Accumulation and Translocation of Rare Trace Elements in Plants near the Rare Metal Enterprise in the Subarctic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Analysis
2.3. Data Treatment and Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition of Soils
Element | Tailings [47] | AV | AO | AP | Soils [46] | Soils on Nepheline Tailings [48] |
---|---|---|---|---|---|---|
Content, % | ||||||
C | 0.00 | 0.27 ± 0.03 | 4.5 ± 0.31 | 5.40 ± 0.48 | 3.5–4.5 | 8–11 |
Al | 7.86 | 10.57 ± 0.06 | 10.34 ± 0.06 | 14.98 ± 0.06 | - | 11.53 |
Ca | - | 0.89 ± 0.01 | 0.76 ± 0.01 | 2.5 ± 0.06 | - | 3.87 |
Fe | 3.01 | 4.4 ± 0.04 | 3.40 ± 0.07 | 6.33 ± 0.03 | - | 6.22 |
K | - | 2.99 ± 0.1 | 2.49 ± 0.03 | 3.82 ± 0.04 | - | 4.51 |
Mg | - | 0.25 ± 0.01 | 0.21 ± 0 | 1.24 ± 0.05 | - | 0.70 |
Na | - | 9.08 ± 0.12 | 7.09 ± 0.09 | 6.34 ± 0.06 | - | 8.61 |
Si | 22.31 | 22.44 ± 0.36 | 22.61 ± 0.58 | 33.02 ± 0.44 | - | 19.05 |
Content, mg·kg−1 | ||||||
Ce | 852 | 1813 ± 115 | 3021 ± 88 | 264 ± 13 | 10 | 388 |
La | 160 | 933 ± 6 | 1859 ± 63 | 167 ± 12 | 4 | 279 |
Mn | 1351 | 1863 ± 57 | 1411 ± 58 | 1439 ± 59 | - | 1394 |
Nd | 106 | 607 ± 20 | 962 ± 20 | 93 ± 2 | 20 | - |
Pr | 34 | 223 ± 8 | 362 ± 18 | 20 ± 1 | 1 | - |
Sc | 134 | 3 ± 1 | 6 ± 1 | 4 ± 1 | - | - |
Sm | 12 | 78 ± 2 | 121 ± 7 | 15 ± 1 | 4 | 29 |
Sr | 943 | 1956 ± 199 | 1511 ± 152 | 981 ± 20 | - | 1565 |
Zn | 171 | 232 ± 8 | 184 ± 17 | 195 ± 8 | - | 113 |
Zr | 2105 | 2381 ± 66 | 1269 ± 57 | 384 ± 8 | - | 404 |
3.2. Chemical Composition of Plants
3.3. The Anthropogenic Effect on Plants’ Chemical Composition
3.4. Bioconcentration and Translocation Coefficients
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, B.; Shao, S.; Ni, H.; Fu, Z.; Hu, L.; Zhou, Y.; Min, X.; She, S.; Chen, S.; Huang, M.; et al. Current status, spatial features, health risks, and potential driving factors of soil heavy metal pollution in China at province level. Environ. Pollut. 2020, 266, 114961. [Google Scholar] [CrossRef] [PubMed]
- Ukaogo, P.O.; Ewuzie, U.; Onwuka, C.V. Environmental pollution: Causes, effects, and the remedies. In Microorganisms for Sustainable Environment and Health; Chowdhary, P., Raj, A., Verma, D., Akhter, Y., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 419–429. [Google Scholar] [CrossRef]
- Kabala, C.; Galka, B.; Jezierski, P. Assessment and monitoring of soil and plant contamination with trace elements around Europe’s largest copper ore tailings impoundment. Sci. Total Environ. 2020, 738, 139918. [Google Scholar] [CrossRef]
- Azizi, M.; Faz, A.; Zornoza, R.; Martinez-Martinez, S.; Acosta, J.A. Phytoremediation Potential of Native Plant Species in Mine Soils Polluted by Metal(loid)s and Rare Earth Elements. Plants 2023, 12, 1219. [Google Scholar] [CrossRef] [PubMed]
- Bau, M.; Knappe, A.; Dulski, P. Anthropogenic gadolinium as a micropollutant in river waters in Pennsylvania and in Lake Erie, northeastern United States. Geochemistry 2006, 66, 143–152. [Google Scholar] [CrossRef]
- Kumar, M.; Bolan, N.; Jasemizad, T.; Padhye, L.P.; Sridharan, S.; Singh, L.; Bolan, S.; O’Connor, J.; Zhao, H.; Shaheen, S.M.; et al. Mobilization of contaminants: Potential for soil remediation and unintended consequences. Sci. Total Environ. 2022, 839, 156373. [Google Scholar] [CrossRef] [PubMed]
- Madawala, H.M.S.P. Role of microorganisms in bioavailability of soil pollutants. In One Health: Human, Animal, and Environment Triad; Vithanage, M., Narasimha, M., Prasad, V., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2023; pp. 113–132. [Google Scholar] [CrossRef]
- Mulenga, C.; Clarke, C.; Meincken, M. Bioaccumulation of Cu, Fe, Mn and Zn in native Brachystegia longifolia naturally growing in a copper mining environment of Mufulira, Zambia. Environ. Monit. Assess. 2022, 194, 8. [Google Scholar] [CrossRef]
