Exposure to Volatile Organic Compounds in Paint Production Plants: Levels and Potential Human Health Risks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Sampling Method
2.3. Sample Preparation and Analysis
2.4. Quality Control (QC)/Quality Assurance (QA)
2.5. Health Risk Assessment
Parameter | Values | Data Collection |
---|---|---|
Exposure time to VOCs (hours/days)—ET | 8 | Questionnaire |
Exposure frequency (day/year)—EF | 300 | Questionnaire |
Exposure duration(years)—ED | 30 | USEPA, 2002 [25] |
Lifetime (day)—LT | 25,600 | USEPA, 2011 [28] |
Inhalation rate (m3 day−1)—IR | 16 | USEPA, 2011 [25] |
Body weight (kg)—BW | 72 ± 9.42 | Questionnaire |
Average lifetime (hours)—AT | 33,650 | USEPA, 2011 [28] |
Agent | RFC (mg m−3) | Cancer Slop Factor (mg kg−1 day−1) | USEPA/IARC Class | Reference |
---|---|---|---|---|
Benzene | 0.03 | 0.029 | A | IRIS a |
Toluene | 5 | … | IRIS | |
Ethylbenzene | 1 | 0.0087 | 2B | IRIS |
m,p-Xylene | 0.1 | … | IRIS | |
Styrene | 1 | 5.7 × 10−4 | 2B | CEP b |
n-Hexane | 0.7 | … | IRIS | |
n-Heptane | 0.4 | … | IRIS | |
n-Nonane | 0.02 | … | IRIS | |
Trichloroethylene | 0.002 | 1.1 × 10−2 | 2A | IRIS |
Tetrachloroethylene | 0.04 | 2.07 × 10−2 | 2A | IRIS |
n-Butyl acetate | 1.429 | … | WHO c | |
n-Octane | 1.111 | … | MHLW d | |
n-Decane | 0.836 | … | Sagunski and Mangelsdorf [29] | |
Dichlorofluoromethane | 0.330 | … | IRIS | |
Acetone | 56 | … | OECD e |
3. Statistical Analysis
4. Result and Discussion
4.1. Levels of the VOCs in the Personal Air in the Paint Factories
4.2. Health Risk Assessment
5. Conclusions and Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agenson, K.O.; Oh, J.-I.; Urase, T. Retention of a wide variety of organic pollutants by different nanofiltration/reverse osmosis membranes: Controlling parameters of process. J. Membr. Sci. 2003, 225, 91–103. [Google Scholar] [CrossRef]
- Aghaei, H.; Kakooei, H.; Shahtaheri, S.J.; Omidi, F.; Arefian, S.; Azam, K. Evaluating Poly-Aromatic Hydrocarbons in respiratory zone of the asphalt workers in Tehran city. Saf. Health Work 2014, 3, 31–40. [Google Scholar]
- Jones, D.; Brischke, C. Performance of Bio-based Building Materials; Cost European Corporation in Science and Technology, Woodhead Publishing: Sawston, UK, 2017; Volume 7. [Google Scholar]
- Carbonell, J.C. Pinturas y Barnices: Tecnología Básica; Ediciones Díaz de Santos: Madrid, Spain, 2014; Volume 2. [Google Scholar]
- Edokpolo, B.; Yu, Q.J.; Connell, D. Health Risk Assessment of Ambient Air Concentrations of Benzene, Toluene and Xylene (BTX) in Service Station Environments. Int. J. Environ. Res. Public Health 2014, 11, 6354–6374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tunsaringkarn, T.; Siriwong, W.; Rungsiyothin, A.; Nopparatbundit, S. Occupational exposure of gasoline station workers to BTEX compounds in Bangkok, Thailand. Int. J. Occup. Environ. Med. 2012, 3, 117–125. [Google Scholar]
- Lloyd-Smith, M. Underground Coal Gasification (UCG). National Toxics Network. November 2015. Available online: https://ntn.org.au/wp-content/uploads/2015/11/Nov-Underground-Coal-Gasification-Nov-2015f-1 (accessed on 9 December 2022).
