Photoneutrons and Gamma Capture Dose Rates at the Maze Entrance of Varian TrueBeam and Elekta Versa HD Medical Linear Accelerators
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Experimental Measurements
2.3. Empirical Methods for Neutron Dose Estimates at the Maze Entrance
2.3.1. Kersey Method
Falcão’s Method
2.3.2. Modified Kersey Method
3. Results and Discussion
3.1. Variations of the Neutron and Photon Dose along the Maze
3.2. Hn,D and Hγ,D at the Maze Entrance
3.3. Detectors for Secondary Neutron Measurements in Radiotherapy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Torre, L.A.; Siegel, R.L.; Ward, E.M.; Jemal, A. Global cancer incidence and mortality rates and trends—An update. Cancer Epidemiol. Biomark. Prev. 2016, 25, 16–27. [Google Scholar] [CrossRef] [Green Version]
- Banaee, N.; Goodarzi, K.; Nedaie, H.A. Neutron contamination in radiotherapy processes: A review study. J. Radiat. Res. 2021, 62, 947–954. [Google Scholar] [CrossRef]
- Barquero, R.; Mendez, R.; Vega-Carrillo, H.R.; Iñiguez, M.P.; Edwards, T.M. Neutron spectra and dosimetric features around an 18 MV linac accelerator. Health Phys. 2005, 88, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Yücel, H.; Çobanbaş, İ.; Kolbaşı, A.; Yüksel, A.Ö.; Kaya, V. Measurement of photo-neutron dose from an 18-MV medical linac using a foil activation method in view of radiation protection of patients. Nucl. Eng. Technol. 2016, 48, 525–532. [Google Scholar] [CrossRef] [Green Version]
- Howell, R.M.; Ferenci, M.S.; Hertel, N.E.; Fullerton, G.D.; Fox, T.; Davis, L.W. Measurements of secondary neutron dose from 15 MV and 18 MV IMRT. Radiat. Prot. Dosim. 2005, 115, 508–512. [Google Scholar] [CrossRef] [PubMed]
- NCRP. Structural Shielding Design and Evaluation for Megavoltage X- and Gamma-ray Radiotherapy Facilities; Recommendations of the National Council on Radiation Protection and Measurements; NRPB Report 151; NRPB: Bethesda, MA, USA, 2005.
- Khan, F.M.; Gibbons, J.P. Khan’s The Physics of Radiation Therapy; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2014. [Google Scholar]
- Mesbahi, A.; Ghiasi, H.; Mahdavi, S.R. Photoneutron and capture gamma dose equivalent for different room and maze layouts in radiation therapy. Radiat. Prot. Dosim. 2010, 140, 242–249. [Google Scholar] [CrossRef]
- Mobley, R.C.; Laubenstein, R.A. Photo-neutron thresholds of beryllium and deuterium. Phys. Rev. 1950, 80, 309. [Google Scholar] [CrossRef]
- Ozerov, S.; Hagen, A.R.; Archambault, B.C.; Sansone, A.A.; Boyle, N.M.; Grimes, T.F.; Rancilio, N.J.; Plantenga, J.M.; Taleyarkhan, R.P. Clinical 6 MV X-ray facility photo-neutron/fission interrogations with TMFD sensors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2022, 1029, 166395. [Google Scholar] [CrossRef]
- Attix, F.H. Introduction to Radiological Physics and Radiation Dosimetry; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Pacelli, R.; Mansi, L. Eric Hall and Amato J. Giaccia: Radiobiology for the Radiologist; Wolters Kluwer: Philadelphia, PA, USA, 2019. [Google Scholar]
- ICRP, International Commission on Radiological Protection (ICRP). Radiological Protection in Medicine, ICRP Publication 105. Ann. ICRP 2007, 37, 2. [Google Scholar]
- Carinou, E.; Kamenopoulou, V.; Stamatelatos, I.E. Evaluation of neutron dose in the maze of medical electron accelerators. Med. Phys. 1999, 26, 2520–2525. [Google Scholar] [CrossRef]
- Wang, X.; Esquivel, C.; Nes, E.; Shi, C.; Papanikolaou, N.; Charlton, M. The neutron dose equivalent evaluation and shielding at the maze entrance of a Varian Clinac 23EX treatment room. Med. Phys. 2011, 38, 1141–1149. [Google Scholar] [CrossRef]