- Naz, A.; Chowdhury, A.; Chandra, R.; Mishra, B.K. Potential human health hazard due to bioavailable heavy metal exposure via consumption of plants with ethnobotanical usage at the largest chromite mine of India. Environ. Geochem. Health 2020, 42, 4213–4231. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, H.; Chi, H.; He, L.; Hong, L.; Wang, H. Eco-geological Environment Quality Assessment in a Mining City: A Case Study of Jiangxia District, Wuhan City. Geocarto Int. 2023, 38, 1. [Google Scholar] [CrossRef]
- Rashed, M. Monitoring of contaminated toxic and heavy metals, from mine tailings through age accumulation, in soil and some wild plants at Southeast Egypt. J. Hazard. Mater. 2010, 178, 739–746. [Google Scholar] [CrossRef]
- Smith, M.; Mehes-Smith, M.; Nkongolo, K.K.; Narendrula, R.; Cholewa, E. Mobility of heavy metals in plants and soil: A case study from a mining region in Canada. Am. J. Environ. Sci. 2013, 9, 483–493. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, L.; Huang, X.; Zhou, Y.; Quan, Q.; Li, Y.; Zhu, X. Response of photosynthesis to different concentrations of heavy metals in Davidia involucrata. PLoS ONE 2020, 15, e0228563. [Google Scholar] [CrossRef]
- Alp, F.N.; Arikan, B.; Ozfidan-Konakci, C.; Gulenturk, C.; Yildiztugay, E.; Turan, M.; Cavusoglu, H. Hormetic activation of nano-sized rare earth element terbium on growth, PSII photochemistry, antioxidant status and phytohormone regulation in Lemna minor. Plant Physiol. Biochem. 2023, 194, 361–373. [Google Scholar] [CrossRef]
- Labudda, M.; Dziurka, K.; Fidler, J.; Gietler, M.; Rybarczyk-Płońska, A.; Nykiel, M.; Prabucka, B.; Morkunas, I.; Muszyńska, E. The Alleviation of Metal Stress Nuisance for Plants—A Review of Promising Solutions in the Face of Environmental Challenges. Plants 2022, 11, 2544. [Google Scholar] [CrossRef]
- Hadjipanagiotou, C.; Christou, A.; Zissimos, A.M.; Chatzitheodoridis, E.; Varnavas, S.P. Contamination of stream waters, sediments, and agricultural soil in the surroundings of an abandoned copper mine by potentially toxic elements and associated environmental and potential human health–derived risks: A case study from Agrokipia, Cyprus. Environ. Sci. Pollut. Res. 2020, 27, 41279–41298. [Google Scholar] [CrossRef]
- Ascenzi, P.; Bettinelli, M.; Boffi, A.; Botta, M.; De Simone, G.; Luchinat, C.; Marengo, E.; Mei, H.; Aime, S. Rare earth elements (REE) in biology and medicine. Rendiconti Lince Sci. Fis. Nat. 2020, 31, 821–833. [Google Scholar] [CrossRef]
- Ebrahimi, P.; Barbieri, M. Gadolinium as an Emerging Microcontaminant in Water Resources: Threats and Opportunities. Geosciences 2019, 9, 93. [Google Scholar] [CrossRef]
- Zhao, Y.; Liang, J.; Meng, H.; Yin, Y.; Zhen, H.; Zheng, X.; Shi, H.; Wu, X.; Zu, Y.; Wang, B.; et al. Rare Earth Elements Lanthanum and Praseodymium Adversely Affect Neural and Cardiovascular Development in Zebrafish (Danio rerio). Environ. Sci. Technol. 2021, 55, 1155–1166. [Google Scholar] [CrossRef]
- Sysolyatina, M.; Olkova, A. Sources of rare earth elements in the environment and their impact on living organisms. Environ. Rev. 2023, 31, 206–217. [Google Scholar] [CrossRef]
- Adeel, M.; Lee, J.Y.; Zain, M.; Rizwan, M.; Nawab, A.; Ahmad, M.; Shafiq, M.; Yi, H.; Jilani, G.; Javed, R.; et al. Cryptic footprints of rare earth elements on natural resources and living organisms. Environ. Int. 2019, 127, 785–800. [Google Scholar] [CrossRef]
- Mikołajczak, P.; Borowiak, K.; Niedzielski, P. Phytoextraction of rare earth elements in herbaceous plant species growing close to roads. Environ. Sci. Pollut. Res. 2017, 24, 14091–14103. [Google Scholar] [CrossRef]