- Lyon, F. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Some Industrial Chemicals; WHO: Geneva, Switzerland, 1994; Volume 60, pp. 389–433. [Google Scholar]
- Fang, L.; Norris, C.; Johnson, K.; Cui, X.; Sun, J.; Teng, Y.; Tian, E.; Xu, W.; Li, Z.; Mo, J.; et al. Toxic volatile organic compounds in 20 homes in Shanghai: Concentrations, inhalation health risks, and the impacts of household air cleaning. Build. Environ. 2019, 157, 309–318. [Google Scholar] [CrossRef]
- Mo, Z.; Lu, S.; Shao, M. Volatile organic compound (VOC) emissions and health risk assessment in paint and coatings industry in the Yangtze River Delta, China. Environ. Pollut. 2020, 269, 115740. [Google Scholar] [CrossRef]
- Hosseini, S.; Rezazadeh-azari, M.A.; Taiefeh-Rahimian, R.A.; Tavakkol, E. Occupational risk assessment of benzene in rubber tire manufacturing workers. Int. J. Occup. Hyg. 2014, 6, 220–226. [Google Scholar]
- Shuai, J.; Kim, S.; Ryu, H.; Park, J.; Lee, C.K.; Kim, G.-B.; Ultra, V.U., Jr.; Yang, W. Health risk assessment of volatile organic compounds exposure near Daegu dyeing industrial complex in South Korea. BMC Public Health 2018, 18, 528. [Google Scholar] [CrossRef] [Green Version]
- Golbabaie, F.; Eskandari, D.; Rezazade Azari, M.; Jahangiri, M.; Rahimi, M.; Shahtaheri, J. Health risk assessment of chemical pollutants in a petrochemical complex. Iran Occup. Health 2012, 9, 11–21. [Google Scholar]
- Guo, H.; Lee, S.; Chan, L.; Li, W. Risk assessment of exposure to volatile organic compounds in different indoor environments. Environ. Res. 2004, 94, 57–66. [Google Scholar] [CrossRef]
- Nieuwenhuijsen, M.; Paustenbach, D.; Duarte-Davidson, R. New developments in exposure assessment: The impact on the practice of health risk assessment and epidemiological studies. Environ. Int. 2006, 32, 996–1009. [Google Scholar] [CrossRef]
- Hu, R.; Liu, G.; Zhang, H.; Xue, H.; Wang, X. Levels, characteristics and health risk assessment of VOCs in different functional zones of Hefei. Ecotoxicol. Environ. Saf. 2018, 160, 301–307. [Google Scholar] [CrossRef]
- Jia, C.; Fu, X.; Chauhan, B.; Xue, Z.; Kedia, R.J.; Mishra, C.S. Exposure to volatile organic compounds (VOCs) at gas stations: A probabilistic analysis. Air Qual. Atmos. Health 2022, 15, 465–477. [Google Scholar] [CrossRef]
- He, Z.; Li, G.; Chen, J.; Huang, Y.; An, T.; Zhang, C. Pollution characteristics and health risk assessment of volatile organic compounds emitted from different plastic solid waste recycling workshops. Environ. Int. 2015, 77, 85–94. [Google Scholar] [CrossRef]
- Jo, W.-K.; Park, K.-H. Heterogeneous photocatalysis of aromatic and chlorinated volatile organic compounds (VOCs) for non-occupational indoor air application. Chemosphere 2004, 57, 555–565. [Google Scholar] [CrossRef]
- Qi, Y.-J.; Ni, J.-W.; Zhao, D.-X.; Yang, Y.; Han, L.-Y.; Li, B.-W. Emission Characteristics and Risk Assessment of Volatile Organic Compounds from Typical Factories in Zhengzhou. Huan Jing Ke Xue 2020, 41, 3056–3065. [Google Scholar]
- de Oliveira, H.M.; Dagostim, G.P.; da Silva Mota, A.; Tavares, P.; da Rosa, L.A.; de Andrade, V.M. Occupational risk assessment of paint industry workers. Indian J. Occup. Environ. Med. 2011, 15, 52. [Google Scholar]
- Jiménez-López, A.M.; Hincapié-Llanos, G.A. Identification of factors affecting the reduction of VOC emissions in the paint industry: Systematic literature review-SLR. Prog. Org. Coat. 2022, 170, 106945. [Google Scholar] [CrossRef]
- Olayemi, S.O. Human capital investment and industrial productivity in Nigeria. Int. J. Humanit. Soc. Sci. 2012, 2, 298–307. [Google Scholar]
- Means, B. Risk-Assessment Guidance for Superfund. Volume Human Health Evaluation Manual. Part A. Interim Report (Final); Office of Solid Waste and Emergency Response; Environmental Protection Agency: Washington, DC, USA, 1989. [Google Scholar]
- United States Environmental Protection Agency (US EPA). Exposure Factors Handbook, Edition (Final); Office of the Emergency and Remedial Response: Washington, DC, USA, 2011.
