Scanning Electron Microscopy and EDX Spectroscopy of Commercial Swabs Used for COVID-19 Lateral Flow Testing
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van der Elst, L.A.; Gokce Kurtoglu, M.; Leffel, T.; Zheng, M.; Gumennik, A. Rapid Fabrication of Sterile Medical Nasopharyngeal Swabs by Stereolithography for Widespread Testing in a Pandemic. Adv. Eng. Mater. 2020, 22, 2000759. [Google Scholar] [CrossRef] [PubMed]
- Williams, E.; Bond, K.; Isles, N.; Chong, B.; Johnson, D.; Druce, J.; Hoang, T.; Ballard, S.A.; Hall, V.; Muhi, S.; et al. Pandemic Printing: A Novel 3D-printed Swab for Detecting SARS-CoV-2. Med. J. Aust. 2020, 213, 276–279. [Google Scholar] [CrossRef]
- Decker, S.J.; Goldstein, T.A.; Ford, J.M.; Teng, M.N.; Pugliese, R.S.; Berry, G.J.; Pettengill, M.; Silbert, S.; Hazelton, T.R.; Wilson, J.W.; et al. 3-Dimensional Printed Alternative to the Standard Synthetic Flocked Nasopharyngeal Swabs Used for Coronavirus Disease 2019 Testing. Clin. Infect. Dis. 2021, 73, e3027–e3032. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Ahmed, J.A.; Eidex, R.B.; Nyoka, R.; Waiboci, L.W.; Erdman, D.; Tepo, A.; Mahamud, A.S.; Kabura, W.; Nguhi, M.; et al. Comparison of Nasopharyngeal and Oropharyngeal Swabs for the Diagnosis of Eight Respiratory Viruses by Real-Time Reverse Transcription-PCR Assays. PLoS ONE 2011, 6, e21610. [Google Scholar] [CrossRef] [PubMed]
- Scansen, K.A.; Bonsu, B.K.; Stoner, E.; Mack, K.; Salamon, D.; Leber, A.; Marcon, M.J. Comparison of Polyurethane Foam to Nylon Flocked Swabs for Collection of Secretions from the Anterior Nares in Performance of a Rapid Influenza Virus Antigen Test in a Pediatric Emergency Department. J. Clin. Microbiol. 2010, 48, 852–856. [Google Scholar] [CrossRef]
- Verdon, T.J.; Mitchell, R.J.; van Oorschot, R.A.H. Swabs as DNA Collection Devices for Sampling Different Biological Materials from Different Substrates. J. Forensic Sci. 2014, 59, 1080–1089. [Google Scholar] [CrossRef]
- Bolaños-Suaréz, V.; Villalobos-Osnaya, A.; García-García, J.A.; de León-Hernández, A.; Sánchez-Pérez, C.; Espinosa-García, A.M. Validation of 3D-Printed Swabs for Sampling in SARS-CoV-2 Detection: A Pilot Study. Ann. Biomed. Eng. 2022, 51, 527–537. [Google Scholar] [CrossRef]
- Zasada, A.A.; Zacharczuk, K.; Woźnica, K.; Główka, M.; Ziółkowski, R.; Malinowska, E. The Influence of a Swab Type on the Results of Point-of-Care Tests. AMB Express 2020, 10, 46. [Google Scholar] [CrossRef]
- McCarthy, A.; Saldana, L.; Ackerman, D.N.; Su, Y.; John, J.V.; Chen, S.; Weihs, S.; Reid, S.P.; Santarpia, J.L.; Carlson, M.A.; et al. Ultra-Absorptive Nanofiber Swabs for Improved Collection and Test Sensitivity of SARS-CoV-2 and Other Biological Specimens. Nano Lett. 2021, 21, 1508–1516. [Google Scholar] [CrossRef] [PubMed]
- Kashapov, R.N.; Tsibin, A.N. Comparison of the Physical Properties and Effectiveness of Medical Swabs for Sampling Biomaterials. Biomed. Eng. 2021, 55, 289–293. [Google Scholar] [CrossRef]
