Association between Urinary BPA Substitutes and Precocious Puberty among Girls: A Single-Exposure and Mixed Exposure Approach from a Chinese Case—Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population and Study Design
2.2. General Information and Physical Examination
2.3. Precocious Puberty Measurement
2.4. Measurement of Bisphenols
2.5. Statistical Analysis
2.5.1. Unconditional Logistic Regression
2.5.2. Bayesian Kernel Machine Regression (BKMR)
2.5.3. Quantile-Based g-Computation
3. Results
3.1. Study Population Characteristics
3.2. Urinary Concentration of Bisphenols
3.3. Logistic Regressions to Evaluate the Association between Bisphenol Exposures and Precocious Puberty
3.4. BKMR to Evaluate the Association of the Mixed Exposure of Bisphenols with Precocious Puberty
3.5. Quantile-Based g-Computation to Evaluate the Association of the Mixed Exposure of Bisphenols with Precocious Puberty
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, D.; Kannan, K.; Tan, H.; Zheng, Z.; Feng, Y.-L.; Wu, Y.; Widelka, M. Bisphenol Analogues Other Than BPA: Environmental Occurrence, Human Exposure, and Toxicity—A Review. Environ. Sci. Technol. 2016, 50, 5438–5453. [Google Scholar] [CrossRef]
- Makarova, K.; Olchowik-Grabarek, E.; Drabikowski, K.; Kurkowiak, J.; Zawada, K. Products of Bisphenol A Degradation Induce Cytotoxicity in Human Erythrocytes (In Vitro). Int. J. Mol. Sci. 2022, 24, 492. [Google Scholar] [CrossRef]
- Lin, Z.; Wang, L.; Jia, Y.; Zhang, Y.; Dong, Q.; Huang, C. A Study on Environmental Bisphenol A Pollution in Plastics Industry Areas. Water Air Soil. Pollut. 2017, 228, 98. [Google Scholar] [CrossRef]
- Konieczna, A.; Rutkowska, A.; Rachoń, D. Health risk of exposure to Bisphenol A (BPA). Rocz. Panstw. Zakl. Hig. 2015, 66, 5–11. [Google Scholar]
- Harnett, K.G.; Moore, L.G.; Chin, A.; Cohen, I.C.; Lautrup, R.R.; Schuh, S.M. Teratogenicity and toxicity of the new BPA alternative TMBPF, and BPA, BPS, and BPAF in chick embryonic development. Curr. Res. Toxicol. 2021, 2, 399–410. [Google Scholar] [CrossRef]
- Perera, L.; Li, Y.; Coons, L.A.; Houtman, R.; van Beuningen, R.; Goodwin, B.; Auerbach, S.S.; Teng, C.T. Binding of bisphenol A, bisphenol AF, and bisphenol S on the androgen receptor: Coregulator recruitment and stimulation of potential interaction sites. Toxicol. Vitr. 2017, 44, 287–302. [Google Scholar] [CrossRef]
- Berger, K.; Eskenazi, B.; Kogut, K.; Parra, K.; Lustig, R.H.; Greenspan, L.C.; Holland, N.; Calafat, A.M.; Ye, X.; Harley, K.G. Association of Prenatal Urinary Concentrations of Phthalates and Bisphenol A and Pubertal Timing in Boys and Girls. Environ. Health Perspect. 2018, 126, 097004. [Google Scholar] [CrossRef]
- Chen, L.H.; Shi, J.R.; Fang, Y.L.; Liang, L.; Chen, W.Q.; Chen, X.Z. Serum bisphenol A concentration and premature thelarche in female infants aged 4-month to 2-year. Indian. J. Pediatr. 2015, 82, 221–224. [Google Scholar] [CrossRef]
- Durmaz, E.; Asci, A.; Erkekoglu, P.; Balcı, A.; Bircan, I.; Koçer-Gumusel, B. Urinary bisphenol A levels in Turkish girls with premature thelarche. Hum. Exp. Toxicol. 2018, 37, 1007–1016. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Ding, G.; Tian, Y.; Zhou, Z.; Wang, X.; Shen, L.; Huang, H. Association between bisphenol a exposure and idiopathic central precocious puberty (ICPP) among school-aged girls in Shanghai, China. Environ. Int. 2018, 115, 410–416. [Google Scholar] [CrossRef]
- Barroso, J. Commission Directive 2011/8/EU of 28 January 2011 amending Directive 2002/72/EC as regards the restriction of use of bisphenol A in plastic infant feeding bottles. Off. J. Eur. Union 2011, 11–14. [Google Scholar]
- European Food Safety Authority. Report on the Two-Phase Public Consultation on the Draft EFSA Scientific Opinion on Bisphenol A (BPA). EFSA Support. Publ. 2015, 12, 272. [Google Scholar] [CrossRef]
- Food Drug Administration. Indirect food additives: Polymers. Fed. Reg. 2012, 77, 41899–41902. [Google Scholar]
- Food Drug Administration. Indirect food additives: Adhesives and components of coatings. Fed. Regist. 2013, 78, 41840–41843. [Google Scholar]
- Bardelline, J. China, Malaysia Become Latest Nations to Ban BPA; Greener Design: 2011. Available online: https://www.greenbiz.com/article/china-malaysia-become-latest-nations-ban-bpa (accessed on 1 November 2023).