- Ribani, M.; Bottoli, C.B.; Collins, C.H.; Jardim, I.C.; Melo, L.F. Validação em métodos cromatográficos e eletroforéticos. Química Nova 2004, 27, 771–780. [Google Scholar] [CrossRef] [Green Version]
- Lamplugh, A.D. Volatile Organic Compounds: Exposure and Mitigation in Colorado Nail Salons. Ph.D. Thesis, University of Colorado at Boulder, Boulder, CO, USA, 2019. [Google Scholar]
- United States Environmental Protection Agency (US EPA). Supplemental Guidance for Developing Soil Screen-ing Levels for Superfund Sites; Oficce of Emergency and Remedial Response: Washington, DC, USA, 2002.
- Sagunski, H.; Mangelsdorf, I. Richtwerte für die Innenraumluft: Aromatenarme Kohlenwasserstoffgemische (C9–C14). Bundesgesundheitsblatt Gesundh. Gesundh. 2005, 48, 803–812. [Google Scholar] [CrossRef] [PubMed]
- Omidi, F.; Fallahzadeh, R.A.; Dehghani, F.; Harati, B.; Barati, C.S.; Gharibi, V. Carcinogenic and non-carcinogenic risk assessment of exposure to volatile organic compounds (BTEX) using Monte-Carlo simulation technique in a steel industry. Saf. Health Work 2018, 8, 299–308. [Google Scholar]
- Dehghani, F.; Golbabaei, F.; Abolfazl Zakerian, S.; Omidi, F.; Mansournia, M.A. Health risk assessment of exposure to volatile organic compounds (BTEX) in a painting unit of an automotive industry. Saf. Health Work 2018, 8, 55–64. [Google Scholar]
- Tong, R.; Ma, X.; Zhang, Y.; Shao, G.; Shi, M. Source analysis and health risk-assessment of ambient volatile organic compounds in automobile manufacturing processes. Hum. Ecol. Risk Assess. Int. J. 2018, 26, 359–383. [Google Scholar] [CrossRef]
- Chuang, Y.S.; Lee, C.Y.; Lin, P.C.; Pan, C.H.; Hsieh, H.M.; Wu, C.F.; Wu, M.T. Breast cancer incidence in a national cohort of female workers exposed to special health hazards in Taiwan: A retrospective case-cohort study of ~300,000 occupational records spanning 20 years. Int. Arch. Occup. Environ. Health 2022, 95, 1979–1993. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Mu, Y.; Liu, J.; Mellouki, A. Levels, sources and health risks of carbonyls and BTEX in the ambient air of Beijing, China. J. Environ. Sci. 2012, 24, 124–130. [Google Scholar] [CrossRef]
- Chen, W.-H.; Chen, Z.-B.; Yuan, C.-S.; Hung, C.-H.; Ning, S.-K. Investigating the differences between receptor and dispersion modeling for concentration prediction and health risk assessment of volatile organic compounds from petrochemical industrial complexes. J. Environ. Manag. 2016, 166, 440–449. [Google Scholar] [CrossRef]
