Genotoxicity Evaluation of Titanium Dioxide Nanoparticles In Vivo and In Vitro: A Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Selection Criteria
2.3. Quality Assessment
2.4. Data Extraction
2.5. Statistical Analysis
3. Results
3.1. Literature Screening
3.2. Basic Characteristics and Quality Assessment
3.3. Meta-Analysis for In Vivo Genotoxicity of TiO2 NPs
3.3.1. Heterogeneity Test and Meta-Analysis
3.3.2. Subgroup Analysis
3.3.3. Sensitivity Analysis and Publication Bias
3.4. Meta-Analysis for In Vitro Genotoxicity of TiO2 NPs
3.4.1. Heterogeneity Test and Meta-Analysis
3.4.2. Subgroup Analysis
3.4.3. Sensitivity Analysis and Publication Bias
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
TiO2 NPs | Nanoparticles Titanium Dioxide Nanoparticles |
EFSA | European Food Safety Authority |
WoS | Web of Science |
CNKI | China National Knowledge Infrastructure |
T DNA% | the percentage of DNA in tail |
TL | tail length |
OTM | olive tail moment |
MF | mutation frequency |
MN | micronucleus |
CA | chromosomal aberrations |
TRAM | toxicological data reliability assessment method |
CDC | Center for Disease Control and Prevention |
SMD | standardized mean difference |
CI | confidence interval |
ROS | reactive oxygen species |
DDR | DNA damage response |
References
- Sungur, Ş. Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications, Titanium Dioxide Nanoparticles; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 1–18. [Google Scholar]
- Adam, V.; Loyaux-Lawniczak, S.; Quaranta, G. Characterization of engineered TiO₂ nanomaterials in a life cycle and risk assessments perspective. Environ. Sci. Pollut. Res. Int. 2015, 22, 11175–11192. [Google Scholar] [CrossRef] [PubMed]
- Ziental, D.; Czarczynska-Goslinska, B.; Mlynarczyk, D.T.; Glowacka-Sobotta, A.; Stanisz, B.; Goslinski, T.; Sobotta, L. Titanium Dioxide Nanoparticles: Prospects and Applications in Medicine. Nanomaterials 2020, 10, 387. [Google Scholar] [CrossRef] [PubMed]
- Bachler, G.; von Goetz, N.; Hungerbuhler, K. Using physiologically based pharmacokinetic (PBPK) modeling for dietary risk assessment of titanium dioxide (TiO2) nanoparticles. Nanotoxicology 2015, 9, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ma, G.; Wei, W. Simulation of nanoparticles interacting with a cell membrane: Probing the structural basis and potential biomedical application. NPG Asia Mater. 2021, 13, 52. [Google Scholar] [CrossRef]
- Augustine, R.; Hasan, A.; Primavera, R.; Wilson, R.J.; Thakor, A.S.; Kevadiya, B.D. Cellular uptake and retention of nanoparticles: Insights on particle properties and interaction with cellular components. Mater. Today Commun. 2020, 25, 101692. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, N.; Maitra, S. In vitro and in vivo toxicity assessment of nanoparticles. Int. Nano Lett. 2017, 7, 243–256. [Google Scholar] [CrossRef]
- Oberdorster, G.; Oberdorster, E.; Oberdorster, J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 2005, 113, 823–839. [Google Scholar] [CrossRef]
- Chung, I.; Rekha, K.; Venkidasamy, B.; Thiruvengadam, M. Effect of Copper Oxide Nanoparticles on the Physiology, Bioactive Molecules, and Transcriptional Changes in Brassica rapa ssp. rapa Seedlings. Water Air Soil. Pollut. 2019, 230, 48. [Google Scholar] [CrossRef]
- Horie, M.; Stowe, M.; Tabei, M.; Kuroda, E. Metal Ion Release of Manufactured Metal Oxide Nanoparticles Is Involved in the Allergic Response to Inhaled Ovalbumin in Mice. Occup. Dis. Environ. Med. 2016, 4, 17–26. [Google Scholar] [CrossRef]
- EFSA Panel on Food Additives and Flavourings (FAF); Younes, M.; Aquilina, G.; Castle, L.; Engel, K.H.; Fowler, P.; Frutos Fernandez, M.J.; Fürst, P.; Gundert-Remy, U.; Gürtler, R.; et al. Safety assessment of titanium dioxide (E171) as a food additive. EFSA J. 2021, 19, e06585. [Google Scholar]
- Ling, C.; An, H.; Li, L.; Wang, J.; Lu, T.; Wang, H.; Hu, Y.; Song, G.; Liu, S. Genotoxicity Evaluation of Titanium Dioxide Nanoparticles in Vitro: A Systematic Review of the Literature and Meta-analysis. Biol. Trace Elem. Res. 2021, 199, 2057–2076. [Google Scholar] [CrossRef]
- Shi, J.; Han, S.; Zhang, J.; Liu, Y.; Chen, Z.; Jia, G. Advances in genotoxicity of titanium dioxide nanoparticles in vivo and in vitro. NanoImpact 2022, 25, 100377. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wang, Y.; Ba, T.; Li, Y.; Pu, J.; Chen, T.; Song, Y.; Gu, Y.; Qian, Q.; Yang, J.; et al. Genotoxic evaluation of titanium dioxide nanoparticles in vivo and in vitro. Toxicol. Lett. 2014, 226, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Shabbir, S.; Kulyar, M.F.; Bhutta, Z.A.; Boruah, P.; Asif, M. Toxicological Consequences of Titanium Dioxide Nanoparticles (TiO2NPs) and Their Jeopardy to Human Population. Bionanoscience 2021, 11, 621–632. [Google Scholar] [CrossRef] [PubMed]
