Effect of Pesticide Exposure over DNA Damage in Farmers from Los Reyes, Michoacan in Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Study Population
2.2. Comet Assay
2.3. Statistical Analysis
3. Results
3.1. Sociodemographic Features of the Study Groups
3.2. Comet Assay
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Damalas, C.A.; Koutroubas, S.D. Farmers’ exposure to pesticides: Toxicity Types and ways of prevention. Toxics 2016, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Bolognesi, C. Genotoxicity of pesticides: A review of human biomonitoring studies. Mutat. Res. 2003, 543, 251–272. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Kabir, E.; Jahan, S.A. Exposure to pesticides and the associated human health effects. Sci. Total Environ. 2016, 575, 525–535. [Google Scholar] [CrossRef] [PubMed]
- Latif, Y.; Sherazi, S.T.H.; Bhanger, M.I.; Nizamani, S. Evaluation of pesticide residues in human blood samples of agro professionals and non-agro professionals. Am. J. Anal. Chem. 2012, 3, 587–595. [Google Scholar] [CrossRef] [Green Version]
- Macfarlane, E.; Carey, R.; Keegel, T.; El-Zaemay, S.; Fritschi, L. Dermal exposure associated with occupational end use of pesticides and the role of protective measures. Saf. Health Work 2013, 4, 136–141. [Google Scholar] [CrossRef] [Green Version]
- Costa, C.; Teixeira, J.P.; Silva, S.; Roma-Torres, J.; Coelho, P.; Gaspar, J.; Alves, M.; Laffon, B.; Rueff, J.; Mayan, O. Cytogenetic and molecular biomonitoring of a Portuguese population exposed to pesticides. Mutagenesis 2006, 21, 343–350. [Google Scholar] [CrossRef]
- Gómez-Arroyo, S.; Díaz-Sánchez, Y.; Meneses-Pérez, M.A.; Villalobos-Pietrini, R.; León-Rodríguez, J.D. Cytogenetic biomonitoring in a Mexican floriculture worker group exposed to pesticides. Mutat. Res. 2000, 466, 117–124. [Google Scholar] [CrossRef]
- Sánchez-Alarcón, J.; Milić, M.; Kašuba, V.; Tenorio-Arvide, M.G.; Montiel-González, J.M.R.; Bonassi, S.; Valencia-Quintana, R. A systematic review of studies on genotoxicity and related biomarkers in populations exposed to pesticides in Mexico. Toxics 2021, 9, 272. [Google Scholar] [CrossRef]
- Valencia-Quintana, R.; López-Durán, R.M.; Milić, M.; Bonassi, S.; Ochoa-Ocaña, M.A.; Uriostegui-Acosta, M.O.; Pérez-Flores, G.A.; Gómez-Olivares, J.L.; Sánchez-Alarcón, J. Assessment of cytogenetic damage and cholinesterases’ activity in workers occupationally exposed to pesticides in Zamora-Jacona, Michoacan, Mexico. Int. J. Environ. Res. Public Health 2021, 18, 6269. [Google Scholar] [CrossRef]
- Speit, G.; Rothfuss, A. The comet assay: A sensitive genotoxicity test for the detection of DNA damage and repair. Methods Mol. Biol. 2012, 920, 79–90. [Google Scholar] [CrossRef]
- Møller, P.; Azqueta, A.; Boutet-Robinet, E.; Koppen, G.; Bonassi, S.; Milić, M.; Gajski, G.; Costa, S.; Teixeira, J.P.; Costa Pereira, C.; et al. Minimum Information for Reporting on the Comet Assay (MIRCA): Recommendations for describing comet assay procedures and results. Nat. Protoc. 2020, 15, 3817–3826. [Google Scholar] [CrossRef] [PubMed]
- WHO. The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2019; World Health Organization: Geneva, Switzerland, 2020; Available online: https://apps.who.int/iris/bitstream/handle/10665/332193/9789240005662-eng.pdf?ua=1 (accessed on 6 December 2022).
- USEPA. Chemicals Evaluated for Carcinogenic Potential Office of Pesticide Programs; Annual Cancer Report; U.S. Environmental Protection Agency: Washington, DC, USA, 2018; p. 44. Available online: http://npic.orst.edu/chemicals_evaluated.pdf (accessed on 6 December 2022).
- IARC. IARC Monographs on the Identification of Carcinogenic Hazards to Humans, Agents Classifed by the IARC Monographs; IARC: Geneva, Switzerland, 2020; Volume 1–125, Available online: https://monographs.iarc.fr/agents-classified-by-the-iarc/ (accessed on 6 December 2022).