- Vashist, V.; Banthia, N.; Kumar, S.; Agrawal, P. A Systematic Review on Materials, Design, and Manufacturing of Swabs. Ann. 3D Print. Med. 2023, 9, 100092. [Google Scholar] [CrossRef]
- Gupta, K.; Bellino, P.M.; Charness, M.E. Adverse Effects of Nasopharyngeal Swabs: Three-Dimensional Printed versus Commercial Swabs. Infect. Control. Hosp. Epidemiol. 2021, 42, 641–642. [Google Scholar] [CrossRef] [PubMed]
- Koskinen, A.; Tolvi, M.; Jauhiainen, M.; Kekäläinen, E.; Laulajainen-Hongisto, A.; Lamminmäki, S. Complications of COVID-19 Nasopharyngeal Swab Test. JAMA Otolaryngol.–Head Neck Surg. 2021, 147, 672. [Google Scholar] [CrossRef]
- Sullivan, C.B.; Schwalje, A.T.; Jensen, M.; Li, L.; Dlouhy, B.J.; Greenlee, J.D.; Walsh, J.E. Cerebrospinal Fluid Leak After Nasal Swab Testing for Coronavirus Disease 2019. JAMA Otolaryngol.–Head Neck Surg. 2020, 146, 1179. [Google Scholar] [CrossRef] [PubMed]
- Föh, B.; Borsche, M.; Balck, A.; Taube, S.; Rupp, J.; Klein, C.; Katalinic, A. Complications of Nasal and Pharyngeal Swabs: A Relevant Challenge of the COVID-19 Pandemic? Eur. Respir. J. 2021, 57, 2004004. [Google Scholar] [CrossRef]
- Fazekas, B.; Fazekas, B.; Darraj, E.; Jayakumar, D. Preseptal Cellulitis and Infraorbital Abscess as a Complication of a Routine COVID-19 Swab. BMJ Case Rep. 2021, 14, e241963. [Google Scholar] [CrossRef]
- Kim, D.H.; Kim, D.; Moon, J.W.; Chae, S.-W.; Rhyu, I.J. Complications of Nasopharyngeal Swabs and Safe Procedures for COVID-19 Testing Based on Anatomical Knowledge. J. Korean Med. Sci. 2022, 37, e88. [Google Scholar] [CrossRef]
- Alberola-Amores, F.J.; Valdeolivas-Urbelz, E.; Torregrosa-Ortiz, M.; Álvarez-Sauco, M.; Alom-Poveda, J. Meningitis Due to Cerebrospinal Fluid Leak after Nasal Swab Testing for COVID-19. Eur. J. Neurol. 2021, 28, e91–e92. [Google Scholar] [CrossRef]
- Krupińska, M.; Borkowski, J.; Goll, A.; Nowicka, J.; Baranowicz, K.; Bourret, V.; Strandin, T.; Mäki, S.; Kant, R.; Sironen, T.; et al. Wild Red Deer (Cervus Elaphus) Do Not Play a Role as Vectors or Reservoirs of SARS-CoV-2 in North-Eastern Poland. Viruses 2022, 14, 2290. [Google Scholar] [CrossRef]
- Hamdy, M.E.; El-Deeb, A.H.; Hagag, N.M.; Shahein, M.A.; Liyanage, N.P.M.; Shalaan, M.; Hussein, H.A. SARS-CoV-2 Infection of Companion Animals in Egypt and Its Risk of Spillover. Vet. Med. Sci. 2022, 9, 13–24. [Google Scholar] [CrossRef]
- Sangkachai, N.; Chaiwattanarungruengpaisan, S.; Thongdee, M.; Suksai, P.; Tangsudjai, S.; Wongluechai, P.; Suwanpakdee, S.; Wiriyarat, W.; Buddhirongawatr, R.; Prasittichai, L.; et al. Serological and Molecular Surveillance for SARS-CoV-2 Infection in Captive Tigers (Panthera Tigris), Thailand. Animals 2022, 12, 3350. [Google Scholar] [CrossRef]
- Stojilovic, N. Why Can’t We See Hydrogen in X-Ray Photoelectron Spectroscopy? J. Chem. Educ. 2012, 89, 1331–1332. [Google Scholar] [CrossRef]