- Bian, Q.; Ping, Y.; Jun, W.; Lyu, Z.; Song, Y.; Zhang, L.; Liu, Z. A new method to evaluate toxicological data reliability in risk assessments. Toxicol. Lett. 2019, 311, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Shukla, R.K.; Kumar, A.; Vallabani, N.V.; Pandey, A.K.; Dhawan, A. Titanium dioxide nanoparticle-induced oxidative stress triggers DNA damage and hepatic injury in mice. Nanomedicine 2014, 9, 1423–1434. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.D.C., Jr.; Azevedo, L.F.; de Souza Rocha, C.C.; Carneiro, M.F.H.; Venancio, V.P.; de Almeida, M.R.; Antunes, L.M.G.; de Carvalho Hott, R.; Rodrigues, J.L.; Ogunjimi, A.T.; et al. Evaluation of distribution, redox parameters, and genotoxicity in Wistar rats co-exposed to silver and titanium dioxide nanoparticles. J. Toxicol. Environ. Health A 2017, 80, 1156–1165. [Google Scholar] [CrossRef] [PubMed]
- Fadda, L.M.; Hagar, H.; Mohamed, A.M.; Ali, H.M. Quercetin and Idebenone Ameliorate Oxidative Stress, Inflammation, DNA damage, and Apoptosis Induced by Titanium Dioxide Nanoparticles in Rat Liver. Dose Response 2018, 16, 1559325818812188. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, S.; Goyary, D.; Karmakar, S.; Chattopadhyay, P. Exploration of cytotoxic and genotoxic endpoints following sub-chronic oral exposure to titanium dioxide nanoparticles. Toxicol. Ind. Health 2019, 35, 577–592. [Google Scholar] [CrossRef]
- Sallam, M.F.; Ahmed, H.M.S.; Diab, K.A.; El-Nekeety, A.A.; Abdel-Aziem, S.H.; Sharaf, H.A.; Abdel-Wahhab, M.A. Improvement of the antioxidant activity of thyme essential oil against biosynthesized titanium dioxide nanoparticles-induced oxidative stress, DNA damage, and disturbances in gene expression in vivo. J. Trace Elem. Med. Biol. 2022, 73, 127024. [Google Scholar] [CrossRef]
- Sallam, M.F.; Ahmed, H.M.S.; El-Nekeety, A.A.; Diab, K.A.; Abdel-Aziem, S.H.; Sharaf, H.A.; Abdel-Wahhab, M.A. Assessment of the Oxidative Damage and Genotoxicity of Titanium Dioxide Nanoparticles and Exploring the Protective Role of Holy Basil Oil Nanoemulsions in Rats. Biol. Trace Elem. Res. 2022, 201, 1301–1316. [Google Scholar] [CrossRef] [PubMed]
- Hassanein, K.M.; El-Amir, Y.O. Protective effects of thymoquinone and avenanthramides on titanium dioxide nanoparticles induced toxicity in Sprague-Dawley rats. Pathol. Res. Pract. 2017, 213, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, H.R. Estimation of TiO2 nanoparticle-induced genotoxicity persistence and possible chronic gastritis-induction in mice. Food Chem. Toxicol. 2015, 83, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Niu, Y.; Wang, Q.; Shi, L.; Guo, H.; Liu, Y.; Zhu, Y.; Liu, S.; Liu, C.; Chen, X.; et al. Reduction of DNA damage induced by titanium dioxide nanoparticles through Nrf2 in vitro and in vivo. J. Hazard. Mater. 2015, 298, 310–319. [Google Scholar] [CrossRef]
- Ali, S.A.; Rizk, M.Z.; Hamed, M.A.; Aboul-Ela, E.I.; El-Rigal, N.S.; Aly, H.F.; Abdel-Hamid, A.Z. Assessment of titanium dioxide nanoparticles toxicity via oral exposure in mice: Effect of dose and particle size. Biomarkers 2019, 24, 492–498. [Google Scholar] [CrossRef] [PubMed]
- Manivannan, J.; Banerjee, R.; Mukherjee, A. Genotoxicity analysis of rutile titanium dioxide nanoparticles in mice after 28 days of repeated oral administration. Nucleus 2019, 63, 17–24. [Google Scholar] [CrossRef]
- Salman, A.S.; Al-Shaikh, T.M.; Hamza, Z.K.; El-Nekeety, A.A.; Bawazir, S.S.; Hassan, N.S.; Abdel-Wahhab, M.A. Matlodextrin-cinnamon essential oil nanoformulation as a potent protective against titanium nanoparticles-induced oxidative stress, genotoxicity, and reproductive disturbances in male mice. Environ. Sci. Pollut. Res. Int. 2021, 28, 39035–39051. [Google Scholar] [CrossRef]
- Shukla, R.K.; Sharma, V.; Pandey, A.K.; Singh, S.; Sultana, S.; Dhawan, A. ROS-mediated genotoxicity induced by titanium dioxide nanoparticles in human epidermal cells. Toxicol. In Vitro 2011, 25, 231–241. [Google Scholar] [CrossRef]
- Hong, L.; Ding, S.; Zhu, J.; Zhu, Y.; Zhang, T. Comparative Study of Cytotoxicity and DNA Damage Induced by Nano- and Micro-TiO2 Particles on A549 Cells in Vitro. J. Environ. Occup. Med. 2011, 28, 393–397. (In Chinese) [Google Scholar]
- Shukla, R.K.; Kumar, A.; Gurbani, D.; Pandey, A.K.; Singh, S.; Dhawan, A. TiO2 nanoparticles induce oxidative DNA damage and apoptosis in human liver cells. Nanotoxicology 2013, 7, 48–60. [Google Scholar] [CrossRef]
- Frenzilli, G.; Bernardeschi, M.; Guidi, P.; Scarcelli, V.; Lucchesi, P.; Marsili, L.; Fossi, M.C.; Brunelli, A.; Pojana, G.; Marcomini, A.; et al. Effects of in vitro exposure to titanium dioxide on DNA integrity of bottlenose dolphin (Tursiops truncatus) fibroblasts and leukocytes. Mar. Environ. Res. 2014, 100, 68–73. [Google Scholar] [CrossRef]
- Demir, E.; Akca, H.; Turna, F.; Aksakal, S.; Burgucu, D.; Kaya, B.; Tokgün, O.; Vales, G.; Creus, A.; Marcos, R. Genotoxic and cell-transforming effects of titanium dioxide nanoparticles. Environ. Res. 2015, 136, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Kansara, K.; Patel, P.; Shah, D.; Shukla, R.K.; Singh, S.; Kumar, A.; Dhawan, A. TiO2 nanoparticles induce DNA double strand breaks and cell cycle arrest in human alveolar cells. Environ. Mol. Mutagen. 2015, 56, 204–217. [Google Scholar] [CrossRef] [PubMed]
- Andreoli, C.; Leter, G.; De Berardis, B.; Degan, P.; De Angelis, I.; Pacchierotti, F.; Crebelli, R.; Barone, F.; Zijno, A. Critical issues in genotoxicity assessment of TiO2 nanoparticles by human peripheral blood mononuclear cells. J. Appl. Toxicol. 2018, 38, 1471–1482. [Google Scholar] [CrossRef] [PubMed]