- Gramec Skledar, D.; Peterlin Mašič, L. Bisphenol A and its analogs: Do their metabolites have endocrine activity? Environ. Toxicol. Pharmacol. 2016, 47, 182–199. [Google Scholar] [CrossRef]
- Wang, Y.; Aimuzi, R.; Nian, M.; Zhang, Y.; Luo, K.; Zhang, J. Bisphenol A substitutes and sex hormones in children and adolescents. Chemosphere 2021, 278, 130396. [Google Scholar] [CrossRef]
- Ahsan, N.; Ullah, H.; Ullah, W.; Jahan, S. Comparative effects of Bisphenol S and Bisphenol A on the development of female reproductive system in rats; a neonatal exposure study. Chemosphere 2018, 197, 336–343. [Google Scholar] [CrossRef]
- Ullah, A.; Pirzada, M.; Jahan, S.; Ullah, H.; Shaheen, G.; Rehman, H.; Siddiqui, M.F.; Butt, M.A. Bisphenol A and its analogs bisphenol B, bisphenol F, and bisphenol S: Comparative in vitro and in vivo studies on the sperms and testicular tissues of rats. Chemosphere 2018, 209, 508–516. [Google Scholar] [CrossRef]
- Shi, M.; Sekulovski, N.; MacLean, J.A., II; Whorton, A.; Hayashi, K. Prenatal Exposure to Bisphenol A Analogues on Female Reproductive Functions in Mice. Toxicol. Sci. 2019, 168, 561–571. [Google Scholar] [CrossRef]
- Mi, P.; Tang, Y.-Q.; Feng, X.-Z. Acute fluorene-9-bisphenol exposure damages early development and induces cardiotoxicity in zebrafish (Danio rerio). Ecotoxicol. Environ. Saf. 2020, 202, 110922. [Google Scholar] [CrossRef]
- Wan, F.; Colditz, G.A.; Sutcliffe, S. Matched Versus Unmatched Analysis of Matched Case-Control Studies. Am. J. Epidemiol. 2021, 190, 1859–1866. [Google Scholar] [CrossRef]
- Asimakopoulos, A.G.; Wang, L.; Thomaidis, N.S.; Kannan, K. A multi-class bioanalytical methodology for the determination of bisphenol A diglycidyl ethers, p-hydroxybenzoic acid esters, benzophenone-type ultraviolet filters, triclosan, and triclocarban in human urine by liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2014, 1324, 141–148. [Google Scholar]
- Bobb, J.F.; Valeri, L.; Claus Henn, B.; Christiani, D.C.; Wright, R.O.; Mazumdar, M.; Godleski, J.J.; Coull, B.A. Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures. Biostatistics 2015, 16, 493–508. [Google Scholar] [CrossRef]
- Keil, A.P.; Buckley, J.P.; O’Brien, K.M.; Ferguson, K.K.; Zhao, S.; White, A.J. A Quantile-Based g-Computation Approach to Addressing the Effects of Exposure Mixtures. Env. Environ. Health Perspect. 2020, 128, 47004. [Google Scholar] [CrossRef]
- Bigambo, F.M.; Sun, H.; Yan, W.; Wu, D.; Xia, Y.; Wang, X.; Wang, X. Association between phenols exposure and earlier puberty in children: A systematic review and meta-analysis. Env. Environ. Res. 2020, 190, 110056. [Google Scholar] [CrossRef]
- Bigambo, F.M.; Zhang, M.; Zhang, J.; Yang, X.; Yu, Q.; Wu, D.; Wang, X.; Xia, Y. Exposure to a mixture of personal care product and plasticizing chemicals in relation to reproductive hormones and menarche timing among 12–19 years old girls in NHANES 2013–2016. Food Chem Toxicol 2022, 170, 113463. [Google Scholar] [CrossRef]