- Gwenzi, W.; Mangori, L.; Danha, C.; Chaukura, N.; Dunjana, N.; Sanganyado, E. Sources, behaviour, and environmental and human health risks of high-technology rare earth elements as emerging contaminants. Sci. Total Environ. 2018, 636, 299–313. [Google Scholar] [CrossRef]
- Krasavtseva, E.A.; Maksimova, V.; Makarov, D. Influence of Reagents on Qualitative Indicators of Artificial Anti-Deflationary Phytocenosis on Waste from a Rare Earth Tailing Facility. Toxics 2023, 11, 629. [Google Scholar] [CrossRef]
- Shackira, A.M.; Puthur, J.T. Phytostabilization of Heavy Metals: Understanding of Principles and Practices. In Plant-Metal Interactions; Srivastava, S., Srivastava, A.K., Suprasanna, P., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 263–282. [Google Scholar] [CrossRef]
- Anoopkumar, A.N.; Rebello, S.; Devassy, E.; Kavya Raj, K.; Puthur, S.; Aneesh, E.M.; Sindhu, R.; Binod, P.; Pandey, A. Phytoextraction of Heavy Metals. In Methods for Bioremediation of Water and Wastewater Pollution; Inamuddin, A.M.I., Lichtfouse, E., Asiri, A.M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 267–276. [Google Scholar] [CrossRef]
- Martínez-López, S.; Martínez-Sánchez, M.J.; Pérez-Sirvent, C.; Bech, J.; Martínez, M.d.C.G.; García-Fernandez, A.J. Screening of wild plants for use in the phytoremediation of mining-influenced soils containing arsenic in semiarid environments. J. Soils Sediments 2014, 14, 794–809. [Google Scholar] [CrossRef]
- Mehes-Smith, M.; Nkongolo, K.; Cholew, E. Coping mechanisms of plants to metal contaminated soil. In Environmental Change and Sustainability; Silvern, S., Ed.; Intechopen: London, UK, 2013. [Google Scholar] [CrossRef]
- Dhir, B. Plant responses to heavy metals during cultivation in mining dump sites. In Phytorestoration of Abandoned Mining and Oil Drilling Sites; Bauddh, K., Korstad, J., Sharma, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 359–372. [Google Scholar] [CrossRef]
- Ranđelović, D.; Gajić, G.; Mutić, J.; Pavlović, P.; Mihailović, N.; Jovanović, S. Ecological potential of Epilobium dodonaei Vill. for restoration of metalliferous mine wastes. Ecol. Eng. 2016, 95, 800–810. [Google Scholar] [CrossRef]
- Nadgórska-Socha, A.; Ptasiński, B.; Kita, A. Heavy metal bioaccumulation and antioxidative responses in Cardaminopsis arenosa and Plantago lanceolata leaves from metalliferous and non-metalliferous sites: A field study. Ecotoxicology 2013, 22, 1422–1434. [Google Scholar] [CrossRef]
- Maksimova, V.V.; Krasavtseva, E.A.; Savchenko, Y.E.; Ikkonen, P.V.; Elizarova, I.R.; Masloboev, V.A.; Makarov, D.V. Study of the composition and properties of the beneficiation tailings of currently produced loparite ores. J. Min. Inst. 2022, 256, 642–650. [Google Scholar] [CrossRef]
- Eythorsson, D.; Gardarsson, S.M.; Ahmad, S.K.; Hossain, F.; Nijssen, B. Arctic climate and snow cover trends—Comparing Global Circulation Models with remote sensing observations. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 71–81. [Google Scholar] [CrossRef]
- Weather in 241 Countries. Available online: https://rp5.ru/ (accessed on 16 October 2023).
- Climate Data Archive. Available online: http://climatebase.ru/station/22127 (accessed on 16 October 2023).
- Mantel, S.; Dondeyne, S.; Deckers, S. World reference base for soil resources (WRB). In Goss, Margaret Oliver Encyclopedia of Soils in the Environment, 2nd ed.; Michael, J., Ed.; Academic Press: Cambridge, MA, USA, 2023; pp. 206–217. ISBN 9780323951333. [Google Scholar] [CrossRef]
- Aamlid, D.; Canullo, R.; Starlinger, F. Manual on Methods and Criteria for Harmonized Sampling, Assessment, Monitoring and Analysis of the Effects of the Effects of Air Pollution on forest. Part VIII. Assessment of Ground Vegetation. International co-Operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests, United Nations Economic Commission for Europe (UNECE) Convention on Long-Range Transboundary Air Pollution. 2007. Available online: http://icp-forests.net/page/icp-forests-manual (accessed on 25 September 2023).