- Osman, I.F.; Najafzadeh, M.; Sharma, V.; Shukla, R.K.; Jacob, B.K.; Dhawan, A.; Anderson, D. TiO2 NPs Induce DNA Damage in Lymphocytes from Healthy Individuals and Patients with Respiratory Diseases—An ex Vivo/in Vitro Study. J. Nanosci. Nanotechnol. 2018, 18, 544–555. [Google Scholar] [CrossRef]
- Ünal, F.; Korkmaz, F.D.; Suludere, Z.; Erol, Ö.; Yüzbaşıoğlu, D. Genotoxicity of Two Nanoparticles: Titanium Dioxide and Zinc Oxide. Gazi Univ. J. Sci. 2021, 34, 948–958. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, J.H.; Jiang, M.; Zhu, L.H.; Tan, H.Q.; Lu, B. Synergistic genotoxicity caused by low concentration of titanium dioxide nanoparticles and p,p’-DDT in human hepatocytes. Environ. Mol. Mutagen. 2010, 51, 192–204. [Google Scholar] [CrossRef]
- Du, H.; Zhou, Y.; Zhu, X. DNA damage and OGG1 expression induced by a combined effect of titanium dioxide nanopartices and lead acetate in human hepatocytes. J. Environ. Health 2012, 29, 403. (In Chinese) [Google Scholar]
- Ryu, A.R.; Bang, I.C.; Lee, S.A.; Lee, M.Y. The protective role of phytochemicals on TiO₂ nanoparticles-induced DNA damage in lymphocytes. J. Environ. Biol. 2016, 37, 913–917. [Google Scholar]
- Xu, A.; Chai, Y.; Nohmi, T.; Hei, T.K. Genotoxic responses to titanium dioxide nanoparticles and fullerene in gpt delta transgenic MEF cells. Part. Fibre Toxicol. 2009, 6, 3. [Google Scholar] [CrossRef]
- Jain, A.K.; Senapati, V.A.; Singh, D.; Dubey, K.; Maurya, R.; Pandey, A.K. Impact of anatase titanium dioxide nanoparticles on mutagenic and genotoxic response in Chinese hamster lung fibroblast cells (V-79): The role of cellular uptake. Food Chem. Toxicol. 2017, 105, 127–139. [Google Scholar] [CrossRef]
- Kang, S.J.; Kim, B.M.; Lee, Y.J.; Chung, H.W. Titanium dioxide nanoparticles trigger p53-mediated damage response in peripheral blood lymphocytes. Environ. Mol. Mutagen. 2008, 49, 399–405. [Google Scholar] [CrossRef]
- Reis Ede, M.; Rezende, A.A.; Oliveira, P.F.; Nicolella, H.D.; Tavares, D.C.; Silva, A.C.; Dantas, N.O.; Spanó, M.A. Evaluation of titanium dioxide nanocrystal-induced genotoxicity by the cytokinesis-block micronucleus assay and the Drosophila wing spot test. Food Chem. Toxicol. 2016, 96, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, R.K.; Rahman, Q.; Kashyap, M.P.; Singh, A.K.; Jain, G.; Jahan, S.; Lohani, M.; Lantow, M.; Pant, A.B. Nano-titanium dioxide induces genotoxicity and apoptosis in human lung cancer cell line, A549. Hum. Exp. Toxicol. 2013, 32, 153–166. [Google Scholar] [CrossRef] [PubMed]
- Catalan, J.; Jarventaus, H.; Vippola, M.; Savolainen, K.; Norppa, H. Induction of chromosomal aberrations by carbon nanotubes and titanium dioxide nanoparticles in human lymphocytes in vitro. Nanotoxicology 2012, 6, 825–836. [Google Scholar] [CrossRef]
- Magdolenova, Z.; Collins, A.; Kumar, A.; Dhawan, A.; Stone, V.; Dusinska, M. Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology 2014, 8, 233–278. [Google Scholar] [CrossRef] [PubMed]
- ANSES. OPINION of the French Agency for Food, Environmental and Occupational Health & Safety on the risks associated with ingestion of the food additive E171. ANSES J. 2019, 40. [Google Scholar]
- Kirkland, D.; Aardema, M.J.; Battersby, R.V.; Beevers, C.; Burnett, K.; Burzlaff, A.; Czich, A.; Donner, E.M.; Fowler, P.; Johnston, H.J.; et al. A weight of evidence review of the genotoxicity of titanium dioxide (TiO2). Regul. Toxicol. Pharmacol. 2022, 136, 105263. [Google Scholar] [CrossRef] [PubMed]
- El-Ghor, A.A.; Noshy, M.M.; Galal, A.; Mohamed, H.R. Normalization of nano-sized TiO2-induced clastogenicity, genotoxicity and mutagenicity by chlorophyllin administration in mice brain, liver, and bone marrow cells. Toxicol. Sci. 2014, 142, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Hanot-Roy, M.; Tubeuf, E.; Guilbert, A.; Bado-Nilles, A.; Vigneron, P.; Trouiller, B.; Braun, A.; Lacroix, G. Oxidative stress pathways involved in cytotoxicity and genotoxicity of titanium dioxide (TiO2) nanoparticles on cells constitutive of alveolo-capillary barrier in vitro. Toxicol. In Vitro 2016, 33, 125–135. [Google Scholar] [CrossRef]
- Armand, L.; Tarantini, A.; Beal, D.; Biola-Clier, M.; Bobyk, L.; Sorieul, S.; Pernet-Gallay, K.; Marie-Desvergne, C.; Lynch, I.; Herlin-Boime, N.; et al. Long-term exposure of A549 cells to titanium dioxide nanoparticles induces DNA damage and sensitizes cells towards genotoxic agents. Nanotoxicology 2016, 10, 913–923. [Google Scholar] [CrossRef] [PubMed]
- El Yamani, N.; Collins, A.R.; Runden-Pran, E.; Fjellsbø, L.M.; Shaposhnikov, S.; Zienolddiny, S.; Dusinska, M. In vitro genotoxicity testing of four reference metal nanomaterials, titanium dioxide, zinc oxide, cerium oxide and silver: Towards reliable hazard assessment. Mutagenesis 2017, 32, 117–126. [Google Scholar] [CrossRef] [PubMed]
- de Almeida, L.C.; Calil, F.A.; Machado-Neto, J.A.; Costa-Lotufo, L.V. DNA damaging agents and DNA repair: From carcinogenesis to cancer therapy. Cancer Genet. 2021, 252–253, 6–24. [Google Scholar] [CrossRef] [PubMed]