- Jung, M.K.; Choi, H.S.; Suh, J.; Kwon, A.; Chae, H.W.; Lee, W.J.; Yoo, E.G.; Kim, H.S. The analysis of endocrine disruptors in patients with central precocious puberty. BMC Pediatr. 2019, 19, 323. [Google Scholar] [CrossRef]
- Meng, H.; Zhou, Y.; Jiang, Y. Association of bisphenol A with puberty timing: A meta-analysis. Rev. Env. Environ. Health 2020, 36, 459–466. [Google Scholar] [CrossRef]
- Zeng, J.Y.; Chen, P.P.; Liu, C.; Deng, Y.L.; Miao, Y.; Zhang, M.; Cui, F.P.; Lu, T.T.; Shi, T.; Yang, K.D.; et al. Bisphenol A analogues in associations with serum hormone levels among reproductive-aged Chinese men. Environ. Int. 2022, 167, 107446. [Google Scholar] [CrossRef]
- Zhang, C.; Luo, Y.; Qiu, S.; Huang, X.; Jin, K.; Li, J.; Yang, M.; Hu, D.; Zheng, X.; Jiang, Z.; et al. Associations between urinary concentrations of bisphenols and serum concentrations of sex hormones among US. Males. Environ. Health 2022, 21, 135. [Google Scholar] [CrossRef]
- Qiu, W.; Liu, S.; Chen, H.; Luo, S.; Xiong, Y.; Wang, X.; Xu, B.; Zheng, C.; Wang, K.J. The comparative toxicities of BPA, BPB, BPS, BPF, and BPAF on the reproductive neuroendocrine system of zebrafish embryos and its mechanisms. J. Hazard. Mater. 2021, 406, 124303. [Google Scholar] [CrossRef]
- Shi, M.; Sekulovski, N.; MacLean, J.A.; Hayashi, K. Effects of bisphenol A analogues on reproductive functions in mice. Reprod. Toxicol. 2017, 73, 280–291. [Google Scholar] [CrossRef]
- Shi, M.; Whorton, A.E.; Sekulovski, N.; MacLean, J.A., II; Hayashi, K. Prenatal Exposure to Bisphenol A, E, and S Induces Transgenerational Effects on Female Reproductive Functions in Mice. Toxicol. Sci. 2019, 170, 320–329. [Google Scholar] [CrossRef]
- Ullah, H.; Ullah, F.; Rehman, O.; Jahan, S.; Afsar, T.; Al-Disi, D.; Almajwal, A.; Razak, S. Chronic exposure of bisphenol S (BPS) affect hypothalamic-pituitary-testicular activities in adult male rats: Possible in estrogenic mode of action. Environ. Health Prev. Med. 2021, 26, 31. [Google Scholar] [CrossRef]
- Dankers, A.C.A.; Roelofs, M.J.E.; Piersma, A.H.; Sweep, F.C.G.J.; Russel, F.G.M.; van den Berg, M.; van Duursen, M.B.M.; Masereeuw, R. Endocrine Disruptors Differentially Target ATP-Binding Cassette Transporters in the Blood-Testis Barrier and Affect Leydig Cell Testosterone Secretion In Vitro. Toxicol. Sci. 2013, 136, 382–391. [Google Scholar] [CrossRef]
- Samuelsen, M.; Olsen, C.; Holme, J.A.; Meussen-Elholm, E.; Bergmann, A.; Hongslo, J.K. Estrogen-like properties of brominated analogs of bisphenol A in the MCF-7 human breast cancer cell line. Cell Biol. Toxicol. 2004, 17, 139–151. [Google Scholar] [CrossRef]