- Cui, P.; Schito, G.; Cui, Q. VOC emissions from asphalt pavement and health risks to construction workers. J. Clean. Prod. 2020, 244, 118757. [Google Scholar] [CrossRef]
- Mo, Z.; Shao, M.; Lu, S.; Qu, H.; Zhou, M.; Sun, J.; Gou, B. Process-specific emission characteristics of volatile organic compounds (VOCs) from petrochemical facilities in the Yangtze River Delta, China. Sci. Total Environ. 2015, 533, 422–431. [Google Scholar] [CrossRef]
- Lan, Q.; Zhang, L.; Li, G.; Vermeulen, R.; Weinberg, R.S.; Dosemeci, M.; Rappaport, S.M.; Shen, M.; Alter, B.P.; Wu, Y.; et al. Hematotoxicity in Workers Exposed to Low Levels of Benzene. Science 2004, 306, 1774–1776. [Google Scholar] [CrossRef] [Green Version]
- Aliyu, A.A.; Shehu, A.U. Occupational hazards and safety measures among stone quarry workers in northern Nigeria. Niger. Med. Pract. 2007, 50, 42–47. [Google Scholar] [CrossRef]
- Firoozeh, M.; Kavousi, A.; Hasanzadeh, S. Evaluation of relationship between occupational exposure to organic solvent and fatigue workers at a paint factory in Saveh city. Iran Occup. Health 2017, 14, 82–92. [Google Scholar]
- Liao, Q.; Zhang, Y.; Ma, R.; Zhang, Z.; Ji, P.; Xiao, M.; Du, R.; Liu, X.; Cui, Y.; Xing, X.; et al. Risk assessment and dose-effect of co-exposure to benzene, toluene, ethylbenzene, xylene, and styrene (BTEXS) on pulmonary function: A cross-sectional study. Environ. Pollut. 2022, 310, 119894. [Google Scholar] [CrossRef]
- Haro-García, L.; Vélez-Zamora, N.; Aguilar-Madrid, G.; Guerrero-Rivera, S.; Sánchez-Escalante, V.; Muñoz, S.R.; Mezones-Holguín, E.; Juárez-Pérez, C. Blood disorders among workers exposed to a mixture of benzene-toluene-xylene (BTX) in a paint factory. Rev. Peru. Med. Exp. Y Salud Publica 2012, 29, 181–187. [Google Scholar] [CrossRef] [Green Version]
- Hassan, A.A.E.H.; Elnagar, S.A.E.M.; El Tayeb, I.M.; Bolbol, S.A.E.H. Health Hazards of Solvents Exposure among Workers in Paint Industry. Open J. Saf. Sci. Technol. 2013, 03, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Ikegwuonu, I.C.; Obi-George, C.J.; Ikebudu, A.P.; Ikegwuonu, P.T.; Ogbodo, S.O.; Mba, C.B.; Arinze, I.E. Correlative study on the effect of toxic paint chemicals on the hepatorenal of paint factory workers in Enugu, Nigeria. World J. Adv. Res. Rev. 2022, 15, 432–439. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, C.; Yan, B. Emission characteristics and associated health risk assessment of volatile organic compounds from a typical coking wastewater treatment plant. Sci. Total Environ. 2019, 693, 133417. [Google Scholar] [CrossRef]