- Motegi, A.; Masutani, M.; Yoshioka, K.I.; Bessho, T. Aberrations in DNA repair pathways in cancer and therapeutic significances. Semin. Cancer Biol. 2019, 58, 29–46. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, J.L.; Lan, L.; Zou, L. DNA repair defects in cancer and therapeutic opportunities. Genes. Dev. 2022, 36, 278–293. [Google Scholar] [CrossRef]
- Puigvert, J.C.; Sanjiv, K.; Helleday, T. Targeting DNA repair, DNA metabolism and replication stress as anti-cancer strategies. FEBS J. 2016, 283, 232–245. [Google Scholar] [CrossRef]
- Rothkamm, K.; Löbrich, M. Evidence for a lack of DNA double-strand break repair in human cells exposed to very low X-ray doses. Proc. Natl. Acad. Sci. USA 2003, 100, 5057–5062. [Google Scholar] [CrossRef]
- Raja, G.; Cao, S.; Kim, D.H.; Kim, T.J. Mechanoregulation of titanium dioxide nanoparticles in cancer therapy. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 107, 110303. [Google Scholar] [CrossRef]
- Dubey, A.; Goswami, M.; Yadav, K.; Chaudhary, D. Oxidative Stress and Nano-Toxicity Induced by TiO2 and ZnO on WAG Cell Line. PLoS ONE 2015, 10, e127493. [Google Scholar] [CrossRef]
- Kryston, T.B.; Georgiev, A.B.; Pissis, P.; Georgakilas, A.G. Role of oxidative stress and DNA damage in human carcinogenesis. Mutat. Res. 2011, 711, 193–201. [Google Scholar] [CrossRef]
- El Yamani, N.; Rubio, L.; García-Rodríguez, A.; Kažimírová, A.; Rundén-Pran, E.; Magdalena, B.; Marcos, R.; Dusinska, M. Lack of mutagenicity of TiO2 nanoparticles in vitro despite cellular and nuclear uptake. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2022, 882, 503545. [Google Scholar] [CrossRef] [PubMed]
Included Studies | Country | Test Animals and Exposure Methods | TiO2-NP Characteristics | Dose (mg/kg bw) | Exposure | Control | Reliability Evaluation | Correlation Evaluation | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Crystal | Size (nm) | Purity (%) | n | Mean ± SD | n | Mean ± SD | ||||||
Outcomes were described as T DNA% | ||||||||||||
Shukla R. K. 2014 [17] | India | Male Swiss albino mice (continuous gavage for 14 d) | Anatase | 20–50 | 99.7 | 10 | 5 | 17.72 ± 0.72 | 5 | 14.29 ± 0.67 | high | A+++ |
50 | 5 | 18.98 ± 1.21 | 5 | 14.29 ± 0.67 | ||||||||
100 | 5 | 20.28 ± 1.11 | 5 | 14.29 ± 0.67 | ||||||||
Martins A. D. C., Jr. 2017 [18] | Brazil | Male Wistar rats (continuous gavage for 45 d) | NA | 41.99 ± 1.63 | NA | 0.5 | 6 | 4.64 ± 0.82 | 6 | 3.6 ± 0.35 | medium | B+++ |
Fadda L. M. 2018 [19] | Saudi Arabia | Male Wistar Albino rats (continuous gavage for 21 d) | Anatase | 60 ± 10 | NA | 1000 | 10 | 4.32 ± 0.24 | 10 | 2.26 ± 0.31 | medium | B+++ |
Chakrabarti S. 2019 [20] | India | Female/male Swiss-Albino mice (oral for 90 d) | NA | 58.25 ± 8.11 | NA | 200 | 10 | 0.07 ± 0.012 (liver) 0.085 ± 0.009 (kidney) | 10 | 0.068 ± 0.007 (liver) 0.084 ± 0.004 (kidney) | high | A+++ |
500 | 10 | 0.236 ± 0.066 (liver) 0.27 ± 0.075 (kidney) | 10 | 0.068 ± 0.007 (liver) 0.084 ± 0.004 (kidney) | ||||||||
Sallam M. F. 2022 [21] | Egypt | Male SD rats (continuous gavage for 21 d) | NA | 50 ± 2.4 | NA | 50 | 10 | 19.25 ± 0.86 | 10 | 9.05 ± 0.25 | medium | B++ |
Sallam M. F. 2022 [22] | Egypt | Male SD rats (continuous gavage for 21 d) | NA | 28 | NA | 50 | 10 | 18.74 ± 1.77 | 10 | 9.77 ± 1.24 | medium | B++ |
Outcomes were described as TL (μm) | ||||||||||||
Hassanein K. M. 2016 [23] | Egypt | Adult male SD rats (continuous gavage for 90 d) | NA | 21 | NA | 150 | 10 | 20.39 ± 1.6 | 10 | 10.57 ± 1.3 | medium | A+++ |
Fadda L. M. 2018 [19] | Saudi Arabia | Male Wistar Albino rats (continuous gavage for 21 d) | NA | 60 ± 10 | NA | 1000 | 10 | 4.27 ± 0.10 | 10 | 1.14 ± 0.13 | medium | B+++ |
Chakrabarti S. 2019 [20] | India | Female/male Swiss-Albino mice (oral for 90 d) | NA | 58.25 ± 8.11 | NA | 200 | 10 | 0.579 ± 0.041 (liver) 0.655 ± 0.009 (kidney) | 10 | 0.575 ± 0.028 (liver) 0.651 ± 0.007 (kidney) | high | A+++ |
500 | 10 | 2.213 ± 0.059 (liver) 1.858 ± 0.041 (kidney) | 10 | 0.575 ± 0.028 (liver) 0.651 ± 0.007 (kidney) | ||||||||
Outcomes were described as OTM (μm) | ||||||||||||
Shukla R. K. 2014 [17] | India | Male Swiss albino mice (continuous gavage for 14 d) | Anatase | 20–50 | 99.7 | 10 | 5 | 2.71 ± 0.25 | 5 | 1.93 ± 0.14 | high | A+++ |
50 | 5 | 2.98 ± 0.22 | 5 | 1.93 ± 0.14 | ||||||||
100 | 5 | 3.76 ± 0.23 | 5 | 1.93 ± 0.14 | ||||||||
Mohamed H. R. 2015 [24] | Egypt | Male Swiss Webster mice (continuous gavage for 5 d) | Anatase/Rutile | 46.23 ± 3.45 | 99.5 | 5 | 5 | 3.01 ± 0.36 | 5 | 1.86 ± 0.26 | medium | B+++ |
50 | 5 | 3.43 ± 0.71 | 5 | 1.86 ± 0.26 | ||||||||
500 | 5 | 5.78 ± 2.02 | 5 | 1.86 ± 0.26 | ||||||||
Shi Z. 2015 [25] | China | Female/male wild-type ICR mice, Nrf2(-/-) ICR mice (continuous gavage for 7 d) | Anatase | 10–25 | 99.7 | 500 | 8 | 1.43 ± 0.15 (liver) 2.06 ± 0.28 (kidney) | 8 | 0.84 ± 0.30 (liver) 0.61 ± 0.24 (kidney) | high | A+++ |
1000 | 8 | 3.29 ± 0.21 (liver) 4.33 ± 0.36 (kidney) | 8 | 0.84 ± 0.30 (liver) 0.61 ± 0.24 (kidney) | ||||||||
2000 | 8 | 8.59 ± 2.67 (liver) 8.07 ± 2.91 (kidney) | 8 | 0.84 ± 0.30 (liver) 0.61 ± 0.24 (kidney) | ||||||||
Chakrabarti S. 2019 [20] | India | Female/male Swiss-Albino mice (oral for 90 d) | NA | 58.25 ± 8.11 | NA | 200 | 10 | 0.546 ± 0.041 (liver) 0.554 ± 0.01 (kidney) | 10 | 0.523 ± 0.025 (liver) 0.549 ± 0.007 (kidney) | high | A+++ |