- Kitamura, S.; Suzuki, T.; Sanoh, S.; Kohta, R.; Jinno, N.; Sugihara, K.; Yoshihara, S.i.; Fujimoto, N.; Watanabe, H.; Ohta, S. Comparative Study of the Endocrine-Disrupting Activity of Bisphenol A and 19 Related Compounds. Toxicol. Sci. 2005, 84, 249–259. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, W.; Chen, B.; He, J.; Chen, F.; Shan, X.; Du, Q.; Li, N.; Jia, X.; Tang, J. Differences in reproductive toxicity of TBBPA and TCBPA exposure in male Rana nigromaculata. Env. Environ. Pollut. 2018, 243, 394–403. [Google Scholar] [CrossRef]
- Oral, D.; Balci, A.; Chao, M.W.; Erkekoglu, P. Toxic Effects of Tetrabromobisphenol A: Focus on Endocrine Disruption. J. Env. Environ. Pathol. Toxicol. Oncol. 2021, 40, 1–23. [Google Scholar] [CrossRef]
- von Krogh, K.; Ropstad, E.; Nourizadeh-Lillabadi, R.; Haug, T.M.; Weltzien, F.-A. In Vitro Effects of Bisphenol A and Tetrabromobisphenol A on Cell Viability and Reproduction-Related Gene Expression in Pituitaries from Sexually Maturing Atlantic Cod (Gadus morhua L.). Fishes 2019, 4, 48. [Google Scholar] [CrossRef]
- Jiao, X.-F.; Liang, Q.-M.; Wu, D.; Ding, Z.-M.; Zhang, J.-Y.; Chen, F.; Wang, Y.-S.; Zhang, S.-X.; Miao, Y.-L.; Huo, L.-J. Effects of Acute Fluorene-9-Bisphenol Exposure on Mouse Oocyte in vitro Maturation and Its Possible Mechanisms. Environ. Mol. Mutagen. 2019, 60, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Hu, Y.; Guo, J.; Yu, T.; Sun, L.; Xiao, X.; Zhu, D.; Nakanishi, T.; Hiromori, Y.; Li, J. Fluorene-9-bisphenol is anti-oestrogenic and may cause adverse pregnancy outcomes in mice. Nat. Commun. 2017, 8, 14585. [Google Scholar] [CrossRef] [PubMed]
- Okamura, H.; Tsukamura, H.; Ohkura, S.; Uenoyama, Y.; Wakabayashi, Y.; Maeda, K.-I. Kisspeptin and GnRH pulse generation. Kisspeptin Signal. Reprod. Biol. 2013, 297–323. [Google Scholar]
Variables | Cases (N = 120) | Control (N = 145) | p Value |
---|---|---|---|
Age Mean (SD) | 7.73 (1.09) | 6.96 (0.53) | 1.000 |
Race | |||
Han | 117 (97.50) | 129 (98.47) | 0.459 * |
Others | 3 (2.50) | 2 (1.53) | |
Missing | 0 | 14 | |
Residential area | 0.002 | ||
City | 89 (74.79) | 117 (90.70) | |
Township | 21 (17.65) | 6 (4.65) | |
Countryside | 9 (7.56) | 6 (4.65) | |
Missing | 1 | 16 | |
Guardian education | 0.007 * | ||
Elementary school or below | 2 (1.75) | 0 (0.00) | |
Junior high school | 31 (27.19) | 18 (14.52) | |
High school/technical school | 26 (22.81) | 21 (16.94) | |
College/vocational college | 21 (18.42) | 42 (33.87) | |
University | 34 (29.82) | 43 (34.68) | |
Missing | 6 | 21 | |
Para | 0.001 | ||
1 child | 102 (89.47) | 86 (72.27) | |
≥2 children | 12 (10.53) | 33 (27.73) | |
Missing | 6 | 26 | |
Delivery method | 0.877 | ||
Natural birth | 62 (51.67) | 72 (50.70) | |
Cesarean section | 58 (48.33) | 70 (49.30) | |
Missing | 0 | 3 | |
Preterm birth | 0.212 | ||
Yes | 10 (8.40) | 6 (4.55) | |
No | 109 (91.63) | 126 (95.45) | |
Missing | 1 | 13 | |
Child BMI (kg/m2) | 17.84 (10.39) | 16.50 (3.64) | 0.917 |