- Reimann, C.; Koller, F.; Frengstad, B.; Kashulina, G.; Niskavaara, H.; Englmaier, P. Comparison of the element composition in several plant species and their substrate from a 1 500 000-km2 area in Northern Europe. Sci. Total Environ. 2001, 278, 87–112. [Google Scholar]
- Suchara, I.; Sucharova, J.; Hola, M.; Reimann, C.; Boyd, R.; Filzmoser, P.; Englmaier, P. The performance of moss, grass, and 1- and 2-year old spruce needles as bioindicators of contamination: A comparative study at the scale of the Czech Republic. Sci. Total Environ. 2011, 409, 2281–2297. [Google Scholar] [CrossRef]
- Zhuang, P.; Yang, Q.W.; Wang, H.B.; Shu, W.S. Phytoextraction of Heavy Metals by Eight Plant Species in the Field. Water Air Soil Pollut. 2007, 184, 235–242. [Google Scholar] [CrossRef]
- Padmavathiamma, P.K.; Li, L.Y. Phytoremediation Technology: Hyper-accumulation Metals in Plants. Water Air Soil Pollut. 2007, 184, 105–126. [Google Scholar] [CrossRef]
- Kim, S.H.; Bae, S.; Hwang, Y.S. Comparative bioaccumulation, translocation, and phytotoxicity of metal oxide nanoparticles and metal ions in soil-crop system. Sci. Total Environ. 2023, 856, 158938. [Google Scholar] [CrossRef] [PubMed]
- Sahiti, H.; Bislimi, K.; Gagica, N.A.; Brahimaj, T.B.; Dalo, E. Bioaccumulation and distribution of Pb, Ni, Zn and Fe in stinging nettle (Urtica dioica) tissues and heavy metal-contamination assessment in the industrial zone of smelter Ferronikeli (Drenas-Kosovo). J. Environ. Sci. Health Part A 2023, 58, 805–810. [Google Scholar] [CrossRef] [PubMed]
- Sipos, B.; Bibi, D.; Magura, T.; Tóthmérész, B.; Simon, E. High phytoremediation and translocation potential of an invasive weed species (Amaranthus retroflexus) in Europe in metal-contaminated areas. Environ. Monit. Assess. 2023, 195, 790. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I.; Gul, I.; Irum, S.; Manzoor, M.; Arshad, M. Accumulation of heavy metals in wild plants collected from the industrial sites—Potential for phytoremediation. Int. J. Environ. Sci. Technol. 2023, 20, 5441–5452. [Google Scholar] [CrossRef]
- Perelomov, L.V.; Asainova, Z.S.; Yoshida, S.; Ivanov, I.V. Concentrations of rare-earth elements in soils of the Prioksko-Terrasnyi state biospheric reserve. Eurasian Soil Sci. 2012, 45, 983–994. [Google Scholar] [CrossRef]
- Krasavtseva, E.A.; Makarov, D.V.; Maksimova, V.V.; Selivanova, E.A.; Ikkonen, P.V. Studies of Properties and Composition of Loparite Ore Mill Tailings. J. Min. Sci. 2021, 57, 531–538. [Google Scholar] [CrossRef]
- Pereverzev, V.N.; Ivliev, A.I.; Gorbunov, A.V.; Lyapunov, S.M. Primary pedogenesis in the tailings of apatite-nepheline ores on the Kola Peninsula. Eurasian Soil Sci. 2007, 40, 900–906. [Google Scholar] [CrossRef]
- Krasavtseva, E.; Maksimova, V.; Makarov, D.; Potorochin, E. Modelling of the Chemical Halo of Dust Pollution Migration in Loparite Ore Tailings Storage Facilities. Minerals 2021, 11, 1077. [Google Scholar] [CrossRef]
- Krasavtseva, E.; Maksimova, V.; Makarov, D. Conditions Affecting the Release of Heavy and Rare Earth Metals from the Mine Tailings Kola Subarctic. Toxics 2021, 9, 163. [Google Scholar] [CrossRef]
- Dabakh, E. Rare earth elements in soils and plants of meadow biocenoses. Theor. Appl. Ecol. 2021, 4, 104–111. [Google Scholar] [CrossRef]
- Vinogradov, A. Average contents of chemical elements in the main types of igneous rocks of the earth’s crust. Geochemistry 1962, 7, 555–571. (In Russian) [Google Scholar]