- Shi, B.; Topolkaraev, V.; Wang, J. Biopolymers, Processing, and Biodegradation. In Renewable and Sustainable Polymers; American Chemical Society: Washington, DC, USA, 2011; pp. 117–132. [Google Scholar]
- Darie-Niță, R.N.; Râpă, M.; Frąckowiak, S. Special Features of Polyester-Based Materials for Medical Applications. Polymers 2022, 14, 951. [Google Scholar] [CrossRef]
- Deopura, B.L. Polyamide Fibers. In Polyesters and Polyamides; Elsevier: Amsterdam, The Netherlands, 2008; pp. 41–61. [Google Scholar]
- Das, A.; Mahanwar, P. A Brief Discussion on Advances in Polyurethane Applications. Adv. Ind. Eng. Polym. Res. 2020, 3, 93–101. [Google Scholar] [CrossRef]
- Costa, N.; Correa, R.; Júnior, I.; Figueiredo, A.; Vilhena, K.; Farias-Junior, P.; Teixeira, F.; Ferreira, N.; Pereira-Júnior, J.; Dantas, K.; et al. Physical, Chemical, and Immunohistochemical Investigation of the Damage to Salivary Glands in a Model of Intoxication with Aluminium Citrate. Int. J. Environ. Res. Public Health 2014, 11, 12429–12440. [Google Scholar] [CrossRef] [PubMed]
- Peto, M.V. Aluminium and Iron in Humans: Bioaccumulation, Pathology, and Removal. Rejuvenation Res. 2010, 13, 589–598. [Google Scholar] [CrossRef]
- Aguirre-Sierra, A.; Alonso, Á.; Camargo, J.A. Fluoride Bioaccumulation and Toxic Effects on the Survival and Behavior of the Endangered White-Clawed Crayfish Austropotamobius Pallipes (Lereboullet). Arch. Environ. Contam. Toxicol. 2013, 65, 244–250. [Google Scholar] [CrossRef]
- Johnston, N.R.; Strobel, S.A. Principles of Fluoride Toxicity and the Cellular Response: A Review. Arch. Toxicol. 2020, 94, 1051–1069. [Google Scholar] [CrossRef] [PubMed]
- Novaes, R.D.; Mouro, V.G.S.; Gonçalves, R.V.; Mendonça, A.A.S.; Santos, E.C.; Fialho, M.C.Q.; Machado-Neves, M. Aluminum: A Potentially Toxic Metal with Dose-Dependent Effects on Cardiac Bioaccumulation, Mineral Distribution, DNA Oxidation and Microstructural Remodeling. Environ. Pollut. 2018, 242, 814–826. [Google Scholar] [CrossRef] [PubMed]
- Tuncsoy, B.; Mese, Y. Influence of Titanium Dioxide Nanoparticles on Bioaccumulation, Antioxidant Defense and Immune System of Galleria mellonella, L. Environ. Sci. Pollut. Res. 2021, 28, 38007–38015. [Google Scholar] [CrossRef] [PubMed]
- Marisa, I.; Matozzo, V.; Martucci, A.; Franceschinis, E.; Brianese, N.; Marin, M.G. Bioaccumulation and Effects of Titanium Dioxide Nanoparticles and Bulk in the Clam Ruditapes Philippinarum. Mar. Environ. Res. 2018, 136, 179–189. [Google Scholar] [CrossRef]
- Bourgeault, A.; Cousin, C.; Geertsen, V.; Cassier-Chauvat, C.; Chauvat, F.; Durupthy, O.; Chanéac, C.; Spalla, O. The Challenge of Studying TiO2 Nanoparticle Bioaccumulation at Environmental Concentrations: Crucial Use of a Stable Isotope Tracer. Environ. Sci. Technol. 2015, 49, 2451–2459. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Kumar, S.; Tiwari, S.; Srivastava, S.; Srivastava, M.; Yadav, B.K.; Kumar, S.; Tran, T.T.; Dewan, A.K.; Mulchandani, A.; et al. Biofunctionalized Nanostructured Zirconia for Biomedical Application: A Smart Approach for Oral Cancer Detection. Adv. Sci. 2015, 2, 1500048. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Bao, S.; Liu, F.; Jiang, X.; Zhang, Q.; Sun, B.; Zhu, M. Wear Behavior of Light-Cured Resin Composites with Bimodal Silica Nanostructures as Fillers. Mater. Sci. Eng. C 2013, 33, 4759–4766. [Google Scholar] [CrossRef] [PubMed]