Mother BMI (kg/m2) | 22.63 (3.90) | 24.03 (8.02) | 0.041 |
Father BMI (kg/m2) | 25.90 (8.74) | 26.63 (7.32) | 0.235 |
Missing | 1 | ||
Mother’s early history of puberty | |||
Yes | 2 (1.67) | 1 (1.08) | 1.000 * |
No | 118 (98.33) | 92 (98.92) | |
Missing | 0 | 52 | |
Father’s early history of puberty | 0.105 * | ||
Yes | 3 (2.50) | 0 (0.00) | |
No | 117 (97.50) | 133 (100.00) | |
Missing | 0 | 12 | |
Feeding method after birth | 0.440 | ||
Breastfeeding | 55 (46.61) | 59 (41.55) | |
Formula | 19 (16.10) | 19 (13.38) | |
Mixed feeding | 44 (37.29) | 64 (45.07) | |
Missing | 2 | 3 | |
Fried food | 0.670 | ||
Yes | 84 (71.19) | 81 (68.64) | |
No | 34 (28.81) | 37 (31.36) | |
Missing | 2 | 27 | |
Desserts | 0.441 | ||
Yes | 107 (92.24) | 118 (89.39) | |
No | 9 (7.76) | 14 (10.61) | |
Missing | 4 | 13 | |
Soft drinks | 0.244 | ||
Yes | 60 (50.85) | 47 (43.12) | |
No | 58 (49.15) | 62 (56.88) | |
Missing | 2 | 36 | |
Child sleeping hours (24 h) | 8.89 (1.46) | 9.15 (0.67) | 0.028 |
Missing | 4 | 2 | |
Child Snore | 0.611 * | ||
Never | 37 (31.62) | 56 (39.44) | |
Only on cold or allergy | 32 (27.35) | 33 (23.24) | |
Sometimes | 45 (38.46) | 49 (34.51) | |
Always | 3 (2.56) | 4 (2.82) | |
Missing | 3 | 3 | |
Time on screening devices per day | 0.716 * | ||
Never | 17 (14.66) | 27 (18.88) | |
<30 min | 49 (42.24) | 65 (45.45) | |
30–60 min | 26 (22.41) | 28 (19.58) | |
1–2 h | 22 (18.97) | 20 (13.99) | |
>2 h | 2 (1.72) | 3 (2.10) | |
Missing | 4 | 2 | |
Time spent in outdoor activities | 0.011 * | ||
None | 1 (0.85) | 1 (0.70) | |
Rarely | 24 (20.51) | 20 (14.08) | |
Often but less than 1 h | 58 (49.57) | 51 (35.92) | |
1–3 h | 28 (23.93) | 62 (43.66) | |
More than 3 h | 6 (5.13) | 8 (5.63) | |
Missing | 3 | 3 | |
The intensity of outdoor activities | 0.484 | ||
High | 32 (27.59) | 31 (21.83) | |
Moderate | 67 (57.76) | 92 (64.79) | |
Low | 17 (14.66) | 19 (13.38) | |
Missing | 4 | 3 | |
Secondhand smoke exposure | 0.766 | ||
None | 63 (53.85) | 69 (47.92) | |
Several times a month but less than once a week | 20 (17.09) | 31 (21.53) | |
Several times a week but less than once a day | 17 (14.53) | 22 (15.28) | |
Almost everyday | 17 (14.53) | 22 (15.28) | |
Missing | 3 | 1 |
Bisphenols (ng/mL) | Group | LOD (ng/mL) | Detection Rate (%) | GM | Percentiles | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Min | 5 | 25 | 50 | 75 | 95 | Max | |||||
BPA | Cases | 0.05 | 99.31 | 0.66 | 0.04 | 0.24 | 0.39 | 0.60 | 1.08 | 2.67 | 8.60 |
Control | 0.05 | 98.33 | 0.86 | 0.04 | 0.32 | 0.56 | 0.82 | 1.27 | 3.20 | 15.75 | |
BPS | Cases | 0.05 | 95.86 | 1.32 | 0.04 | 0.16 | 0.48 | 1.07 | 2.76 | 26.83 | 497.5 |
Control | 0.05 | 99.17 | 0.76 | 0.03 | 0.07 | 0.20 | 0.69 | 1.94 | 18.29 | 55.58 | |
BPAF | Cases | 0.01 | 49.66 | 0.08 | <0.01 | 0.01 | 0.01 | 0.03 | 0.90 | 10.28 | 18.54 |
Control | 0.01 | 58.33 | 0.06 | <0.01 | 0.01 | 0.01 | 0.01 | 0.70 | 7.04 | 32.77 | |
