water–Sediment System. Toxics 2022, 10, 662. [Google Scholar] [CrossRef]
- Aydin, S.; Ulvi, A.; Bedük, F.; Aydın, M.E. Pharmaceutical residues in digested sewage sludge: Occurrence, seasonal variation and risk assessment for soil. Sci. Total Environ. 2022, 817, 152864. [Google Scholar] [CrossRef]
- Lee, H.B.; Peart, T.E. Organic contaminants in Canadian municipal sewage sludge. Part I. Toxic or endocrine-disrupting phenolic compounds. Water Qual. Res. J. 2002, 37, 681–696. [Google Scholar] [CrossRef]
- Sukuroglu, A.A.; Battal, D.; Kocadal, K.; Sungur, M.A.; Cok, İ.; Unlusayin, I. Biomonitoring of bisphenol A, 4-nonylphenol, and 4-t-octylphenol in a Turkish population: Exposure and risk assessment. Environ. Sci. Pollut. Res. 2022, 29, 26250–26262. [Google Scholar] [CrossRef]
- Gago-Ferrero, P.; Díaz-Cruz, M.S.; Barceló, D. Occurrence of multiclass UV filters in treated sewage sludge from wastewater treatment plants. Chemosphere 2011, 84, 1158–1165. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.S.; Ying, G.G.; Shareef, A.; Kookana, R.S. Occurrence and removal of benzotriazoles and ultraviolet filters in a municipal wastewater treatment plant. Environ. Pollut. 2012, 165, 225–232. [Google Scholar] [CrossRef]
- Sun, Q.; Li, M.; Ma, C.; Chen, X.; Xie, X.; Yu, C.P. Seasonal and spatial variations of PPCP occurrence, removal and mass loading in three wastewater treatment plants located in different urbanization areas in Xiamen, China. Environ. Pollut. 2016, 208, 371–381. [Google Scholar] [CrossRef] [PubMed]
- Mao, H.; Li, H.; Li, Y.; Li, L.; Yin, L.; Yang, Z. Four typical personal care products in a municipal wastewater treatment plant in China: Occurrence, removal efficiency, mass loading and emission. Ecotoxicol. Environ. Saf. 2020, 188, 109818. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Q.; Wu, D.; Cheng, Y.X.; Hu, L.X.; Chen, Q.L.; Wu, H.Y.; Ying, G.G. Development and validation of a simultaneous method for the analysis of benzothiazoles and organic ultraviolet filters in various environmental matrices by GC–MS/MS. Anal. Bioanal. Chem. 2022, 414, 6541–6555. [Google Scholar] [CrossRef]
- Albolafio, S.; Marín, A.; Allende, A.; García, F.; Simón-Andreu, P.J.; Soler, M.A.; Gil, M.I. Strategies for mitigating chlorinated disinfection byproducts in wastewater treatment plants. Chemosphere 2022, 288, 132583. [Google Scholar] [CrossRef] [PubMed]
- Nandikes, G.; Pathak, P.; Razak, A.S.; Narayanamurthy, V.; Singh, L. Occurrence, environmental risks and biological remediation mechanisms of Triclosan in wastewaters: Challenges and Perspectives. J. Water Process. Eng. 2022, 49, 103078. [Google Scholar] [CrossRef]
- Shon, H.K.; Phuntsho, S.; Vigneswaran, S.; Kandasamy, J.; Cho, J.; Kim, J.H. Physico-chemical process for organic removal from wastewater effluents. Water Wastewater Treat. Technol. EOLSS Publications 2009, 205–224. [Google Scholar]
- Dang, B.T.; Thuy, L.T.T.; Hoang, H.G.; Bui, X.T.; Le, V.G.; Lin, C.; Bui, T.P.T. Advanced Treatment Technologies for the Removal of Organic Chemical Sunscreens from Wastewater: A Review. Curr. Poll. Rep. 2022, 8, 288–302. [Google Scholar]
- Kumar, R.; Qureshi, M.; Vishwakarma, D.K.; Al-Ansari, N.; Kuriqi, A.; Elbeltagi, A.; Saraswat, A. A review on emerging water contaminants and the application of sustainable removal technologies. Case Stud. Chem. Environ. Eng. 2022, 6, 100219. [Google Scholar] [CrossRef]
- Syracuse Research Corporation (SRC). EPISuite, version 3.10, Syracuse Research Corporation (SRC), on behalf of the US Environmental Protection Agency: Syracuse, NY, USA, 2000.