- Sajtos, Z.; Fehér, M.; Molnár, Á.; Stündl, L.; Nagy, L.N.; Martins, J.C.; Harangi, S.; Magyar, I.; Fehér, K.; Baranyai, E. The Retention of Zr from Potential Therapeutic Silica-Zirconia Core–Shell Nanoparticles in Aquatic Organisms. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100572. [Google Scholar] [CrossRef]
- Tang, L.; Cheng, J. Nonporous Silica Nanoparticles for Nanomedicine Application. Nano Today 2013, 8, 290–312. [Google Scholar] [CrossRef]
- Vivero-Escoto, J.L.; Huxford-Phillips, R.C.; Lin, W. Silica-Based Nanoprobes for Biomedical Imaging and Theranostic Applications. Chem. Soc. Rev. 2012, 41, 2673. [Google Scholar] [CrossRef]
- Douroumis, D.; Onyesom, I.; Maniruzzaman, M.; Mitchell, J. Mesoporous Silica Nanoparticles in Nanotechnology. Crit. Rev. Biotechnol. 2013, 33, 229–245. [Google Scholar] [CrossRef]
- Duan, J.; Yu, Y.; Shi, H.; Tian, L.; Guo, C.; Huang, P.; Zhou, X.; Peng, S.; Sun, Z. Toxic Effects of Silica Nanoparticles on Zebrafish Embryos and Larvae. PLoS ONE 2013, 8, e74606. [Google Scholar] [CrossRef]
- Athanassiou, C.G.; Kavallieratos, N.G.; Benelli, G.; Losic, D.; Usha Rani, P.; Desneux, N. Nanoparticles for Pest Control: Current Status and Future Perspectives. J. Pest Sci. 2018, 91, 1–15. [Google Scholar] [CrossRef]
- ATSDR. Toxicological Profile for Fluorides, Hydrogen Fluoride, and Fluorine; Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2003. [Google Scholar]
- Zuo, H.; Chen, L.; Kong, M.; Qiu, L.; Lü, P.; Wu, P.; Yang, Y.; Chen, K. Toxic Effects of Fluoride on Organisms. Life Sci. 2018, 198, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Bartos, M.; Gumilar, F.; Baier, C.J.; Dominguez, S.; Bras, C.; Cancela, L.M.; Minetti, A.; Gallegos, C.E. Rat Developmental Fluoride Exposure Affects Retention Memory, Leads to a Depressive-like Behavior, and Induces Biochemical Changes in Offspring Rat Brains. Neurotoxicology 2022, 93, 222–232. [Google Scholar] [CrossRef] [PubMed]
- ATSDR. Toxicological Profile for Aluminum; Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2008. [Google Scholar]
- Chalansonnet, M.; Carabin, N.; Boucard, S.; Merlen, L.; Melczer, M.; Antoine, G.; Devoy, J.; Remy, A.; Gagnaire, F. Study of Potential Transfer of Aluminum to the Brain via the Olfactory Pathway. Toxicol. Lett. 2018, 283, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.-T.; Seo, G.-B.; Lee, M.; Kim, H.-M.; Shim, I.; Jo, E.; Kim, P.; Choi, K. Pulmonary Toxicity Assessment of Aluminum Oxide Nanoparticles via Nasal Instillation Exposure. Korean J. Environ. Health Sci. 2013, 39, 48–55. [Google Scholar] [CrossRef]