500 | 10 | 0.835 ± 0.074 (liver) 0.758 ± 0.026 (kidney) | 10 | 0.523 ± 0.025 (liver) 0.549 ± 0.007 (kidney) | ||||||||
Sallam M. F. 2022 [21] | Egypt | Male SD rats (continuous gavage for 21 d) | NA | 50 ± 2.4 | NA | 50 | 10 | 2.74 ± 0.17 | 10 | 1.08 ± 0.04 | medium | B++ |
Sallam M. F. 2022 [22] | Egypt | Male SD rats (continuous gavage for 21 d) | NA | 28 | NA | 50 | 10 | 3.57 ± 0.14 | 10 | 1.12 ± 0.02 | medium | B++ |
Outcomes were described as MN frequency (MN/1000 PCEs) | ||||||||||||
Shukla R. K. 2014 [17] | India | Male Swiss albino mice (continuous gavage for 14 d) | Anatase | 20–50 | 99.7 | 10 | 5 | 1.50 ± 0.51 | 5 | 1.20 ± 0.20 | high | A+++ |
50 | 5 | 2.25 ± 0.49 | 5 | 1.20 ± 0.20 | ||||||||
100 | 5 | 3.0 ± 0.68 | 5 | 1.20 ± 0.20 | ||||||||
Chakrabarti S. 2019 [20] | India | Female/male Swiss-Albino mice (oral for 90 d) | NA | 58.25 ± 8.11 | NA | 200 | 10 | 5.83 ± 0.75 | 10 | 0.16 ± 0.40 | high | A+++ |
500 | 10 | 7.16 ± 0.75 | 10 | 0.16 ± 0.40 | ||||||||
Outcomes were described as CA frequency | ||||||||||||
Ali S. A. 2019 [26] | Egypt | Male Swiss albino mice (continuous oral for 5 d) | NA | 21 | NA | 50 | 15 | 13.30 ± 0.98 | 15 | 4.72 ± 0.24 | medium | A+++ |
250 | 15 | 15.80 ± 0.34 | 15 | 4.72 ± 0.24 | ||||||||
500 | 15 | 31.70 ± 0.67 | 15 | 4.72 ± 0.24 | ||||||||
Ali S. A. 2019 [26] | Egypt | Male Swiss albino mice (continuous oral for 5 d) | NA | 80 | NA | 50 | 15 | 12.00 ± 0.66 | 15 | 4.72 ± 0.24 | medium | A+++ |
250 | 15 | 15.00 ± 0.69 | 15 | 4.72 ± 0.24 | ||||||||
500 | 15 | 24.00 ± 1.67 | 15 | 4.72 ± 0.24 | ||||||||
Manivannan J. 2019 [27] | India | Male Swiss albino mice (continuous gavage for 28 d) | Rutile | 25.074 ± 3.593 | NA | 0.2 | 5 | 0.05 ± 0.04 | 5 | 0.01 ± 0.01 | high | B+++ |
0.4 | 5 | 0.14 ± 0.04 | 5 | 0.01 ± 0.01 | ||||||||
0.8 | 5 | 0.19 ± 0.03 | 5 | 0.01 ± 0.01 | ||||||||
Chakrabarti S. 2019 [20] | India | Female/male Swiss-Albino mice (oral for 90 d) | NA | 58.25 ± 8.11 | NA | 200 | 10 | 0.83 ± 0.23 | 10 | 0.76 ± 0.29 | high | A+++ |
500 | 10 | 1.9 ± 0.20 | 10 | 0.76 ± 0.29 | ||||||||
Salman A. S. 2021 [28] | Germany | Male Balb/c mice (continuous gavage for 21 d) | NA | 28.9 | NA | 25 | 6 | 13.2 ± 0.35 | 6 | 1.6 ± 0.2 | high | A+++ |
Included Studies | Country | Test Cells and Exposure Methods | TiO2-NP Characteristics | Concentration (μg/mL) | Exposure | Control | Reliability Evaluation | Correlation Evaluation | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Crystal | Size (nm) | Purity (%) | n | Mean ± SD | n | Mean ± SD | ||||||
Outcomes were described as T DNA% | ||||||||||||
Shukla R. K. 2011 [29] | India | Human epidermal cells line A431, exposed for 6 h | Anatase | 50 | 99.7 | 0.008 | 3 | 9.72 ± 0.78 | 3 | 9.36 ± 0.69 | high | B |
0.08 | 3 | 9.76 ± 0.40 | 3 | 9.36 ± 0.69 | ||||||||
0.8 | 3 | 11.79 ± 0.94 | 3 | 9.36 ± 0.69 | ||||||||
8 | 3 | 2.35 ± 0.43 | 3 | 9.36 ± 0.69 | ||||||||
80 | 3 | 12.89 ± 0.47 | 3 | 9.36 ± 0.69 | ||||||||
Hong L. 2011 [30] | China | Human lung adenocarcinoma cells, exposed for 6 h | NA | 5–10 | >99.9 | 25 | 25 | 9.94 ± 6.72 | 25 | 5.53 ± 3.70 | medium | A+++ |
50 | 25 | 14.26 ± 13.67 | 25 | 5.53 ± 3.70 | ||||||||
100 | 25 | 12.37 ± 5.16 | 25 | 5.53 ± 3.70 | ||||||||
200 | 25 | 9.47 ± 4.97 | 25 | 5.53 ± 3.70 | ||||||||
Shukla R. K. 2013 [31] | India | HepG2 human hepatocellular carcinoma cells, exposed for 6 h | Anatase | 30–70 | 99.7 | 1 | 3 | 8.61 ± 0.67 | 3 | 7.75 ± 0.36 | high | B |
10 | 3 | 9.13 ± 0.54 | 3 | 7.75 ± 0.36 | ||||||||
20 | 3 | 10.53 ± 0.49 | 3 | 7.75 ± 0.36 | ||||||||
40 | 3 | 11.61 ± 0.38 | 3 | 7.75 ± 0.36 | ||||||||
80 | 3 | 13.55 ± 0.43 | 3 | 7.75 ± 0.36 | ||||||||
Chen Z. 2014 [14] | China | V79 cells, exposed for 6 h, 24 h | Anatase | 75 ± 15 | 99.90 | 5 | 3 | 12.863 ± 11.00(6 h) 7.557 ± 6.846(24 h) | 3 | 11.836 ± 6.073(6 h) 6.000 ± 6.866(24 h) | high | A+++ |
20 | 3 | 11.470 ± 8.074(6 h) 9.007 ± 10.417(24 h) | 3 | 11.836 ± 6.073(6 h) 6.000 ± 6.866(24 h) | ||||||||
100 | 3 | 12.094 ± 7.677(6 h) 9.005 ± 7.177(24 h) | 3 | 11.836 ± 6.073(6 h) 6.000 ± 6.866(24 h) | ||||||||
Frenzilli G. 2014 [32] | Italy | Human fibroblast (HuDE), exposed for 4 h, 24 h and 48 h | Anatase | 20–50 | 99.7 | 20 | 2 | 16.5 ± 1.9(4 h) 14.0 ± 3.7(24 h) 20.3 ± 5.3(48 h) | 2 | 12.1 ± 1.8(4 h) 13.7 ± 2.3(24 h) 20.3 ± 6.6(48 h) | medium | B+ |
50 | 2 | 18.6 ± 3.3(4 h) 16.3 ± 5.7(24 h) 20.9 ± 1.7(48 h) | 2 | 12.1 ± 1.8(4 h) 13.7 ± 2.3(24 h) 20.3 ± 6.6(48 h) | ||||||||
100 | 2 | 23.4 ± 4.7(4 h) 17.3 ± 2.9(24 h) 21.0 ± 4.1(48 h) | 2 | 12.1 ± 1.8(4 h) 13.7 ± 2.3(24 h) 20.3 ± 6.6(48 h) | ||||||||
150 | 2 | 25.0 ± 2.6(4 h) 16.4 ± 8.6(24 h) 20.8 ± 6.7(48 h) | 2 | 12.1 ± 1.8(4 h) 13.7 ± 2.3(24 h) 20.3 ± 6.6(48 h) | ||||||||
Frenzilli G. 2014 [32] | Italy | Bottlenose dolphin fibroblast (BDF), exposed for 4 h, 24 h and 48 h | Anatase | 20–50 | 99.7 | 20 | 2 | 34.6 ± 10.5(4 h) 38.4 ± 2.5(24 h) 32.7 ± 14.8(48 h) | 2 | 22.6 ± 6.5(4 h) 17.6 ± 2.1(24 h) 13.5 ± 5.2(48 h) | medium | B+ |
50 | 2 | 31.1 ± 8.0(4 h) 25.6 ± 5.1(24 h) 27.3 ± 9.3(48 h) | 2 | 22.6 ± 6.5(4 h) 17.6 ± 2.1(24 h) 13.5 ± 5.2(48 h) | ||||||||
100 | 2 | 34.8 ± 7.2(4 h) 21.9 ± 1.9(24 h) 25.2 ± 2.4(48 h) | 2 | 22.6 ± 6.5(4 h) 17.6 ± 2.1(24 h) 13.5 ± 5.2(48 h) | ||||||||
150 | 2 | 21.2 ± 9.6(4 h) 25.0 ± 0.1(24 h) 25.9 ± 7.6(48 h) | 2 | 22.6 ± 6.5(4 h) 17.6 ± 2.1(24 h) 13.5 ± 5.2(48 h) | ||||||||