- Andreo, P.; Burns, D.T.; Hohlfeld, K.; Huq, M.S.; Kanai, T.; Laitano, F.; Smyth, V.; Vynckier, S. Absorbed Dose Determination in External Beam Radiotherapy: An International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water; IAEA TRS 398; International Atomic Energy Agency: Vienna, Austria, 2004. [Google Scholar]
- McGinley, P.H. Shielding Techniques for Radiation Oncology Facilities; Medical Physics Pub Corp: Madison, WI, USA, 1998; pp. 55–58. [Google Scholar]
- Falcao, R.C.; Facure, A.; Silva, A.X. Neutron dose calculation at the maze entrance of medical linear accelerator rooms. Radiat. Prot. Dosim. 2007, 123, 283–287. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.K.; McGinley, P.H. Neutron and capture gamma along with the mazes of linear accelerator vaults. J. Appl. Clin. Med. Phys. 2003, 4, 162–171. [Google Scholar] [CrossRef]
- IAEA. Radiation Protection in the Design of Radiotherapy Facilities; The IAEA Safety Reports Series No. 47; IAEA: Vienna, Austria, 2006. [Google Scholar]
- Tóth, Á.Á.; Petrović, B.; Jovančević, N.; Krmar, M.; Rutonjski, L.; Čudić, O. The evaluation of the neutron dose equivalent in the two-bend maze. Phys. Med. 2017, 36, 119–125. [Google Scholar] [CrossRef]
- Maglieri, R.; Liang, L.; Evans, M.; Licea, A.; Dubeau, J.; Witharana, S.; DeBlois, F.; Seuntjens, J.; Kildea, J. SU-F-BRE-11: Neutron Measurements Around the Varian TrueBeam Linac. Med. Phy. 2014, 41, 393. [Google Scholar] [CrossRef]
- McGinley, P.H.; Butker, E.K. Evaluation of neutron dose equivalent levels at the maze entrance of medical accelerator treatment rooms. Med. Phys. 1991, 18, 279–281. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Jang, K.W.; Park, Y.H.; Kwon, J.W.; Choi, H.S.; Lee, J.K.; Kim, J.K. The new empirical formula for neutron dose level at the maze entrance of 15 MV medical accelerator facilities. Med. Phys. 2009, 36, 1512–1520. [Google Scholar] [CrossRef]
- McGinley, P.H.; Miner, M.S.; Mitchum, M.L. A method for calculating the dose due to capture gamma rays in accelerator mazes. Phys. Med. Biol. 1995, 40, 1467. [Google Scholar] [CrossRef] [PubMed]
- McGinley, P.H.; Dhaba’An, A.H.; Reft, C.S. Evaluation of the contribution of capture gamma rays, X-ray leakage, and scatter to the photon dose at the maze door for a high energy medical electron accelerator using a Monte Carlo particle transport code. Med. Phys. 2000, 27, 225–230. [Google Scholar] [CrossRef]
- Han, Z.; Chin, L.M. On the tenth value distance of the photon field along the maze of high-energy linear accelerator vaults. J. Appl. Clin. Med. Phys. 2018, 19, 311–316. [Google Scholar] [CrossRef] [Green Version]
- Montgomery, L.; Evans, M.; Liang, L.; Maglieri, R.; Kildea, J. The effect of the flattening filter on photoneutron production at 10 MV in the Varian TrueBeam linear accelerator. Med. Phys. 2018, 45, 4711–4719. [Google Scholar] [CrossRef] [PubMed]
- Rudd, P.J.; Prior, D.; Austin-Smith, S. Neutron contamination of 10 MV X-rays: Its relevance to treatment room door and maze design. Br. J. Radiol. 2007, 80, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Hsu, F.Y.; Chang, Y.L.; Liu, M.T.; Huang, S.S.; Yu, C.C. Dose estimation of the neutrons induced by the high energy medical linear accelerator using dual-TLD chips. Radiat. Meas. 2010, 45, 739–741. [Google Scholar] [CrossRef]
- Nedaie, H.A.; Darestani, H.; Banaee, N.; Shagholi, N.; Mohammadi, K.; Shahvar, A.; Bayat, E. Neutron dose measurements of Varian and Elekta linacs by TLD600 and TLD700 dosimeters and comparison with MCNP calculations. J. Med. Phys. Assoc. Med. Phys. India 2014, 39, 10. [Google Scholar] [CrossRef]