- Krewski, D.; Yokel, R.A.; Nieboer, E.; Borchelt, D.; Cohen, J.; Harry, J.; Kacew, S.; Lindsay, J.; Mahfouz, A.M.; Rondeau, V. Human Health Risk Assessment for Aluminium, Aluminium Oxide, and Aluminium Hydroxide. J. Toxicol. Environ. Health Part B 2007, 10, 1–269. [Google Scholar] [CrossRef]
- Polyzois, I.; Nikolopoulos, D.; Michos, I.; Patsouris, E.; Theocharis, S. Local and Systemic Toxicity of Nanoscale Debris Particles in Total Hip Arthroplasty. J. Appl. Toxicol. 2012, 32, 255–269. [Google Scholar] [CrossRef] [PubMed]
- Elsabahy, M.; Wooley, K.L. Cytokines as Biomarkers of Nanoparticle Immunotoxicity. Chem. Soc. Rev. 2013, 42, 5552. [Google Scholar] [CrossRef]
- Sasaki, E.; Asanuma, H.; Momose, H.; Furuhata, K.; Mizukami, T.; Hamaguchi, I. Nasal Alum-Adjuvanted Vaccine Promotes IL-33 Release from Alveolar Epithelial Cells That Elicits IgA Production via Type 2 Immune Responses. PLoS Pathog. 2021, 17, e1009890. [Google Scholar] [CrossRef]
- Steenland, K.; Brown, D. Silicosis among Gold Miners: Exposure—Response Analyses and Risk Assessment. Am. J. Public Health 1995, 85, 1372–1377. [Google Scholar] [CrossRef]
- Rood, M.; ten Kate, L.; Boeddha, N.P.; van ‘t Kruys, K. Clinical Characteristics, Transmission Rate and Outcome of Neonates Born to COVID-19-Positive Mothers: A Prospective Case Series from a Resource-Limited Setting. Pediatr. Infect. Dis. J. 2023, 42, 35–42. [Google Scholar] [CrossRef]
- Chen, M.; Tse, L.A. Laryngeal Cancer and Silica Dust Exposure: A Systematic Review and Meta-Analysis. Am. J. Ind. Med. 2012, 55, 669–676. [Google Scholar] [CrossRef]
- Kusaka, T.; Nakayama, M.; Nakamura, K.; Ishimiya, M.; Furusawa, E.; Ogasawara, K. Effect of Silica Particle Size on Macrophage Inflammatory Responses. PLoS ONE 2014, 9, e92634. [Google Scholar] [CrossRef] [PubMed]
- Napierska, D.; Thomassen, L.C.; Lison, D.; Martens, J.A.; Hoet, P.H. The Nanosilica Hazard: Another Variable Entity. Part. Fibre Toxicol. 2010, 7, 39. [Google Scholar] [CrossRef] [PubMed]
- Reissig, F.; Kopka, K.; Mamat, C. The Impact of Barium Isotopes in Radiopharmacy and Nuclear Medicine—From Past to Presence. Nucl. Med. Biol. 2021, 98–99, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Gillett, N.A.; Muggenburg, B.A.; Boecker, B.B.; Griffith, W.C.; Hahn, F.F.; McClellan, R.O. Single Inhalation Exposure to 90SrCl2 in the Beagle Dog: Late Biological Effects. J. Natl. Cancer Inst. 1987, 79, 359–376. [Google Scholar] [PubMed]
- ASTDR. Toxicological Profile for Strontium; Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2004. [Google Scholar]
- Buache, E.; Velard, F.; Bauden, E.; Guillaume, C.; Jallot, E.; Nedelec, J.M.; Laurent-Maquin, D.; Laquerriere, P. Effect of Strontium-Substituted Biphasic Calcium Phosphate on Inflammatory Mediators Production by Human Monocytes. Acta Biomater. 2012, 8, 3113–3119. [Google Scholar] [CrossRef]