- Dobrovolsky, V.V. Landscape and geochemical features of the tundra of the Kola Peninsula. Soviet Soil Sci. 1963, 2, 25–32. (In Russian) [Google Scholar]
- Dobrovolsky, V.V.; Aleshchukin, L.V. Some landscape and geochemical features of the northern taiga of the Kola Peninsula. Soviet Soil Sci. 1964, 10, 37–43. (In Russian) [Google Scholar]
- Pereverzev, V.N. Forest Soils of the Kola Peninsula; Nauka: Moscow, Russia, 2004; 232p. (In Russian) [Google Scholar]
- Wang, L.; Liang, T. Anomalous abundance and redistribution patterns of rare earth elements in soils of a mining area in Inner Mongolia, China. Environ. Sci. Pollut. Res. 2016, 23, 11330–11338. [Google Scholar] [CrossRef]
- Nkrumah, P.N.; Erskine, P.D.; Erskine, J.D.; van der Ent, A. Rare earth elements (REE) in soils and plants of a uranium-REE mine site and exploration target in Central Queensland, Australia. Plant Soil 2021, 464, 375–389. [Google Scholar] [CrossRef]
- Forsyth, K.; Dia, A.; Marques, R.; Prudêncio, M.I.; Diamantino, C.; Carvalho, E.; Russo, D.; Dionisio, I.; Davranche, M.; Bouhnik-Le-Coz, M.; et al. Bioconcentration and translocation of rare earth elements in plants collected from three legacy mine sites in Portugal. Front. Environ. Sci. 2023, 11, 1191909. [Google Scholar] [CrossRef]
- Cardenas, A.; Dias, M.I.; Diamantino, C.; Carvalho, E.; Russo, D.; Marques, R. Geochemical Behavior of Lanthanides and Actinides in an Old Uranium Mine, Portugal. Geosciences 2023, 13, 168. [Google Scholar] [CrossRef]
- De Temmerman, L.; Hoenig, M. Vegetable Crops for Biomonitoring Lead and Cadmium Deposition. J. Atmos. Chem. 2004, 49, 121–135. [Google Scholar] [CrossRef]
- Simon, E.; Baranyai, E.; Braun, M.; Cserháti, C.; Fábián, I.; Tóthmérész, B. Elemental concentrations in deposited dust on leaves along an urbanization gradient. Sci. Total Environ. 2014, 490, 514–520. [Google Scholar] [CrossRef]
- Censi, P.; Cibella, F.; Falcone, E.; Cuttitta, G.; Saiano, F.; Inguaggiato, C.; Latteo, V. Rare earths and trace elements contents in leaves: A new indicator of the composition of atmospheric dust. Chemosphere 2017, 169, 342–350. [Google Scholar] [CrossRef] [PubMed]
- Cong, Y.; Yu, R.-L.; Yan, Y.; Weng, B.-S.; Hu, G.-R.; Sun, J.-W.; Cui, J.-Y.; Yan, Y.; Huang, Y.-Y. Source analysis of metals in the tea plant using linear correlation analysis combined with a lead-strontium isotope tracer. Catena 2023, 229, 107194. [Google Scholar] [CrossRef]
- Chen, Z.F.; Fan, L.D.; Chen, Y.Z.; Xing, L.T.; Yang, Y.J.; Xiang, Z.T.; Wang, X.L. Spatial distribution and source analysis of heavy metals in agricultural soils in a Peri-urban area based on IDW interpolation and chemical fractions: A case study in Henan Province. Acta Sci. Circumst. 2016, 36, 1317–1327. [Google Scholar]
- Rubio, B.; Nombela, M.; Vilas, F. Geochemistry of Major and Trace Elements in Sediments of the Ria de Vigo (NW Spain): An Assessment of Metal Pollution. Mar. Pollut. Bull. 2000, 40, 968–980. [Google Scholar] [CrossRef]
- Fang, X.; Peng, B.; Guo, X.; Wu, S.; Xie, S.; Wu, J.; Yang, X.; Chen, H.; Dai, Y. Distribution, source and contamination of rare earth elements in sediments from lower reaches of the Xiangjiang River, China. Environ. Pollut. 2023, 336, 122384. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Shen, L.; Feng, C.; Yang, R.; Qu, J.; Ju, H.; Zhang, Y. Distribution of rare earth elements (REEs) and their roles in plant growth: A review. Environ. Pollut. 2021, 298, 118540. [Google Scholar] [CrossRef] [PubMed]
- Avdoshchenko, V.G.; Klimova, A.V. Contents of heavy metals in the plants of Petropavlovsk-Kamchatsky (kamchatka territory) in 2017–2018. Bull. Kamchatka State Tech. Univ. 2020, 54, 48–64. (In Russian) [Google Scholar] [CrossRef]