a VOCs | b TLV-TWA (ppm) | Mean ± SD (µg m−3) (%) | |||||||
---|---|---|---|---|---|---|---|---|---|
c OEM Production | d Production | e CED Production | Washing Salon-PC | f OEM Lab | g PC Lab | Dispatch | h CED Topcoat | ||
Benzene i (LOD = 0.5) | 0.5 | 63.89 ± 0.27 (0.09%) | 447.25 ± 0.21 (0.33%) | 479.20 ± 0.23 (0.52%) | 1277.87 ± 0.32 (0.51%) | 31.94 ± 0.08 (0.24%) | 63.89 ± 0.65 (8.75%) | 63.89 ± 0.17 (0.37%) | 543.09 ± 0.73 (1.25%) |
Toluene (LOD = 0.7) | 20 | 2110.36 ± 0.53 (2.98%) | 14,056.53 ± 0.56 (10.49%) | 46,088.84 ± 0.14 (50.26%) | 37,873.49 ± 0.13 (16.87%) | 527.59 ± 0.34 (4.04%) | 37.68 ± 0.43 (5.16%) | 452.22 ± 0.56 (2.63%) | 19,219.3 ± 0.41 (44.41%) |
Ethylbenzene (LOD = 0.5) | 20 | 30,526.58 ± 0.18 (43.14%) | 22,232.73 ± 0.32 (16.59%) | 8337.27 ± 0.57 (9.09%) | 91,188.95 ± 0.34 (39.95%) | 2127.74 ± 0.45 (16.31%) | 43.42 ± 0.75 (5.94%) | 5992.41 ± 0.17 (34.85%) | 4081.79 ± 0.37 (9.43%) |
m,p-Xylene (LOD = 0.7) | 20 | 37,473.61 ± 0.38 (52.95%) | 92,489.91 ± 0.65 (69.03%) | 35,997.24 ± 0.45 (39.260%) | 81,200.06 ± 0.45 (39.95%) | 8814.76 ± 0.76 (67.57%) | 43.42 ± 0.33 (5.95%) | 5688.34 ± 0.63 (33.09%) | 18,411.1 ± 0.18 (42.55%) |
Styrene (LOD = 0.4) | 10 | 42.59 ± 0.42 (0.06%) | 42.59 ± 0.12 (0.03%) | 42.59 ± 0.24 (0.05%) | 85.19 ± 0.26 (0.03%) | 38.33 ± 0.18 (0.29%) | 42.59 ± 0.34 (5.84%) | 38.33 ± 0.69 (0.22%) | 85.19 ± 0.58 (0.22%) |
n-Hexane (LOD = 0.4) | 50 | 35.24 ± 0.17 (0.05%) | 35.24 ± 0.68 (0.03%) | 70.49 ± 0.27 (0.08%) | 105.74 ± 0.18 (0.04%) | 35.24 ± 0.38 (0.27%) | 35.24 ± 0.19 (4.83%) | 35.24 ± 0.13 (0.21%) | 105.74 ± 0.65 (0.24%) |
n-Heptane (LOD = 0.06) | 400 | 40.98 ± 0.14 (0.06%) | 40.98 ± 0.23 (0.03%) | 40.98 ± 0.18 (0.04%) | 81.97 ± 0.61 (0.03%) | 40.98 ± 0.37 (0.31%) | 40.98 ± 0.23 (5.61%) | 36.88 ± 0.25 (0.21%) | 81.97 ± 0.23 (0.19%) |
n-Nonane (LOD = 0.04) | 200 | 52.43 ± 0.23 (0.07%) | 52.43 ± 0.13 (0.04%) | 52.43 ± 0.11 (0.06%) | 104.86 ± 0.76 (0.04%) | 314.6 ± 0.78 (2.41%) | 52.43 ± 0.12 (7.18%) | 41.94 ± 0.27 (0.24%) | 104.86 ± 0.28 (0.24%) |