- Nielsen, E.; Greve, K.; Ladefoged, O. Strontium, Inorganic and Soluble Salts; Evaluation of Health Hazards and Proposal of Health Based Quality Criteria for Drinking Water; Danish Ministry of the Environment: Copenhagen, Denmark, 2008. [Google Scholar]
- Hext, P.M.; Tomenson, J.A.; Thompson, P. Titanium Dioxide: Inhalation Toxicology and Epidemiology. Ann. Occup. Hyg. 2005, 49, 461–472. [Google Scholar] [CrossRef]
- Parlar, H.; Brock, T.H. Zirconium and Its Compounds [MAK Value Documentation, 1999]. In The MAK-Collection for Occupational Health and Safety; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2012; pp. 224–236. [Google Scholar]
- Bermudez, E. Long-Term Pulmonary Responses of Three Laboratory Rodent Species to Subchronic Inhalation of Pigmentary Titanium Dioxide Particles. Toxicol. Sci. 2002, 70, 86–97. [Google Scholar] [CrossRef]
- Hext, P.M.; Warheit, D.B.; Mangum, J.; Asgharian, B.; Wong, B.; Bermudez, E.; Everitt, J. Comparison of the Pulmonary Responses to Inhaled Pigmentary and Ultrafine Titanium Dioxide Particles in the Rat, Mouse and Hamster. Ann. Occup. Hyg. 2002, 46, 191–196. [Google Scholar] [CrossRef]
- Petković, J.; Žegura, B.; Stevanović, M.; Drnovšek, N.; Uskoković, D.; Novak, S.; Filipič, M. DNA Damage and Alterations in Expression of DNA Damage Responsive Genes Induced by TiO2 Nanoparticles in Human Hepatoma HepG2 Cells. Nanotoxicology 2011, 5, 341–353. [Google Scholar] [CrossRef]
- Ahn, M.-H.; Kang, C.-M.; Park, C.-S.; Park, S.-J.; Rhim, T.; Yoon, P.-O.; Chang, H.S.; Kim, S.-H.; Kyono, H.; Kim, K.C. Titanium Dioxide Particle—Induced Goblet Cell Hyperplasia: Association with Mast Cells and IL-13. Respir. Res. 2005, 6, 34. [Google Scholar] [CrossRef]
- Rossi, E.M.; Pylkkänen, L.; Koivisto, A.J.; Nykäsenoja, H.; Wolff, H.; Savolainen, K.; Alenius, H. Inhalation Exposure to Nanosized and Fine TiO2 Particles Inhibits Features of Allergic Asthma in a Murine Model. Part Fibre Toxicol. 2010, 7, 35. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Su, S.; Chien, C.; Lin, W.; Yu, S.; Chou, C.; Chen, J.J.W.; Yang, P.; Chen, H.; Su, S.; et al. Titanium Dioxide Nanoparticles Induce Emphysema-like Lung Injury in Mice. FASEB J. 2006, 20, 2393–2395. [Google Scholar] [CrossRef]
- Ramenzoni, L.L.; Flückiger, L.B.; Attin, T.; Schmidlin, P.R. Effect of Titanium and Zirconium Oxide Microparticles on Pro-Inflammatory Response in Human Macrophages under Induced Sterile Inflammation: An In Vitro Study. Materials 2021, 14, 4166. [Google Scholar] [CrossRef]
- Schwarz, F.; Langer, M.; Hagena, T.; Hartig, B.; Sader, R.; Becker, J. Cytotoxicity and Proinflammatory Effects of Titanium and Zirconia Particles. Int. J. Implant. Dent. 2019, 5, 25. [Google Scholar] [CrossRef] [PubMed]
- Obando-Pereda, G.A.; Fischer, L.; Stach-Machado, D.R. Titanium and Zirconia Particle-Induced pro-Inflammatory Gene Expression in Cultured Macrophages and Osteolysis, Inflammatory Hyperalgesia and Edema in Vivo. Life Sci. 2014, 97, 96–106. [Google Scholar] [CrossRef]