- Ladonin, D.V. Comparative Evaluation of Adsorption of Rare-Earth Elements in Some Soil Types. Eurasian Soil Sci. 2019, 52, 1175–1182. [Google Scholar] [CrossRef]
- Brioschi, L.; Steinmann, M.; Lucot, E.; Pierret, M.C.; Stille, P.; Prunier, J.; Bado, P.M. Transfer of rare earth elements (REE) from natural soil to plant systems: Implications for the enviromental availability of antropogenic REE. Plant Soil 2013, 336, 143–163. [Google Scholar]
- Ji, H.B.; Wang, L.J.; Dong, Y.S.; Wang, S.J.; Luo, J.M.; Sun, Y.Y. An overview on the study of biogeochemical cycle for rare earth elements (REEs). Prog. Geogr. 2004, 23, 51–61. [Google Scholar]
- Yang, Y.G. Agricultural geochemical studies of the rare earth elements. Earth Environ. 1996, 24, 39–43. [Google Scholar]
- Liang, T.; Li, K.; Wang, L. State of rare earth elements in different environmental components in mining areas of China. Environ. Monit. Assess. 2014, 186, 1499–1513. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements In Soils And Plants; CRC Press: London, UK, 2011; p. 505. [Google Scholar]
- McBride, M.B.; Blasiak, J.J. Zinc and Copper Solubility as a Function of pH in an Acid Soil. Soil Sci. Soc. Am. J. 1979, 43, 866–870. [Google Scholar] [CrossRef]
- Hegazy, A.K.; Abdel-Ghani, N.T.; El-Chaghaby, G.A. Adsorption of phenol onto activated carbon from Rhazya stricta: Determination of the optimal experimental parameters using factorial design. Appl. Water Sci. 2014, 4, 273–281. [Google Scholar] [CrossRef]
- Azab, E.; Hegazy, A.K. Monitoring the Efficiency of Rhazya stricta L. Plants in Phytoremediation of Heavy Metal-Contaminated Soil. Plants 2020, 9, 1057. [Google Scholar] [CrossRef] [PubMed]
Element | AV | AO | AP | Birch [38] |
---|---|---|---|---|
Content, % | ||||
Al | 0.1 ± 0.001 | 0.03 ± 0.001 | 0.13 ± 0.006 | 0.0027 |
Ca | 1.06 ± 0.02 | 0.84 ± 0.015 | 1.06 ± 0.02 | 1.1 |
Fe | 0.05 ± 0.001 | 0.02 ± 0.001 | 0.08 ± 0.001 | 0.0082 |
K | 0.78 ± 0.01 | 1.17 ± 0.021 | 0.87 ± 0.016 | 1.03 |
Mg | 0.34 ± 0.006 | 0.27 ± 0.003 | 0.35 ± 0.004 | 0.394 |
Na | 0.08 ± 0.001 | 0.02 ± 0.001 | 0.09 ± 0.001 | <0.002 |
Si | 0.2 ± 0.001 | 0.11 ± 0.007 | 0.36 ± 0.003 | 0.0118 |
Content, mg·kg−1 | ||||
Ce | 42.68 ± 1.36 | 6.97 ± 0.33 | 28.23 ± 1.57 | - |
La | 22.04 ± 1.56 | 3.11 ± 0.36 | 13.14 ± 2.67 | - |
Mn | 191.13 ± 2.43 | 198.16 ± 4.03 | 285.26 ± 5.08 | 1470 |
Nd | 19.58 ± 2.53 | 3.65 ± 0.28 | 13.07 ± 1.03 | - |
Pr | 5.82 ± 1.76 | 0.96 ± 0.03 | 3.86 ± 1.53 | - |
Sc | 0.48 ± 0.13 | 0.20 ± 0.05 | 0.23 ± 0.02 | <0.03 |
Sm | 2.06 ± 0.29 | 0.21 ± 0.01 | 0.95 ± 0.01 | - |
Sr | 755.64 ± 2.13 | 501.26 ± 6.78 | 373.94 ± 4.02 | 36.4 |
Zn | 348.99 ± 1.75 | 508.67 ± 4.87 | 229.53 ± 5.03 | 205 |
Zr | 30.86 ± 0.97 | 7.00 ± 2.51 | 28.73 ± 3.06 | 0.05 |
Element | AV | AO | AP | Salix sp. [38] |
---|---|---|---|---|
Content, % | ||||
Al | 0.04 ± 0.001 | 0.01 ± 0.001 | 0.01 ± 0.001 | 0.0025 |
Ca | 0.86 ± 0.016 | 1.02 ± 0.02 | 1.09 ± 0.021 | 1.1 |
Fe | 0.03 ± 0.001 | 0.01 ± 0.001 | 0.02 ± 0.001 | 0.0079 |
K | 1.24 ± 0.028 | 0.82 ± 0.015 | 0.43 ± 0.01 | 1.65 |
Mg | 0.1 ± 0.001 | 0.12 ± 0.001 | 0.15 ± 0.001 | 0.301 |
Na | 0.04 ± 0.001 | 0.01 ± 0.001 | 0.01 ± 0.001 | 0.0023 |
Si | 0.17 ± 0.001 | 0.1 ± 0.001 | 0.1 ± 0.001 | 0.0097 |
Content, mg·kg−1 | ||||
Ce | 21.44 ± 1.23 | 1.92 ± 0.12 | 1.47 ± 0.25 | - |
La | 10.19 ± 1.99 | 0.61 ± 0.02 | 0.60 ± 0.01 | - |
Mn | 893.26 ± 4.43 | 396.57 ± 7.07 | 225.76 ± 4.83 | 310 |
Nd | 9.04 ± 1.46 | 0.66 ± 0.02 | 0.45 ± 0.01 | - |
Pr | 2.63 ± 1.25 | 0.22 ± 0.01 | 0.17 ± 0.01 | - |
Sc | 2.52 ± 1.03 | 0.61 ± 0.21 | 1.56 ± 0.74 | <0.03 |
Sm | 0.53 ± 0.01 | 0.10 ± 0.01 | 0.05 ± 0.01 | - |
Sr | 660.11 ± 7.89 | 746.40 ± 10.02 | 536.62 ± 6.49 | 37.3 |
Zn | 679.44 ± 8.05 | 1828.24 ± 44.12 | 183.77 ± 4.38 | 125 |
Zr | 13.89 ± 3.87 | 2.24 ± 0.63 | 4.38 ± 0.03 | 0.04 |