Trichloroethylene (LOD = 0.6) | 10 | 53.73 ± 0.23 (0.08%) | 53.73 ± 0.16 (0.04%) | 53.73 ± 0.23 (0.06%) | 53.73 ± 0.43 (0.04%) | 53.73 ± 0.17 (0.21%) | 53.73 ± 0.52 (7.36%) | 53.73 ± 0.48 (0.31%) | 107.47 ± 0.56 (0.25%) |
Tetrachloroethylene (LOD = 2) | 25 | 67.82 ± 0.47 (0.10%) | 67.82 ± 0.73 (0.05%) | 47.47 ± 0.24 (0.05%) | 67.82 ± 0.23 (0.03%) | 67.828 ± 0.27 (0.36%) | 67.82 ± 0.33 (9.29%) | 67.828 ± 0.27 (0.39%) | 33.91 ± 0.15 (0.08%) |
n-Butyl acetate (LOD = 0.9) | 150 | 47.51 ± 0.29 (0.07%) | 47.51 ± 0.39 (0.04%) | 47.51 ± 0.19 (0.05%) | 47.51 ± 0.21 (0.02%) | 28.51 ± 0.21 (0.22%) | 47.51 ± 0.19 (6.51%) | 28.51 ± 0.2 (0.17%) | 47.51 ± 0.24 (0.11%) |
n-Octane (LOD = 0.3) | 300 | 46.72 ± 0.76 (0.07%) | 46.72 ± 0.21 (0.03%) | 46.72 ± 0.28 (0.05%) | 93.44 ± 0.81 (0.04%) | 280.32 ± 0.38 (2.15) | 46.72 ± 0.52 (6.40%) | 37.38 ± 0.84 (0.22%) | 93.44 ± 0.19 (0.22%) |
n-Decane (LOD = 0.06) | 45 | 58.20 ± 0.65 (0.08%) | 58.20 ± 0.13 (0.04%) | 58.20 ± 0.72 (0.06%) | 116.39 ± 0.33 (0.05%) | 40.74 ± 0.73 (0.31%) | 58.20 ± 0.84 (7.97%) | 400.29± 0.12 (0.24%) | 116.39 ± 0.14 (0.27%) |
Dichlorofluoromethane (LOD = 30) | 1000 | 97.65 ± 0.82 (0.14%) | 97.65 ± 0.95 (0.07%) | 97.65 ± 0.27 (0.11%) | 146.48 ± 0.38 (0.06%) | 48.83 ± 0.17 (0.37%) | 48.83 ± 0.79 (6.69%) | 4589.66 ± 0.29 (26.70%) | 146.48 ± 0.48 (0.34%) |
Acetone (LOD = 20) | 500 | 47.52 ± 0.21 (0.07%) | 4205.29 ± 0.64 (3.14%) | 237.59 ± 0.84 (0.26%) | 5702.09 ± 0.46 (2.31%) | 641.48 ± 0.33 (4.92%) | 47.52 ± 0.25 (6.51%) | 23.76 ± 0.57 (0.14%) | 95.03 ± 0.52 (0.22%) |
Pollutant | OEM Salon | Production Salon-PC | CED Production | Washing Salon-PC | OEM Lab | PC Lab | Dispatch | CED Topcoat |
---|---|---|---|---|---|---|---|---|
Exposure concentration (mg m−3) | ||||||||
Benzene | 0.137 | 0.957 | 1.025 | 2.734 | 0.068 | 0.137 | 0.137 | 1.162 |
Toluene | 4.515 | 30.076 | 98.615 | 89.100 | 1.129 | 0.081 | 0.968 | 41.123 |
Ethylbenzene | 65.317 | 47.571 | 17.839 | 210.910 | 4.553 | 0.093 | 12.822 | 8.734 |
Xylene | 80.181 | 197.898 | 77.022 | 210.906 | 18.861 | 0.093 | 12.171 | 39.394 |
Styrene | 0.091 | 0.091 | 0.091 | 0.182 | 0.082 | 0.091 | 0.082 | 0.182 |
Dichlorofluoromethane | 0.209 | 0.209 | 0.209 | 0.313 | 0.104 | 0.104 | 9.820 | 0.313 |
Acetone | 0.102 | 8.998 | 0.508 | 12.201 | 1.373 | 0.102 | 0.051 | 0.203 |
n-Hexane | 0.075 | 0.075 | 0.151 | 0.226 | 0.075 | 0.075 | 0.075 | 0.226 |
n-Heptane | 0.088 | 0.088 | 0.088 | 0.175 | 0.088 | 0.088 | 0.079 | 0.175 |