- Ahmadimanesh, M.; Shadnia, S.; Ghazi-Khansari, M. Acute Inhalation Exposure to Titanium Ethanolate as a Possible Cause of Metal Fume Fever. Int. J. Occup. Environ. Med. 2014, 5, 106–108. [Google Scholar] [PubMed]
- Otani, N.; Ishimatsu, S.; Mochizuki, T. Acute Group Poisoning by Titanium Dioxide: Inhalation Exposure May Cause Metal Fume Fever. Am. J. Emerg. Med. 2008, 26, 608–611. [Google Scholar] [CrossRef]
- Jayaram, D.T.; Kumar, A.; Kippner, L.E.; Ho, P.-Y.; Kemp, M.L.; Fan, Y.; Payne, C.K. TiO2 Nanoparticles Generate Superoxide and Alter Gene Expression in Human Lung Cells. RSC Adv. 2019, 9, 25039–25047. [Google Scholar] [CrossRef]
- Baan, R.A. Carcinogenic Hazards from Inhaled Carbon Black, Titanium Dioxide, and Talc Not Containing Asbestos or Asbestiform Fibers: Recent Evaluations by an IARC Monographs Working Group. Inhal. Toxicol. 2007, 19, 213–228. [Google Scholar] [CrossRef]
- Liu, K.; Lin, X.; Zhao, J. Toxic Effects of the Interaction of Titanium Dioxide Nanoparticles with Chemicals or Physical Factors. Int. J. Nanomed. 2013, 8, 2509–2520. [Google Scholar] [CrossRef]
- Du, H.; Zhu, X.; Fan, C.; Xu, S.; Wang, Y.; Zhou, Y. Oxidative Damage and OGG1 Expression Induced by a Combined Effect of Titanium Dioxide Nanoparticles and Lead Acetate in Human Hepatocytes. Environ. Toxicol. 2012, 27, 590–597. [Google Scholar] [CrossRef]
- Muller, C.P. Do Asymptomatic Carriers of SARS-COV-2 Transmit the Virus? Lancet Reg. Health—Eur. 2021, 4, 100082. [Google Scholar] [CrossRef] [PubMed]
- Methi, F.; Madslien, E.H. Lower Transmissibility of SARS-CoV-2 among Asymptomatic Cases: Evidence from Contact Tracing Data in Oslo, Norway. BMC Med. 2022, 20, 427. [Google Scholar] [CrossRef]
- He, D.; Zhao, S.; Lin, Q.; Zhuang, Z.; Cao, P.; Wang, M.H.; Yang, L. The Relative Transmissibility of Asymptomatic COVID-19 Infections among Close Contacts. Int. J. Infect. Dis. 2020, 94, 145–147. [Google Scholar] [CrossRef]
- Cao, S.; Gan, Y.; Wang, C.; Bachmann, M.; Wei, S.; Gong, J.; Huang, Y.; Wang, T.; Li, L.; Lu, K.; et al. Post-Lockdown SARS-CoV-2 Nucleic Acid Screening in Nearly Ten Million Residents of Wuhan, China. Nat. Commun. 2020, 11, 5917. [Google Scholar] [CrossRef] [PubMed]
- Pezzullo, A.M.; Axfors, C.; Contopoulos-Ioannidis, D.G.; Apostolatos, A.; Ioannidis, J.P.A. Age-Stratified Infection Fatality Rate of COVID-19 in the Non-Elderly Population. Environ. Res. 2023, 216, 114655. [Google Scholar] [CrossRef] [PubMed]
Brand | Fabric | Purpose | Sterilization | CE | Manufacturer | Lot Number |
---|---|---|---|---|---|---|
iHealth | Foam | NP | EO | No | iHealth Labs, Inc. | 20211213 |
HydraFlock | Flocked Nylon | NP | EO | Yes | Puritan Med Products, CHN | (10) 50173 |
Nasal Swab | Flocked Nylon | NP | EO | Yes | CM LAB SAS, BOG and COL | 20201221 |
MANTACC | Nylon | NP | EO | Yes, 0197 | Miraclean Technology Co., Ltd., CHN | 2021120864 |