Element | AV | AO | AP | A. flexuosa [39] | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Roots | Leaves | Ears | Roots | Leaves | Ears | Roots | Leaves | Ears | ||
Content, % | ||||||||||
Al | 1.29 ± 0.03 | 0.33 ± 0.004 | 0.05 ± 0.001 | 1.11 ± 0.006 | 0.09 ± 0.001 | 0.15 ± 0.006 | 2.73 ± 0.029 | 0.14 ± 0.004 | 0.03 ± 0 | 0.0032 |
Ca | 0.3 ± 0.004 | 0.33 ± 0.004 | 0.19 ± 0.006 | 0.4 ± 0.005 | 0.18 ± 0.006 | 0.49 ± 0.005 | 1.11 ± 0.022 | 0.29 ± 0.003 | 0.21 ± 0.006 | 0.1454 |
Fe | 0.47 ± 0.005 | 0.14 ± 0.001 | 0.03 ± 0.001 | 0.32 ± 0.003 | 0.05 ± 0.001 | 0.2 ± 0.006 | 1.22 ± 0.006 | 0.09 ± 0.001 | 0.02 ± 0.001 | 0.0061 |
K | 0.84 ± 0.016 | 0.7 ± 0.014 | 0.16 ± 0.004 | 0.38 ± 0.004 | 0.5 ± 0.008 | 0.17 ± 0.004 | 1.05 ± 0.025 | 0.7 ± 0.014 | 0.17 ± 0.004 | 2.062 |
Mg | 0.08 ± 0.001 | 0.12 ± 0.001 | 0.11 ± 0.001 | 0.07 ± 0.001 | 0.05 ± 0.001 | 0.66 ± 0.006 | 0.41 ± 0.004 | 0.12 ± 0.001 | 0.11 ± 0.001 | 0.1078 |
Na | 1.17 ± 0.025 | 0.07 ± 0.001 | 0.05 ± 0.001 | 0.49 ± 0.005 | 0.07 ± 0.001 | 0.07 ± 0.001 | 1.33 ± 0.03 | 0.08 ± 0.001 | 0.03 ± 0.001 | 0.0014 |
Si | 4.03 ± 0.044 | 7.39 ± 0.058 | 6.26 ± 0.058 | 3.85 ± 0.067 | 4.17 ± 0.058 | 4.91 ± 0.058 | 12.86 ± 0.029 | 3.33 ± 0.006 | 6.12 ± 0.031 | - |
Content, mg·kg−1 | ||||||||||
Ce | 373.74 ± 4.38 | 91.84 ± 2.94 | 15.07 ± 1.12 | 431.55 ± 5.37 | 21.43 ± 1.23 | 14.07 ± 1.01 | 50.80 ± 2.01 | 21.64 ± 1.92 | 7.75 ± 2.65 | 0.05 |
La | 171.99 ± 4.03 | 43.19 ± 2.97 | 6.62 ± 1.02 | 209.99 ± 5.07 | 9.59 ± 1.87 | 5.61 ± 1.24 | 20.75 ± 3.05 | 10.26 ± 2.25 | 3.37 ± 1.01 | 0.027 |
Mn | 361.50 ± 6.87 | 180.40 ± 4.32 | 117.79 ± 3.87 | 546.97 ± 6.93 | 115.81 ± 3.67 | 173.07 ± 4.62 | 551.65 ± 7.03 | 92.10 ± 2.53 | 259.48 ± 4.76 | 529 |
Nd | 104.96 ± 3.08 | 24.94 ± 3.05 | 7.06 ± 1.49 | 199.29 ± 3.97 | 8.30 ± 1.22 | 7.37 ± 1.15 | 18.56 ± 2.41 | 9.20 ± 1.58 | 3.37 ± 0.97 | 0.019 |
Pr | 76.34 ± 4.08 | 12.00 ± 1.46 | 2.03 ± 0.69 | 63.85 ± 5.83 | 2.69 ± 1.27 | 1.86 ± 0.98 | 6.47 ± 4.02 | 2.88 ± 1.52 | 0.92 ± 0.05 | 0.005 |
Sc | 8.81 ± 4.01 | 1.72 ± 0.97 | 0.19 ± 0.42 | 6.43 ± 2.03 | 0.51 ± 0.21 | 2.30 ± 0.54 | 6.18 ± 1.23 | 0.53 ± 0.04 | 0.05 ± 0.01 | - |
Sm | 11.70 ± 0.93 | 1.71 ± 0.05 | 0.47 ± 0.01 | 14.48 ± 1.02 | 0.60 ± 0.02 | 0.41 ± 0.01 | 1.53 ± 0.01 | 0.68 ± 0.01 | 0.21 ± 0.01 | - |
Sr | 436.09 ± 5.43 | 272.73 ± 2.09 | 133.96 ± 2.01 | 315.42 ± 3.45 | 210.03 ± 1.84 | 142.50 ± 2.57 | 366.67 ± 4.05 | 62.03 ± 3.02 | 210.48 ± 1.99 | 4.2 |
Zn | 202.78 ± 1.78 | 113.12 ± 1.06 | 74.11 ± 1.02 | 236.99 ± 4.07 | 40.58 ± 7.53 | 75.73 ± 6.34 | 60.41 ± 4.65 | 64.44 ± 3.82 | 111.88 ± 6.49 | 28 |
Zr | 334.37 ± 4.08 | 80.79 ± 7.49 | 14.99 ± 3.83 | 229.01 ± 6.45 | 20.24 ± 3.65 | 94.53 ± 7.5 | 227.76 ± 3.35 | 21.40 ± 4.05 | 7.29 ± 1.36 | - |
Element | AV | AO | AP |
---|---|---|---|
Content, % | |||
Al | 0.15 ± 0.005 | 0.03 ± 0.002 | 0.08 ± 0.002 |
Ca | 1.22 ± 0.03 | 1.21 ± 0.034 | 1.21 ± 0.022 |
Fe | 0.07 ± 0.004 | 0.03 ± 0.002 | 0.07 ± 0.004 |
K | 1.08 ± 0.013 | 0.95 ± 0.013 | 0.66 ± 0.017 |
Mg | 0.31 ± 0.014 | 0.3 ± 0.009 | 0.39 ± 0.016 |
Na | 0.15 ± 0.005 | 0.03 ± 0.002 | 0.04 ± 0.002 |
Si | 0.22 ± 0.013 | 0.14 ± 0.005 | 0.36 ± 0.009 |
Content, mg·kg−1 | |||
Ce | 56.60 ± 2.30 | 11.59 ± 0.59 | 11.86 ± 0.32 |
La | 28.17 ± 0.37 | 4.74 ± 0.36 | 5.08 ± 0.32 |
Mn | 256.58 ± 12.26 | 269.35 ± 16.47 | 288.56 ± 16.24 |
Nd | 15.95 ± 0.58 | 3.33 ± 0.54 | 3.76 ± 0.31 |
Pr | 4.64 ± 0.38 | 0.57 ± 0.14 | 1.02 ± 0.26 |
Sc | 5.46 ± 0.38 | 0.08 ± 0.01 | 1.50 ± 0.08 |
Sm | 2.96 ± 0.29 | 0.57 ± 0.09 | 0.35 ± 0.05 |
Sr | 803.90 ± 46.21 | 808.59 ± 32.38 | 285.35 ± 13.57 |
Zn | 395.20 ± 16.24 | 700.80 ± 37.15 | 425.20 ± 17.39 |
Zr | 52.77 ± 2.82 | 9.99 ± 0.33 | 13.80 ± 0.43 |
Element | AV | AO | AP |
---|---|---|---|
Content, % | |||
Al | 0.06 ± 0.006 | 0.03 ± 0.002 | 0.03 ± 0.001 |