n-Octane | 0.100 | 0.100 | 0.100 | 0.200 | 0.600 | 0.100 | 0.080 | 0.200 |
n-Nonane | 0.112 | 0.112 | 0.112 | 0.224 | 0.673 | 0.112 | 0.090 | 0.224 |
n-Decane | 0.125 | 0.125 | 0.125 | 0.249 | 0.087 | 0.125 | 0.087 | 0.249 |
n-Butylacetate | 0.102 | 0.102 | 0.102 | 0.102 | 0.061 | 0.102 | 0.061 | 0.102 |
Trichloroethylene | 0.115 | 0.115 | 0.115 | 0.230 | 0.057 | 0.115 | 0.115 | 0.230 |
Tetrachloroethylene | 0.145 | 0.145 | 0.102 | 0.145 | 0.102 | 0.145 | 0.145 | 0.073 |
Hazard quotient | ||||||||
Benzene | 4.56 | 31.90 | 34.18 | 91.14 | 2.28 | 4.56 | 4.56 | 38.73 |
Toluene | 0.90 | 6.02 | 19.72 | 17.82 | 0.23 | 0.02 | 0.19 | 8.22 |
Ethylbenzene | 65.32 | 47.57 | 17.84 | 210.91 | 4.55 | 0.09 | 12.82 | 8.73 |
Xylene | 801.81 | 1978.98 | 770.22 | 2109.06 | 188.61 | 0.93 | 121.71 | 393.94 |
Styrene | 0.09 | 0.09 | 0.09 | 0.18 | 0.08 | 0.09 | 0.08 | 0.18 |
Dichlorofluoromethane | 0.63 | 0.63 | 0.63 | 0.95 | 0.32 | 0.32 | 29.76 | 0.95 |
Acetone | 0.00 | 0.16 | 0.01 | 0.22 | 0.02 | 0.00 | 0.00 | 0.00 |
n-Hexane | 0.11 | 0.11 | 0.22 | 0.32 | 0.11 | 0.11 | 0.11 | 0.32 |
n-Heptane | 0.22 | 0.22 | 0.22 | 0.44 | 0.22 | 0.22 | 0.20 | 0.44 |
n-Octane | 0.12 | 0.12 | 0.12 | 0.24 | 0.72 | 0.12 | 0.10 | 0.24 |
n-Nonane | 5.61 | 5.61 | 5.61 | 11.22 | 33.66 | 5.61 | 4.49 | 11.22 |
n-Decane | 0.15 | 0.15 | 0.15 | 0.30 | 0.10 | 0.15 | 0.10 | 0.30 |
n-Butylacetate | 0.07 | 0.07 | 0.07 | 0.07 | 0.04 | 0.07 | 0.04 | 0.07 |
Trichloroethylene | 57.49 | 57.49 | 57.49 | 114.98 | 28.75 | 57.49 | 57.49 | 114.98 |
Tetrachloroethylene | 3.63 | 3.63 | 2.54 | 3.63 | 2.54 | 3.63 | 3.63 | 1.81 |
Chronic daily intake (μg kg−1 day−1) | ||||||||
Benzene | 0.001 | 0.010 | 0.010 | 0.027 | 0.001 | 0.001 | 0.001 | 0.012 |
Toluene | 0.045 | 0.301 | 0.988 | 0.892 | 0.011 | 0.001 | 0.010 | 0.412 |
Ethylbenzene | 0.654 | 0.476 | 0.179 | 2.112 | 0.046 | 0.001 | 0.128 | 0.087 |
Xylene | 0.803 | 1.982 | 0.771 | 2.112 | 0.189 | 0.001 | 0.122 | 0.395 |
Styrene | 0.001 | 0.001 | 0.001 | 0.002 | 0.001 | 0.001 | 0.001 | 0.002 |
Dichlorofluoromethane | 0.002 | 0.002 | 0.002 | 0.003 | 0.001 | 0.001 | 0.098 | 0.003 |
Acetone | 0.001 | 0.090 | 0.005 | 0.122 | 0.014 | 0.001 | 0.001 | 0.002 |
n-Hexane | 0.001 | 0.001 | 0.002 | 0.002 | 0.001 | 0.001 | 0.001 | 0.002 |
n-Heptane | 0.001 | 0.001 | 0.001 | 0.002 | 0.001 | 0.001 | 0.001 | 0.002 |
n-Octane | 0.001 | 0.001 | 0.001 | 0.002 | 0.006 | 0.001 | 0.001 | 0.002 |