FLOQSwabs | Flocked Nylon | NP | EO | Yes, 0123 | COPAN, IT and USA | 2010482 |
Kangdaan | Flocked Nylon | NP | R | Yes, 0197 | Shenzhen Kangdaan Biological Technology Co., Ltd., CHN | 21CY12001 |
Taizhou | Flocked Nylon | NP | EO | Yes, 0123 | Rich Medical Products, CHN | 20220104 |
Generic | Cotton | A | EO | No | DM Productora S.A. de C.V. MX | 070319 |
Transystem | Cotton | T | R | Yes, 0123 | COPAN, IT and USA | 211701500 |
iHealth | HydraFlock | Nasal Swab | MANTACC | FLOQSwabs | Kangdaan | Taizhou | Generic Applicator | Transystem | |
---|---|---|---|---|---|---|---|---|---|
Carbon | 623.30 ±5.60 | 576.84 ±59.11 | 569.97 ±45.99 | 677.35 ±52.51 | 611.07 ±4.81 | 548.70 ±30.26 | 490.82 NA | 509.91 NA | |
Oxygen | 320.69 ±22.69 | 352.14 ±41.63 | 363.36 ±2.86 | 327.33 ±30.43 | 245.49 ±17.52 | 245.08 ±2.62 | 324.98 ±41.61 | 504.19 NA | 470.96 NA |
Nitrogen | 64.10 ±23.16 | - - | 46.19 ±3.45 | 58.45 ±16.87 | 51.46 ±72.77 | 101.46 ±2.01 | 56.59 ±13.98 | - - | - - |
Fluorine | - - | 3.49 ±3.02 | 2.67 ±3.78 | 2.28 ±3.95 | - - | 2.81 ±0.97 | 5.33 ±0.25 | 4.99 NA | 5.64 NA |
Silicon | - - | - - | 48.49 ±9.05 | 43.53 ±7.42 | 5.78 ±0.54 | - - | 49.66 ±2.20 | - - | - - |
Titanium | - - | - - | - - | 29.02 ±25.67 | 5.74 ±0.40 | 5.93 ±0.86 | - - | - - | 13.48 NA |
Zirconium | - - | - - | - - | 2.93 ±5.07 | 14.20 ±2.91 | 25.26 ±2.26 | - - | - - | - - |
Strontium | - - | - - | - - | 4.63 ±8.01 | - - | - - | - - | - - | - - |
Aluminium | - - | - - | 7.12 ±1.24 | - - | - - | 0.03 ±0.04 | 0.11 ±0.01 | - - | - - |
Gallium | - - | - - | - - | - - | - - | 0.05 ±0.05 | - - | - - | - - |
Sulphur | - - | - - | - - | - - | - - | 0.06 ±0.00 | - - | - - | - - |
Head Mass | 0.0471 g | 0.0539 g | 0.0468 g | 0.0385 g | 0.0371 g | 0.0493 g | 0.0513 g | 0.0501 g | 0.0575 g |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aparicio-Alonso, M.; Torres-Solórzano, V.; Méndez-Contreras, J.F.; Acevedo-Whitehouse, K. Scanning Electron Microscopy and EDX Spectroscopy of Commercial Swabs Used for COVID-19 Lateral Flow Testing. Toxics 2023, 11, 805. https://doi.org/10.3390/toxics11100805
Aparicio-Alonso M, Torres-Solórzano V, Méndez-Contreras JF, Acevedo-Whitehouse K. Scanning Electron Microscopy and EDX Spectroscopy of Commercial Swabs Used for COVID-19 Lateral Flow Testing. Toxics. 2023; 11(10):805. https://doi.org/10.3390/toxics11100805
Chicago/Turabian StyleAparicio-Alonso, Manuel, Verónica Torres-Solórzano, José Francisco Méndez-Contreras, and Karina Acevedo-Whitehouse. 2023. "Scanning Electron Microscopy and EDX Spectroscopy of Commercial Swabs Used for COVID-19 Lateral Flow Testing" Toxics 11, no. 10: 805. https://doi.org/10.3390/toxics11100805
APA StyleAparicio-Alonso, M., Torres-Solórzano, V., Méndez-Contreras, J. F., & Acevedo-Whitehouse, K. (2023). Scanning Electron Microscopy and EDX Spectroscopy of Commercial Swabs Used for COVID-19 Lateral Flow Testing. Toxics, 11(10), 805. https://doi.org/10.3390/toxics11100805