- Broséus, R.; Vincent, S.; Aboulfadl, K.; Daneshvar, A.; Sauvé, S.; Barbeau, B.; Prévost, M. Ozone oxidation of pharmaceuticals, endocrine disruptors and pesticides during drinking water treatment. Water Res. 2009, 43, 4707–4717. [Google Scholar] [CrossRef]
- Cullen, P.J.; Tiwari, B.K.; O’Donnell, C.P.; Muthukumarappan, K. Modelling approaches to ozone processing of liquid foods. Trends Food Sci. Technol. 2009, 20, 125–136. [Google Scholar] [CrossRef]
- Quan, B.; Li, X.; Zhang, H.; Zhang, C.; Ming, Y.; Huang, Y.; Xi, Y.; Weihua, X.; Yunguo, L.; Tang, Y. Technology and principle of removing triclosan from aqueous media: A review. Chem. Eng. J. 2019, 378, 122185. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; Fu, J.; Lazaridis, N.K.; Bikiaris, D.N.; Matis, K.A. New approaches on the removal of pharmaceuticals from wastewaters with adsorbent materials. J. Mol. Liq. 2015, 209, 87–93. [Google Scholar] [CrossRef]
- Liang, Y.; Song, H.; Wu, Y.; Gao, S.; Zeng, X.; Yu, Z. Occurrence and distribution of triclosan and its transformation products in Taihu Lake, China. Environ. Sci. Pollut. Res. 2022, 29, 84787–84797. [Google Scholar] [CrossRef]
- Psaltou, S.; Kaprara, E.; Tsaragklis, A.; Mitrakas, M.; Zouboulis, A. Investigation of the Removal of Several Micropollutants Presenting Different Ozone Reactivities from Natural Potable Water Matrix by the Application of Ozonation with the Use of SiO2 and Al2O3 as Catalysts. Separations 2022, 9, 173. [Google Scholar] [CrossRef]
- Tovar-Sánchez, A.; Sparaventi, E.; Gaudron, A.; Rodríguez-Romero, A. A new approach for the determination of sunscreen levels in seawater by ultraviolet absorption spectrophotometry. PLoS ONE 2022, 15, e0243591. [Google Scholar] [CrossRef]
- Gaudet-Hull, A.M.; Rayburn, J.R.; Bantle, J.A.; Burton, D.T.; Turley, S.D.; Dawson, D.A.; Dumont, J.N.; Finch, R.A.; Maurice, M.A.; Fort, D.J.; et al. FETAX interlaboratory validation study: Phase II testing. Environ. Toxicol. Chem. 1994, 13. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsieh, C.-Y.; Wu, Y.-C.; Mudigonda, S.; Dahms, H.-U.; Wu, M.-C. Assessing the Effects of Ozonation on the Concentrations of Personal Care Products and Acute Toxicity in Sludges of Wastewater Treatment Plants. Toxics 2023, 11, 75. https://doi.org/10.3390/toxics11010075
Hsieh C-Y, Wu Y-C, Mudigonda S, Dahms H-U, Wu M-C. Assessing the Effects of Ozonation on the Concentrations of Personal Care Products and Acute Toxicity in Sludges of Wastewater Treatment Plants. Toxics. 2023; 11(1):75. https://doi.org/10.3390/toxics11010075
Chicago/Turabian StyleHsieh, Chi-Ying, Ya-Chin Wu, Sunaina Mudigonda, Hans-Uwe Dahms, and Meng-Chun Wu. 2023. "Assessing the Effects of Ozonation on the Concentrations of Personal Care Products and Acute Toxicity in Sludges of Wastewater Treatment Plants" Toxics 11, no. 1: 75. https://doi.org/10.3390/toxics11010075
APA StyleHsieh, C. -Y., Wu, Y. -C., Mudigonda, S., Dahms, H. -U., & Wu, M. -C. (2023). Assessing the Effects of Ozonation on the Concentrations of Personal Care Products and Acute Toxicity in Sludges of Wastewater Treatment Plants. Toxics, 11(1), 75. https://doi.org/10.3390/toxics11010075