n-Nonane | 0.001 | 0.001 | 0.001 | 0.002 | 0.007 | 0.001 | 0.001 | 0.002 |
n-Decane | 0.001 | 0.001 | 0.001 | 0.002 | 0.001 | 0.001 | 0.001 | 0.002 |
n-Butylacetate | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
Trichloroethylene | 0.001 | 0.001 | 0.001 | 0.002 | 0.001 | 0.001 | 0.001 | 0.002 |
Tetrachloroethylene | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
ELCR | OEM Salon | Production Salon-PC | CED Production | Washing Salon-PC | OEM Lab | PC Lab | Dispatch | CED Topcoat |
---|---|---|---|---|---|---|---|---|
Benzene | 3.97 × 10−5 | 2.78 × 10−4 | 2.98 × 10−4 | 7.94 × 10−4 | 1.99 × 10−5 | 3.97 × 10−5 | 3.97 × 10−5 | 3.37 × 10−4 |
Ethylbenzene | 1.64 × 10−3 | 1.19 × 10−3 | 4.47 × 10−3 | 5.28 × 10−2 | 1.14 × 10−4 | 2.33 × 10−6 | 3.21 × 10−3 | 2.19 × 10−4 |
Trichloroethylene | 1.27 × 10−5 | 1.27 × 10−5 | 1.27 × 10−5 | 2.53 × 10−5 | 6.33 × 10−6 | 1.27 × 10−5 | 1.27 × 10−5 | 2.53 × 10−5 |
Tetrachloroethylene | 2.91 × 10−5 | 2.91 × 10−5 | 2.03 × 10−5 | 2.91 × 10−5 | 2.03 × 10−5 | 2.91 × 10−5 | 2.91 × 10−5 | 1.45 × 10−5 |
Styrene | 5.2 × 10−7 | 5.2 × 10−7 | 5.2 × 10−7 | 1.04 × 10−6 | 4.68 × 10−7 | 5.2 × 10−7 | 4.68 × 10−7 | 1.04 × 10−6 |
Total LTCR | 1.15 × 10−3 | 8.93 × 10−4 | 3.77 × 10−4 | 3.85 × 10−3 | 8.87 × 10−5 | 1.8 × 10−5 | 2.4 × 10−4 | 2.28 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghobakhloo, S.; Khoshakhlagh, A.H.; Morais, S.; Mazaheri Tehrani, A. Exposure to Volatile Organic Compounds in Paint Production Plants: Levels and Potential Human Health Risks. Toxics 2023, 11, 111. https://doi.org/10.3390/toxics11020111
Ghobakhloo S, Khoshakhlagh AH, Morais S, Mazaheri Tehrani A. Exposure to Volatile Organic Compounds in Paint Production Plants: Levels and Potential Human Health Risks. Toxics. 2023; 11(2):111. https://doi.org/10.3390/toxics11020111
Chicago/Turabian StyleGhobakhloo, Safiye, Amir Hossein Khoshakhlagh, Simone Morais, and Ashraf Mazaheri Tehrani. 2023. "Exposure to Volatile Organic Compounds in Paint Production Plants: Levels and Potential Human Health Risks" Toxics 11, no. 2: 111. https://doi.org/10.3390/toxics11020111
APA StyleGhobakhloo, S., Khoshakhlagh, A. H., Morais, S., & Mazaheri Tehrani, A. (2023). Exposure to Volatile Organic Compounds in Paint Production Plants: Levels and Potential Human Health Risks. Toxics, 11(2), 111. https://doi.org/10.3390/toxics11020111