Frenzilli G. 2014 [32] | Italy | Mouse fibroblast (3 T3), exposed for 4 h, 24 h and 48 h | Anatase | 20–50 | 99.7 | 20 | 2 | 24.4 ± 3.1(4 h) 21.4 ± 14.9(24 h) 18.3 ± 5.1(48 h) | 2 | 17.2 ± 4.2(4 h) 14.5 ± 2.7(24 h) 22.1 ± 5.3(48 h) | medium | B+ |
50 | 2 | 21.8 ± 4.3(4 h) 26.0 ± 9.1(24 h) 28.3 ± 10.1(48 h) | 2 | 17.2 ± 4.2(4 h) 14.5 ± 2.7(24 h) 22.1 ± 5.3(48 h) | ||||||||
100 | 2 | 13.8 ± 2.7(4 h) 14.5 ± 4.8(24 h) 21.0 ± 3.9(48 h) | 2 | 17.2 ± 4.2(4 h) 14.5 ± 2.7(24 h) 22.1 ± 5.3(48 h) | ||||||||
150 | 2 | 18.8 ± 2.0(4 h) 15.9 ± 1.8(24 h) 26.3 ± 4.9(48 h) | 2 | 17.2 ± 4.2(4 h) 14.5 ± 2.7(24 h) 22.1 ± 5.3(48 h) | ||||||||
Frenzilli G. 2014 [32] | Italy | Human leukocytes (HL), exposed for 4 h, 24 h and 48 h | Anatase | 20–50 | 99.7 | 20 | 2 | 10.6 ± 4.5(4 h) 14.6 ± 5.9(24 h) 14.7 ± 3.2(48 h) | 2 | 8.3 ± 2.3(4 h) 11.8 ± 3.2(24 h) 10.0 ± 2.1(48 h) | medium | B+ |
50 | 2 | 12.3 ± 4.4(4 h) 11.2 ± 2.5(24 h) 14.4 ± 7.8(48 h) | 2 | 8.3 ± 2.3(4 h) 11.8 ± 3.2(24 h) 10.0 ± 2.1(48 h) | ||||||||
100 | 2 | 13.2 ± 4.8(4 h) 13.1 ± 2.5(24 h) 12.6 ± 5.1(48 h) | 2 | 8.3 ± 2.3(4 h) 11.8 ± 3.2(24 h) 10.0 ± 2.1(48 h) | ||||||||
Frenzilli G. 2014 [32] | Italy | Bottlenose dolphin leukocytes (BDL), exposed for4 h, 24 h and 48 h | Anatase | 20–50 | 99.7 | 20 | 2 | 33.8 ± 15.1(4 h) 44.5 ± 22.6(24 h) 29.5 ± 9.7(48 h) | 2 | 25.5 ± 10.6(4 h) 35.2 ± 19.5(24 h) 36.1 ± 14.3(48 h) | medium | B+ |
50 | 2 | 27.8 ± 7.8(4 h) 50.4 ± 19.4(24 h) 44.9 ± 18.8(48 h) | 2 | 25.5 ± 10.6(4 h) 35.2 ± 19.5(24 h) 36.1 ± 14.3(48 h) | ||||||||
100 | 2 | 35.3 ± 15.9(4 h) 47.5 ± 16.2(24 h) 43.9 ± 12.1(48 h) | 2 | 25.5 ± 10.6(4 h) 35.2 ± 19.5(24 h) 36.1 ± 14.3(48 h) | ||||||||
Demir E. 2015 [33] | Spain | Human embryonic kidney cells (HEK293), cultured for 1 h | Rutile | 21 | ≥99.5 | 10 | 4 | 14.11 ± 0.21 | 4 | 11.31 ± 0.67 | high | A |
100 | 4 | 15.11 ± 0.22 | 4 | 11.31 ± 0.67 | ||||||||
1000 | 4 | 32.21 ± 0.77 | 4 | 11.31 ± 0.67 | ||||||||
50 | ≥98 | 10 | 4 | 12.89 ± 0.75 | 4 | 11.31 ± 0.67 | ||||||
100 | 4 | 13.88 ± 0.65 | 4 | 11.31 ± 0.67 | ||||||||
1000 | 4 | 30.29 ± 0.67 | 4 | 11.31 ± 0.67 | ||||||||
Demir E. 2015 [33] | Spain | Mouse embryonic kidney cells (NIH/3 T3), cultured for 1 h | Rutile | 21 | ≥99.5 | 10 | 4 | 14.10 ± 0.27 | 4 | 12.31 ± 0.17 | high | A |
100 | 4 | 15.41 ± 0.29 | 4 | 12.31 ± 0.17 | ||||||||
1000 | 4 | 35.91 ± 0.57 | 4 | 12.31 ± 0.17 | ||||||||
50 | ≥98 | 10 | 4 | 12.10 ± 0.78 | 4 | 12.31 ± 0.17 | ||||||
100 | 4 | 13.59 ± 0.73 | 4 | 12.31 ± 0.17 | ||||||||
1000 | 4 | 31.77 ± 0.60 | 4 | 12.31 ± 0.17 | ||||||||
Kansara K. 2015 [34] | India | Human lung cancer cell line (A549), exposed for 6 h | Rutile | 4–8 | 99.7 | 25 | 3 | 5.14 ± 0.12 | 3 | 4.48 ± 0.11 | medium | B |
50 | 3 | 6.06 ± 0.15 | 3 | 4.48 ± 0.11 | ||||||||
75 | 3 | 8.25 ± 0.24 | 3 | 4.48 ± 0.11 | ||||||||
100 | 3 | 9.49 ± 0.25 | 3 | 4.48 ± 0.11 | ||||||||
Andreoli C. 2018 [35] | Italy | Peripheral blood monocytes, exposed for 24 h | Anatase | 20–60 | >99.5 | 10 | 4 | 1.14 ± 0.23 | 4 | 0.52 ± 0.12 | medium | A |
50 | 4 | 1.62 ± 0.47 | 4 | 0.52 ± 0.12 | ||||||||
100 | 4 | 2.01 ± 0.66 | 4 | 0.52 ± 0.12 | ||||||||
200 | 4 | 1.54 ± 0.52 | 4 | 0.52 ± 0.12 | ||||||||
Andreoli C. 2018 [35] | Italy | Peripheral blood monocytes, exposed for 24 h | Rutile | 30 × 100 | >99.5 | 10 | 4 | 1.19 ± 0.19 | 4 | 0.44 ± 0.05 | medium | A |
50 | 4 | 2.33 ± 0.68 | 4 | 0.44 ± 0.05 | ||||||||
100 | 4 | 2.62 ± 0.54 | 4 | 0.44 ± 0.05 | ||||||||
200 | 4 | 3.48 ± 1.59 | 4 | 0.44 ± 0.05 | ||||||||
Andreoli C. 2018 [35] | Italy | Peripheral blood monocytes, exposed for 24 h | Anatase/Rutile | 45–262 | >99.5 | 10 | 4 | 1.30 ± 0.04 | 4 | 0.34 ± 0.01 | medium | A |
50 | 4 | 2.51 ± 0.96 | 4 | 0.34 ± 0.01 | ||||||||
100 | 4 | 4.44 ± 0.18 | 4 | 0.34 ± 0.01 | ||||||||
200 | 4 | 4.45 ± 0.09 | 4 | 0.34 ± 0.01 | ||||||||
Osman I. F. 2018 [36] | UK | Lymphocytes from patients with respiratory diseases, exposed for 72 h | Anatase | 40–70 | 99.7 | 10 | 40 | 17.7 ± 5.4 | 40 | 15.4 ± 5.3 | high | B |
30 | 40 | 19.0 ± 5.5 | 40 | 15.4 ± 5.3 | ||||||||
50 | 40 | 23.3 ± 6.5 | 40 | 15.4 ± 5.3 | ||||||||
Osman I. F. 2018 [36] | UK | Lymphocytes from healthy people, exposed for 72 h | Anatase | 40–70 | 99.7 | 10 | 12 | 12.4 ± 6.1 | 12 | 10.2 ± 4.7 | high | B |
30 | 12 | 13.8 ± 5.5 | 12 | 10.2 ± 4.7 | ||||||||
50 | 12 | 15.3 ± 6.3 | 12 | 10.2 ± 4.7 | ||||||||
Outcomes were described as TL (μm) | ||||||||||||
Hong L. 2011 [30] | China | Human lung adenocarcinoma cells, exposed for 6 h | NA | 5–10 | >99.9 | 25 | 25 | 65.23 ± 26.86 | 25 | 37.50 ± 15.35 | medium | A+++ |
50 | 25 | 78.19 ± 37.43 | 25 | 37.50 ± 15.35 | ||||||||
100 | 25 | 69.54 ± 20.61 | 25 | 37.50 ± 15.35 | ||||||||
200 | 25 | 66.18 ± 17.87 | 25 | 37.50 ± 15.35 | ||||||||
Ünal F. 2021 [37] | Turkey | Human lymphocytes, exposed for 30 min | NA | <100 | NA | 20 | 3 | 51.60 ± 0.64 | 3 | 52.70 ± 0.55 | medium | A+++ |
40 | 3 | 53.49 ± 0.68 | 3 | 52.70 ± 0.55 | ||||||||
60 | 3 | 54.29 ± 0.70 | 3 | 52.70 ± 0.55 | ||||||||
80 | 3 | 54.38 ± 0.63 | 3 | 52.70 ± 0.55 | ||||||||
100 | 3 | 57.59 ± 1.02 | 3 | 52.70 ± 0.55 | ||||||||
Outcomes were described as OTM (μm) | ||||||||||||