Ca | 0.89 ± 0.024 | 0.96 ± 0.015 | 1.2 ± 0.027 |
Fe | 0.04 ± 0.001 | 0.02 ± 0.002 | 0.02 ± 0.001 |
K | 1.62 ± 0.023 | 1.1 ± 0.029 | 0.51 ± 0.008 |
Mg | 0.09 ± 0.005 | 0.11 ± 0.005 | 0.16 ± 0.006 |
Na | 0.07 ± 0.006 | 0.03 ± 0.003 | 0.02 ± 0.003 |
Si | 0.12 ± 0.008 | 0.3 ± 0.007 | 0.67 ± 0.013 |
Content, mg·kg−1 | |||
Ce | 30.80 ± 1.32 | 5.82 ± 0.44 | 5.97 ± 0.57 |
La | 15.17 ± 0.63 | 1.76 ± 0.32 | 2.33 ± 0.37 |
Mn | 839.90 ± 33.26 | 453.75 ± 20.37 | 259.60 ± 15.46 |
Nd | 9.06 ± 0.70 | 2.22 ± 0.46 | 2.45 ± 0.55 |
Pr | 4.03 ± 0.45 | 0.53 ± 0.10 | 0.27 ± 0.03 |
Sc | 2.00 ± 0.25 | 2.00 ± 0.22 | 2.00 ± 0.15 |
Sm | 1.05 ± 0.28 | 0.26 ± 0.03 | 0.24 ± 0.02 |
Sr | 783.51 ± 23.97 | 793.39 ± 15.26 | 605.21 ± 13.05 |
Zn | 805.00 ± 29.03 | 2110.00 ± 55.59 | 259.60 ± 6.26 |
Zr | 23.69 ± 0.62 | 9.94 ± 0.26 | 5.76 ± 0.46 |
Element | AV | AO | AP | |||
---|---|---|---|---|---|---|
Leaves | Ears | Leaves | Ears | Leaves | Ears | |
Content, % | ||||||
Al | 1.39 ± 0.077 | 0.12 ± 0.007 | 0.27 ± 0.007 | 0.06 ± 0.001 | 1.03 ± 0.012 | 0.07 ± 0.004 |
Ca | 0.27 ± 0.012 | 0.24 ± 0.017 | 0.29 ± 0.008 | 0.27 ± 0.016 | 0.49 ± 0.011 | 0.26 ± 0.012 |
Fe | 1.55 ± 0.022 | 0.1 ± 0.004 | 0.14 ± 0.008 | 0.05 ± 0.003 | 0.51 ± 0.006 | 0.07 ± 0.005 |
K | 1.96 ± 0.047 | 0.21 ± 0.007 | 0.58 ± 0.009 | 0.25 ± 0.006 | 0.92 ± 0.012 | 0.20 ± 0.017 |
Mg | 0.06 ± 0.004 | 0.12 ± 0.01 | 0.06 ± 0.004 | 0.1 ± 0.006 | 0.1 ± 0.005 | 0.11 ± 0.007 |
Na | 1.38 ± 0.032 | 0.12 ± 0.007 | 0.24 ± 0.008 | 0.06 ± 0.002 | 1.05 ± 0.04 | 0.07 ± 0.002 |
Si | 15.7 ± 0.443 | 9.53 ± 0.118 | 6.66 ± 0.033 | 10.25 ± 0.061 | 8.44 ± 0.033 | 6.86 ± 0.031 |
Content, mg·kg−1 | ||||||
Ce | 153.18 ± 4.21 | 39.69 ± 1.17 | 69.40 ± 3.07 | 15.00 ± 0.58 | 272.53 ± 9.01 | 19.21 ± 1.40 |
La | 57.22 ± 1.16 | 18.00 ± 0.59 | 34.46 ± 0.40 | 6.22 ± 0.46 | 133.30 ± 6.27 | 8.16 ± 0.37 |
Mn | 801.90 ± 42.33 | 139.50 ± 5.37 | 220.22 ± 6.91 | 291.95 ± 13.69 | 526.29 ± 20.83 | 202.44 ± 17.62 |
Nd | 47.23 ± 1.09 | 10.20 ± 1.02 | 19.75 ± 0.79 | 4.55 ± 0.47 | 83.59 ± 3.79 | 5.70 ± 1.02 |
Pr | 17.32 ± 0.68 | 3.48 ± 0.87 | 8.94 ± 0.31 | 1.36 ± 0.39 | 35.93 ± 0.37 | 1.86 ± 0.08 |
Sc | 124.05 ± 13.02 | 1.90 ± 0.15 | 9.23 ± 0.21 | 0.90 ± 0.27 | 39.02 ± 1.26 | 0.08 ± 0.01 |
Sm | 6.41 ± 0.17 | 1.72 ± 0.28 | 2.54 ± 0.18 | 0.50 ± 0.06 | 9.37 ± 0.32 | 1.23 ± 0.10 |
Sr | 878.64 ± 37.89 | 171.59 ± 10.69 | 320.75 ± 11.78 | 253.36 ± 12.70 | 660.95 ± 13.07 | 186.52 ± 10.90 |
Zn | 185.80 ± 5.95 | 118.60 ± 4.74 | 77.24 ± 2.41 | 148.80 ± 4.79 | 105.60 ± 4.18 | 110.60 ± 4.87 |
Zr | 189.60 ± 7.03 | 29.35 ± 0.78 | 78.96 ± 1.52 | 13.58 ± 0.61 | 293.09 ± 7.78 | 16.40 ± 0.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krasavtseva, E.; Maksimova, V.; Slukovskaya, M.; Ivanova, T.; Mosendz, I.; Elizarova, I. Accumulation and Translocation of Rare Trace Elements in Plants near the Rare Metal Enterprise in the Subarctic. Toxics 2023, 11, 898. https://doi.org/10.3390/toxics11110898
Krasavtseva E, Maksimova V, Slukovskaya M, Ivanova T, Mosendz I, Elizarova I. Accumulation and Translocation of Rare Trace Elements in Plants near the Rare Metal Enterprise in the Subarctic. Toxics. 2023; 11(11):898. https://doi.org/10.3390/toxics11110898
Chicago/Turabian StyleKrasavtseva, Eugenia, Victoria Maksimova, Marina Slukovskaya, Tatiana Ivanova, Irina Mosendz, and Irina Elizarova. 2023. "Accumulation and Translocation of Rare Trace Elements in Plants near the Rare Metal Enterprise in the Subarctic" Toxics 11, no. 11: 898. https://doi.org/10.3390/toxics11110898
APA StyleKrasavtseva, E., Maksimova, V., Slukovskaya, M., Ivanova, T., Mosendz, I., & Elizarova, I. (2023). Accumulation and Translocation of Rare Trace Elements in Plants near the Rare Metal Enterprise in the Subarctic. Toxics, 11(11), 898. https://doi.org/10.3390/toxics11110898