- Followill, D.S.; Stovall, M.S.; Kry, S.F.; Ibbott, G.S. Neutron source strength measurements for Varian, Siemens, Elekta, and General Electric linear accelerators. J. Appl. Clin. Med. Phys. 2003, 4, 189–194. [Google Scholar] [CrossRef]
- Esposito, A.; Bedogni, R.; Lembo, L.; Morelli, M. Determination of the neutron spectra around an 18 MV medical LINAC with a passive Bonner sphere spectrometer based on gold foils and TLD pairs. Radiat. Meas. 2008, 43, 1038–1043. [Google Scholar] [CrossRef]
- Bedogni, R.; Esposito, A.; Gentile, A.; Angelone, M.; Gualdrini, G. Determination and validation of a response matrix for a passive Bonner sphere spectrometer based on gold foils. Radiat. Meas. 2008, 43, 1104–1107. [Google Scholar] [CrossRef]
- Maglieri, R.; Licea, A.; Evans, M.; Seuntjens, J.; Kildea, J. Measuring neutron spectra in radiotherapy using the nested neutron spectrometer. Med. Phys. 2015, 42, 6162–6169. [Google Scholar] [CrossRef] [PubMed]
Geometrical Parameter | Varian TrueBeam | Elekta HD |
---|---|---|
Energies (MV) | 10; 10 FFF; 15 | 10; 10 FFF; 15 |
h1 (m) | 3.00 | 3.00 |
w1 (m) | 1.60 | 1.78 |
S1 (m2) | 4.80 | 5.34 |
h0 (m) | 3.00 | 3.00 |
w0 (m) | 1.90 | 1.90 |
S0 (m2) | 5.70 | 5.70 |
d1 (m) | 7.30 | 7.60 |
d2 (m) | 5.45 | 5.25 |
Room surface area (m2) | 210.00 | 210.00 |
Beam MV | Strength × 1012 n/Gy | Delivered X-ray Dose * | Measured H * (10) (µSv/Gy Photons) | |||
---|---|---|---|---|---|---|
MU | Gy | C | B | A | ||
Elekta Versa HD | ||||||
15 | 0.42 | 600 | 6 | 48.29 | 43.03 | 4.52 |
10 | 0.04 | 600 | 6 | 24.96 | 20.18 | 1.28 |
10 FFF | 0.02 | 600 | 6 | 20.56 | 15.40 | 1.30 |
Varian TrueBeam | ||||||
15 | 0.59 | 600 | 6 | 72.78 | 56.72 | 5.46 |
10 | 0.04 | 600 | 6 | 40.95 | 15.23 | 0.46 |
10 FFF | 0.03 | 600 | 6 | 31.25 | 8.12 | 0.31 |
Beam Energy (MV) | Photon Dose Measurements (µSv·h−1) | Neutron Dose Equivalent (µSv·h−1) | |||
---|---|---|---|---|---|
Measurements | Kersey | Modified Kersey | Falcão | ||
Elekta Versa HD | |||||
15 | 18.00 ± 0.01 | 36.30 ± 0.00 | 50.7 | 158.0 | 42.0 |
10 | 13.20 ± 0.00 | 12.30 ± 0.00 | 23.8 | 15.1 | 19.7 |
10 FFF | 4.80 ± 0.00 | 10.20 ± 0.00 | 16.0 | 7.5 | 13.2 |
Varian TrueBeam | |||||
15 | 28.20 ± 0.00 | 99.30 ± 0.03 | 85.3 | 211.0 | 58.2 |
10 | 5.10 ± 0.01 | 69.00 ± 0.05 | 30.8 | 13.8 | 21.0 |
10 FFF | 3.30 ± 0.01 | 42.00 ± 0.00 | 14.8 | 8.6 | 10.1 |
Detector | Advantages | Disadvantage |
---|---|---|
3He or BF3 gas-filled proportional counters |
|
|
Solid-state nuclear track detectors |
|
|
Thermoluminescent dosimeters (TLDS) |
|
|
Bubble detectors |
|
|
Activation foils |
|
|
Bonner sphere systems |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suliman, I.I.; Khouqeer, G.A.; Mayhoub, F.H. Photoneutrons and Gamma Capture Dose Rates at the Maze Entrance of Varian TrueBeam and Elekta Versa HD Medical Linear Accelerators. Toxics 2023, 11, 78. https://doi.org/10.3390/toxics11010078
Suliman II, Khouqeer GA, Mayhoub FH. Photoneutrons and Gamma Capture Dose Rates at the Maze Entrance of Varian TrueBeam and Elekta Versa HD Medical Linear Accelerators. Toxics. 2023; 11(1):78. https://doi.org/10.3390/toxics11010078
Chicago/Turabian StyleSuliman, Ibrahim I., Ghada A. Khouqeer, and Fareed H. Mayhoub. 2023. "Photoneutrons and Gamma Capture Dose Rates at the Maze Entrance of Varian TrueBeam and Elekta Versa HD Medical Linear Accelerators" Toxics 11, no. 1: 78. https://doi.org/10.3390/toxics11010078
APA StyleSuliman, I. I., Khouqeer, G. A., & Mayhoub, F. H. (2023). Photoneutrons and Gamma Capture Dose Rates at the Maze Entrance of Varian TrueBeam and Elekta Versa HD Medical Linear Accelerators. Toxics, 11(1), 78. https://doi.org/10.3390/toxics11010078