BPAP | Cases | 0.05 | 59.31 | 0.14 | 0.01 | 0.02 | 0.04 | 0.11 | 0.47 | 2.35 | 4.99 |
Control | 0.05 | 59.17 | 0.11 | <0.01 | 15.28 | 0.01 | 0.04 | 0.08 | 0.39 | 1.85 | |
BPB | Cases | 0.05 | 100.00 | 0.33 | 0.05 | 0.09 | 0.18 | 0.28 | 0.53 | 2.21 | 3.89 |
Control | 0.05 | 99.17 | 0.32 | 0.06 | 5.65 | 0.09 | 0.15 | 0.30 | 0.60 | 1.78 | |
TBBPA | Cases | 0.05 | 73.10 | 0.48 | <0.01 | 0.02 | 0.14 | 0.43 | 2.14 | 15.90 | 653.00 |
Control | 0.05 | 85.00 | 0.27 | <0.01 | 38.10 | <0.01 | 0.04 | 0.34 | 1.24 | 10.97 | |
TBBPS | Cases | 0.08 | 11.03 | 0.07 | 0.01 | 0.06 | 0.06 | 0.06 | 0.06 | 0.40 | 80.79 |
Control | 0.08 | 11.67 | 0.07 | <0.01 | 21.32 | 0.06 | 0.06 | 0.06 | 0.06 | 0.56 | |
BPFL | Cases | 0.01 | 89.66 | 0.39 | 0.01 | 0.02 | 0.12 | 0.34 | 1.44 | 8.00 | 16.17 |
Control | 0.01 | 97.50 | 0.25 | <0.01 | 0.01 | 0.05 | 0.30 | 1.02 | 4.39 | 35.57 |
Bisphenols | Precocious Puberty | |||
---|---|---|---|---|
Univariate Logistic Regression | Multivariate Logistic Regression | |||
OR (95% CI) | p Value | OR (95% CI) | p Value | |
BPA | 0.39 (0.19, 0.80) | 0.012 | 0.44 (0.17, 1.10) | 0.082 |
BPS | 1.59 (1.13, 2.27) | 0.008 | 1.75 (1.13, 2.76) | 0.014 |
BPAF | 1.10 (0.89, 1.35) | 0.385 | 1.24 (0.95, 1.62) | 0.113 |
BPAP | 1.18 (0.84, 1.67) | 0.341 | 1.45 (0.93, 2.29) | 0.108 |
BPB | 1.10 (0.62, 1.95) | 0.746 | 1.42 (0.69, 2.93) | 0.341 |
TBBPA | 1.29 (1.01, 1.65) | 0.045 | 1.46 (1.06, 2.05) | 0.023 |
BPFL | 1.29 (0.97, 1.73) | 0.082 | 1.47 (1.01, 2.18) | 0.047 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bigambo, F.M.; Wang, D.; Sun, J.; Ding, X.; Li, X.; Gao, B.; Wu, D.; Gu, W.; Zhang, M.; Wang, X. Association between Urinary BPA Substitutes and Precocious Puberty among Girls: A Single-Exposure and Mixed Exposure Approach from a Chinese Case—Control Study. Toxics 2023, 11, 905. https://doi.org/10.3390/toxics11110905
Bigambo FM, Wang D, Sun J, Ding X, Li X, Gao B, Wu D, Gu W, Zhang M, Wang X. Association between Urinary BPA Substitutes and Precocious Puberty among Girls: A Single-Exposure and Mixed Exposure Approach from a Chinese Case—Control Study. Toxics. 2023; 11(11):905. https://doi.org/10.3390/toxics11110905
Chicago/Turabian StyleBigambo, Francis Manyori, Dandan Wang, Jian Sun, Xinliang Ding, Xiuzhu Li, Beibei Gao, Di Wu, Wei Gu, Mingzhi Zhang, and Xu Wang. 2023. "Association between Urinary BPA Substitutes and Precocious Puberty among Girls: A Single-Exposure and Mixed Exposure Approach from a Chinese Case—Control Study" Toxics 11, no. 11: 905. https://doi.org/10.3390/toxics11110905
APA StyleBigambo, F. M., Wang, D., Sun, J., Ding, X., Li, X., Gao, B., Wu, D., Gu, W., Zhang, M., & Wang, X. (2023). Association between Urinary BPA Substitutes and Precocious Puberty among Girls: A Single-Exposure and Mixed Exposure Approach from a Chinese Case—Control Study. Toxics, 11(11), 905. https://doi.org/10.3390/toxics11110905