Shi Y. 2010 [38] | China | Human fetal liver L-02 cells, exposed for 24 h | Anatase/Rutile | 30–50 | NA | 0.01 | 9 | 0.91 ± 0.75 | 9 | 0.79 ± 0.74 | high | C |
0.1 | 9 | 1.28 ± 0.96 | 9 | 0.79 ± 0.74 | ||||||||
1 | 9 | 1.30 ± 1.01 | 9 | 0.79 ± 0.74 | ||||||||
Du H. 2012 [39] | China | Human fetal liver L-02 cells, exposed for 24 h | NA | 25–50 | >99.5 | 0.001 | 3 | 0.67 ± 0.09 | 3 | 0.65 ± 0.06 | median | C |
0.01 | 3 | 0.68 ± 0.10 | 3 | 0.65 ± 0.06 | ||||||||
0.1 | 3 | 0.71 ± 0.08 | 3 | 0.65 ± 0.06 | ||||||||
1 | 3 | 0.73 ± 0.09 | 3 | 0.65 ± 0.06 | ||||||||
10 | 3 | 0.76 ± 0.09 | 3 | 0.65 ± 0.06 | ||||||||
Shukla R. K. 2011 [29] | India | Human epidermal cell line A431, exposed for 6 h | Anatase | 50 | 99.7 | 0.008 | 3 | 1.27 ± 0.05 | 3 | 1.20 ± 0.01 | high | B |
0.08 | 3 | 1.30 ± 0.03 | 3 | 1.20 ± 0.01 | ||||||||
0.8 | 3 | 1.43 ± 0.09 | 3 | 1.20 ± 0.01 | ||||||||
8 | 3 | 1.79 ± 0.08 | 3 | 1.20 ± 0.01 | ||||||||
80 | 3 | 1.91 ± 0.04 | 3 | 1.20 ± 0.01 | ||||||||
Hong L. 2011 [30] | China | Human lung adenocarcinoma cells, exposed for 6 h | NA | 5–10 | >99.9 | 25 | 25 | 12.08 ± 8.45 | 25 | 4.27 ± 2.76 | medium | A+++ |
50 | 25 | 12.43 ± 10.79 | 25 | 4.27 ± 2.76 | ||||||||
100 | 25 | 12.48 ± 2.71 | 25 | 4.27 ± 2.76 | ||||||||
200 | 25 | 8.46 ± 4.73 | 25 | 4.27 ± 2.76 | ||||||||
Shukla R. K. 2013 [31] | India | HepG2 human hepatocellular hepatoma cells, exposed for 6 h | Anatase | 30–70 | 99.7 | 1 | 3 | 1.13 ± 0,06 | 3 | 0.94 ± 0.06 | high | B |
10 | 3 | 1.20 ± 0.05 | 3 | 0.94 ± 0.06 | ||||||||
20 | 3 | 1.40 ± 0.02 | 3 | 0.94 ± 0.06 | ||||||||
40 | 3 | 1.55 ± 0.07 | 3 | 0.94 ± 0.06 | ||||||||
80 | 3 | 1.76 ± 0.09 | 3 | 0.94 ± 0.06 | ||||||||
Chen Z. 2014 [14] | China | V79 cells, exposed for 6 h, 24 h | Anatase | 75 ± 15 | 99.90 | 5 | 3 | 5.857 ± 6.198(6 h) 3.113 ± 4.285(24 h) | 3 | 4.698 ± 3.375(6 h) 2.576 ± 3.928(24 h) | high | A+++ |
20 | 3 | 5.086 ± 4.700(6 h) 4.174 ± 7.453(24 h) | 3 | 4.698 ± 3.375(6 h) 2.576 ± 3.928(24 h) | ||||||||
100 | 3 | 4.999 ± 4.594(6 h) 3.870 ± 4.116(24 h) | 3 | 4.698 ± 3.375(6 h) 2.576 ± 3.928(24 h) | ||||||||
Ryu A. R. 2016 [40] | Korea | Peripheral blood lymphocytes of rats, exposed for 30 min | NA | NA | NA | 60 | 6 | 23.08 ± 0.52 | 6 | 8.79 ± 2.18 | low | B |
80 | 6 | 25.66 ± 6.11 | 6 | 8.79 ± 2.18 | ||||||||
Osman I. F. 2018 [36] | UK | Lymphocytes from patients with respiratory diseases, exposed for 72 h | Anatase | 40–70 | 99.7 | 10 | 40 | 4.3 ± 1.6 | 40 | 3..7 ± 1.5 | high | B |
30 | 40 | 5.0 ± 2.0 | 40 | 3..7 ± 1.5 | ||||||||
50 | 40 | 6.2 ± 2.2 | 40 | 3..7 ± 1.5 | ||||||||
Osman I. F. 2018 [36] | UK | Lymphocytes from healthy people, exposed for 72 h | Anatase | 40–70 | 99.7 | 10 | 12 | 2.3 ± 1.0 | 12 | 1.8 ± 0.7 | high | B |
30 | 12 | 2.7 ± 1.0 | 12 | 1.8 ± 0.7 | ||||||||
50 | 12 | 3.2 ± 1.2 | 12 | 1.8 ± 0.7 | ||||||||
Ünal F. 2021 [37] | Turkey | Human lymphocytes, exposed for 30 min | NA | <100 | NA | 20 | 3 | 1.01 ± 0.11 | 3 | 1.03 ± 0.09 | medium | A+++ |
40 | 3 | 1.59 ± 0.29 | 3 | 1.03 ± 0.09 | ||||||||
60 | 3 | 1.73 ± 0.36 | 3 | 1.03 ± 0.09 | ||||||||
80 | 3 | 1.49 ± 0.25 | 3 | 1.03 ± 0.09 | ||||||||
100 | 3 | 1.90 ± 0.41 | 3 | 1.03 ± 0.09 | ||||||||
Outcomes were described as MF | ||||||||||||
Xu A. 2009 [41] | US | Primary embryonic fibroblasts of transgenic mice, incubated in medium for 24 h | Anatase | 5 | 99.7 | 0.1 | 3 | 12.52 ± 4.11 | 3 | 5.69 ± 1.87 | medium | B |
Chen Z. 2014 [14] | China | V79 cells, exposed for 24 h | Anatase | 75 ± 15 | 99.9 | 100 | 3 | 22.7 ± 3.0 | 3 | 8.7 ± 1.2 | high | A+++ |
Jain A. K. 2017 [42] | India | Chinese hamster lung fibroblasts (V-79), exposed for 6 h | Anatase | 12–25 | 99.7 | 100 | 3 | 23.0 ± 2.6 | 3 | 7.7 ± 2.1 | medium | A++ |
Outcomes were described as MN frequency (BiMN) | ||||||||||||
Shi Y. 2010 [38] | China | Human fetal liver L-02 cells, exposed for 24 h | Anatase/Rutile | 30–50 | NA | 0.01 | 9 | 0.91 ± 0.75 | 9 | 0.79 ± 0.74 | high | C |
0.1 | 9 | 1.28 ± 0.96 | 9 | 0.79 ± 0.74 | ||||||||
1 | 9 | 1.30 ± 1.01 | 9 | 0.79 ± 0.74 | ||||||||
Kang S. J. 2008 [43] | South Korea | Peripheral blood lymphocytes, exposed for 20 h | Anatase/Rutile | 25 | NA | 20 | 3 | 15.00 ± 1.00 | 3 | 9.33 ± 1.52 | median | C |
50 | 3 | 18.33 ± 2.08 | 3 | 9.33 ± 1.52 | ||||||||
100 | 3 | 23.67 ± 0.58 | 3 | 9.33 ± 1.52 | ||||||||
Reis É.deM 2016 [44] | Brazil | V79 cells, exposed for 3 h | Anatase | 3.4 | 99.7 | 30 | 3 | 6.67 ± 1.15 | 3 | 7.00 ± 1.00 | high | C |
60 | 3 | 12.00 ± 1.00 | 3 | 7.00 ± 1.00 | ||||||||
120 | 3 | 14.67 ± 2.06 | 3 | 7.00 ± 1.00 | ||||||||
Reis É.deM 2016 [44] | Brazil | V79 cells, exposed for 3 h | Anatase | 6.2 | 99.7 | 30 | 3 | 11.33 ± 2.31 | 3 | 7.00 ± 1.00 | high | C |
60 | 3 | 8.33 ± 1.15 | 3 | 7.00 ± 1.00 | ||||||||
120 | 3 | 10.00 ± 2.00 | 3 | 7.00 ± 1.00 | ||||||||
Reis É.deM 2016 [44] | Brazil | V79 cells, exposed for 3 h | Anatase | 78 | 99.7 | 30 | 3 | 5.33 ± 1.53 | 3 | 7.00 ± 1.00 | high | C |
60 | 3 | 7.67 ± 1.15 | 3 | 7.00 ± 1.00 | ||||||||
120 | 3 | 12.33 ± 2.52 | 3 | 7.00 ± 1.00 | ||||||||
Shukla R. K. 2011 [29] | India | Human epidermal cell line A431, exposed for 6 h | Anatase | 50 | 99.7 | 0.008 | 3 | 11.67 ± 1.20 | 3 | 9.33 ± 1.00 | high | B |
0.08 | 3 | 12.67 ± 0.88 | 3 | 9.33 ± 1.00 | ||||||||
0.8 | 3 | 14.67 ± 1.20 | 3 | 9.33 ± 1.00 | ||||||||
8 | 3 | 15.67 ± 0.88 | 3 | 9.33 ± 1.00 | ||||||||
80 | 3 | 16.00 ± 0.58 | 3 | 9.33 ± 1.00 | ||||||||
Srivastava R. K. 2013 [45] | India | Human lung cancer cell line (A549), exposed for 24 h | Anatase | <25 | NA | 10 | 3 | 12.66 ± 0.33 | 3 | 5.33 ± 0.33 | medium | B |
50 | 3 | 17.33 ± 0.33 | 3 | 5.33 ± 0.33 | ||||||||
Shukla R. K. 2013 [31] | India | HepG2 human hepatocellular carcinoma cells, exposed for 6 h | Anatase | 30–70 | 99.7 | 1 | 3 | 8.00 ± 1.15 | 3 | 7.00 ± 0.58 | high | B |
10 | 3 | 11.00 ± 1.53 | 3 | 7.00 ± 0.58 | ||||||||
20 | 3 | 15.00 ± 0.58 | 3 | 7.00 ± 0.58 | ||||||||
40 | 3 | 12.33 ± 0.33 | 3 | 7.00 ± 0.58 | ||||||||
80 | 3 | 10.67 ± 0.88 | 3 | 7.00 ± 0.58 | ||||||||
Kansara K. 2015 [34] | India | Human lung cancer cell line (A549), exposed for 6 h | Anatase | 4–8 | 99.7 | 25 | 3 | 7.33 ± 1.20 | 3 | 6.00 ± 2.80 | medium | B |
50 | 3 | 9.66 ± 2.84 | 3 | 6.00 ± 2.80 | ||||||||
75 | 3 | 12.33 ± 2.96 | 3 | 6.00 ± 2.80 | ||||||||
100 | 3 | 14.66 ± 2.33 | 3 | 6.00 ± 2.80 | ||||||||
Andreoli C. 2018 [35] | Italy | Peripheral blood monocytes, exposed for 24 h | Anatase | 20–60 | >99.5 | 50 | 2 | 9.0 ± 1.41 | 2 | 8.5 ± 0.71 | medium | A |
100 | 2 | 10.0 ± 4.24 | 2 | 8.5 ± 0.71 | ||||||||
Andreoli C. 2018 [35] | Italy | Peripheral blood monocytes, exposed for 24 h | Rutile | 30 × 100 | >99.5 | 50 | 2 | 9.0 ± 2.83 | 2 | 7.5 ± 3.54 | medium | A |
100 | 2 | 7.0 ± 2.83 | 2 | 7.5 ± 3.54 | ||||||||
200 | 2 | 8.0 ± 1.41 | 2 | 7.5 ± 3.54 | ||||||||
Andreoli C. 2018 [35] | Italy | Peripheral blood monocytes, exposed for 24 h | Anatase/Rutile | 45–262 | >99.5 | 50 | 2 | 9.5 ± 0.71 | 2 | 9.5 ± 0.71 | medium | A |
100 | 2 | 8.0 ± 4.24 | 2 | 9.5 ± 0.71 | ||||||||
200 | 2 | 5.5 ± 2.12 | 2 | 9.5 ± 0.71 | ||||||||
Osman I. F. 2018 [36] | UK | Lymphocytes from patients with respiratory diseases, exposed for 72 h | Anatase | 40–70 | 99.7 | 5 | 40 | 8.29 ± 1.55 | 40 | 8.54 ± 1.40 | high | B |
10 | 40 | 11.03 ± 1.70 | 40 | 8.54 ± 1.40 | ||||||||
Osman I. F. 2018 [36] | UK | Lymphocytes from healthy people, exposed for 72 h | Anatase | 40–70 | 99.7 | 5 | 12 | 4.47 ± 2.39 | 12 | 1.87 ± 1.63 | high | B |
10 | 12 | 7.21 ± 1.69 | 12 | 1.87 ± 1.63 | ||||||||
Ünal F. 2021 [37] | Turkey | Human lymphocytes, exposed for 48 h | NA | <100 | NA | 20 | 3 | 0.30 ± 0.099 | 3 | 0.13 ± 0.066 | medium | A+++ |
40 | 3 | 0.30 ± 0.099 | 3 | 0.13 ± 0.066 | ||||||||
60 | 3 | 0.30 ± 0.099 | 3 | 0.13 ± 0.066 | ||||||||
80 | 3 | 0.17 ± 0.075 | 3 | 0.13 ± 0.066 | ||||||||
100 | 3 | 0.13 ± 0.066 | 3 | 0.13 ± 0.066 | ||||||||
Outcomes were described as CA frequency | ||||||||||||
Catalán J. 2011 [46] | Finland | Human lymphocytes, exposed for 24 h, 48 h and 72 h | Anatase | <25 | 99.7 | 6.25 | 2 | 1.25 ± 1.26(24 h) 0.50 ± 0.58(48 h) 0.25 ± 0.50(72 h) | 2 | 0.75 ± 0.96(24 h) 0.00 ± 0.00(48 h) 0.50 ± 1.00(72 h) | high | A++ |
12.5 | 2 | 0.50 ± 0.58(24 h) 0.50 ± 0.58(48 h) 1.25 ± 0.96(72 h) | 2 | 0.75 ± 0.96(24 h) 0.00 ± 0.00(48 h) 0.50 ± 1.00(72 h) | ||||||||
25 | 2 | 0.00 ± 0.00(24 h) 0.25 ± 0.50(48 h) 0.25 ± 0.50(72 h) | 2 | 0.75 ± 0.96(24 h) 0.00 ± 0.00(48 h) 0.50 ± 1.00(72 h) | ||||||||
50 | 2 | 0.50 ± 0.58(24 h) 0.25 ± 0.50(48 h) 0.50 ± 1.00(72 h) | 2 | 0.75 ± 0.96(24 h) 0.00 ± 0.00(48 h) 0.50 ± 1.00(72 h) | ||||||||
100 | 2 | 0.00 ± 0.00(24 h) 1.00 ± 0.82(48 h) 0.75 ± 0.96(72 h) | 2 | 0.75 ± 0.96(24 h) 0.00 ± 0.00(48 h) 0.50 ± 1.00(72 h) | ||||||||
150 | 2 | 0.25 ± 0.50(24 h) 1.25 ± 0.50(48 h) 0.50 ± 0.58(72 h) | 2 | 0.75 ± 0.96(24 h) 0.00 ± 0.00(48 h) 0.50 ± 1.00(72 h) | ||||||||
300 | 2 | 1.00 ± 1.15(24 h) 1.00 ± 0.82(48 h) 0.50 ± 0.58(72 h) | 2 | 0.75 ± 0.96(24 h) 0.00 ± 0.00(48 h) 0.50 ± 1.00(72 h) | ||||||||
Ünal F. 2021 [37] | Turkey | Human lymphocytes, exposed for 24 h, 48 h | NA | <100 | NA | 20 | 3 | 6.00 ± 1.37(24 h) 5.33 ± 1.30(48 h) | 3 | 1.33 ± 0.66(24 h) 1.33 ± 0.66(48 h) | medium | A+++ |
40 | 3 | 6.67 ± 1.44(24 h) 3.00 ± 0.98(48 h) | 3 | 1.33 ± 0.66(24 h) 1.33 ± 0.66(48 h) | ||||||||
60 | 3 | 4.33 ± 1.17(24 h) 3.33 ± 1.03(48 h) | 3 | 1.33 ± 0.66(24 h) 1.33 ± 0.66(48 h) | ||||||||
80 | 3 | 5.00 ± 1.26(24 h) 3.33 ± 1.03(48 h) | 3 | 1.33 ± 0.66(24 h) 1.33 ± 0.66(48 h) | ||||||||
100 | 3 | 6.00 ± 1.37(24 h) 4.00 ± 1.13(48 h) | 3 | 1.33 ± 0.66(24 h) 1.33 ± 0.66(48 h) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Y.; Chen, J.; Bian, Q.; Ning, J.; Yong, L.; Ou, T.; Song, Y.; Wei, S. Genotoxicity Evaluation of Titanium Dioxide Nanoparticles In Vivo and In Vitro: A Meta-Analysis. Toxics 2023, 11, 882. https://doi.org/10.3390/toxics11110882
Cao Y, Chen J, Bian Q, Ning J, Yong L, Ou T, Song Y, Wei S. Genotoxicity Evaluation of Titanium Dioxide Nanoparticles In Vivo and In Vitro: A Meta-Analysis. Toxics. 2023; 11(11):882. https://doi.org/10.3390/toxics11110882
Chicago/Turabian StyleCao, Yue, Jinyao Chen, Qian Bian, Junyu Ning, Ling Yong, Tong Ou, Yan Song, and Sheng Wei. 2023. "Genotoxicity Evaluation of Titanium Dioxide Nanoparticles In Vivo and In Vitro: A Meta-Analysis" Toxics 11, no. 11: 882. https://doi.org/10.3390/toxics11110882
APA StyleCao, Y., Chen, J., Bian, Q., Ning, J., Yong, L., Ou, T., Song, Y., & Wei, S. (2023). Genotoxicity Evaluation of Titanium Dioxide Nanoparticles In Vivo and In Vitro: A Meta-Analysis. Toxics, 11(11), 882. https://doi.org/10.3390/toxics11110882