- Milić, M.; Ceppi, M.; Bruzzone, M.; Azqueta, A.; Brunborg, G.; Godschalk, R.; Koppen, G.; Langie, S.; Møller, P.; Teixeira, J.P.; et al. The hCOMET project: International database comparison of results with the comet assay in human biomonitoring. Baseline frequency of DNA damage and effect of main confounders. Mutat. Res. Rev. Mutat. Res. 2021, 787, 108371. [Google Scholar] [CrossRef] [PubMed]
- Bonassi, S.; Ceppi, M.; Møller, P.; Azqueta, A.; Milić, M.; Neri, M.; Brunborg, G.; Godschalk, R.; Koppen, G.; hCOMET project; et al. DNA damage in circulating leukocytes measured with the comet assay may predict the risk of death. Sci. Rep. 2021, 11, 16793. [Google Scholar] [CrossRef] [PubMed]
- Esimbekova, E.N.; Kalyabina, V.P.; Kopylova, K.V.; Lonshakova-Mukina, V.I.; Antashkevich, A.A.; Torgashina, I.G.; Lukyanenko, K.A.; Kratasyuk, V.A. The effects of commercial pesticide formulations on the function of in vitro and in vivo assay systems: A comparative analysis. Chemosensors 2022, 10, 328. [Google Scholar] [CrossRef]
- Kim, S.K.; Oh, H.J.; Oh, S.S.; Koh, S.B. Pesticide exposure in relation to the incidence of abnormal glucose regulation: A retrospective cohort study. Int. J. Environ. Res. Public Health 2022, 19, 7550. [Google Scholar] [CrossRef] [PubMed]
- Bruinen de Bruin, Y.; Franco, A.; Ahrens, A.; Morris, A.; Verhagen, H.; Kephalopoulos, S.; Dulio, V.; Slobodnik, J.; Sijm, D.T.H.M.; Vermeire, T.; et al. Enhancing the use of exposure science across EU chemical policies as part of the European Exposure Science Strategy 2020–2030. J. Expo. Sci. Environ. Epidemiol. 2022, 32, 513–525. [Google Scholar] [CrossRef]
- Zare Jeddi, M.; Hopf, N.B.; Louro, H.; Viegas, S.; Galea, K.S.; Pasanen-Kase, R.; Santonen, T.; Mustieles, V.; Fernandez, M.F.; Verhagen, H.; et al. Developing human biomonitoring as a 21st century toolbox within the European exposure science strategy 2020–2030. Environ. Int. 2022, 168, 107476. [Google Scholar] [CrossRef]
- Canales-Aguirre, A.; Padilla-Camberos, E.; Gómez-Pinedo, U.; Salado-Ponce, H.; Feria-Velasco, A.; De Celis, R. Genotoxic effect of chronic exposure to DDT on lymphocytes, oral mucosa and breast cells of female rats. Int. J. Environ. Res. Public Health 2011, 8, 540–553. [Google Scholar] [CrossRef] [Green Version]
- Hutter, H.P.; Khan, A.W.; Lemmerer, K.; Wallner, P.; Kundi, M.; Moshammer, H. Cytotoxic and genotoxic effects of pesticide exposure in male coffee farmworkers of the Jarabacoa Region, Dominican Republic. Int. J. Environ. Res. Public Health 2018, 15, 1641. [Google Scholar] [CrossRef] [Green Version]
- Ali, T.; Ismail, M.; Asad, F.; Ashraf, A.; Waheed, U.; Khan, Q.M. Pesticide genotoxicity in cotton picking women in Pakistan evaluated using comet assay. Drug Chem. Toxicol. 2018, 41, 213–220. [Google Scholar] [CrossRef]
- Liao, W.; McNutt, M.A.; Zhu, W.G. The comet assay: A sensitive method for detecting DNA damage in individual cells. Methods 2009, 48, 46–53. [Google Scholar] [CrossRef]
- Pastor, S.; Gutiérrez, S.; Creus, A.; Cebulska-Wasilewska, A.; Marcos, R. Micronuclei in peripheral blood lymphocytes and buccal epithelial cells of Polish farmers exposed to pesticides. Mutat. Res. 2001, 495, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, D.; Nunes, E.; Sarmento, M.; Porto, C.; Dos Santos, C.E.; Dias, J.F.; da Silva, J. Genetic damage in soybean workers exposed to pesticides: Evaluation with the comet and buccal micronucleus cytome assays. Mutat. Res. 2013, 752, 28–33. [Google Scholar] [CrossRef]
- Abdul Hamid, Z.; Mohd Zulkifly, M.F.; Hamid, A.; Lubis, S.H.; Mohammad, N.; Ishak, I.; Mohd Saat, N.Z.; Othman, H.F.; Ghazali, A.R.; Mohd Rafaai, M.J.; et al. The association of nuclear abnormalities in exfoliated buccal epithelial cells with the health status of different agricultural activities farmers in Peninsular Malaysia. Genes Environ. 2016, 38, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcelino, A.F.; Wachtel, C.C.; Ghisi, N.C. Are our farm workers in danger? Genetic damage in farmers exposed to pesticides. Int. J. Environ. Res. Public Health 2019, 16, 358. [Google Scholar] [CrossRef] [Green Version]
- Salvi, R.M.; Lara, D.R.; Ghisolfi, E.S.; Portela, L.V.; Dias, R.D.; Souza, D.O. Neuropsychiatric evaluation in subjects chronically exposed to organophosphate pesticides. Toxicol. Sci. 2003, 72, 267–271. [Google Scholar] [CrossRef] [Green Version]
- Wasson, G.R.; McKelvey-Martin, V.J.; Downes, C.S. The use of the comet assay in the study of human nutrition and cancer. Mutagenesis 2008, 23, 153–162. [Google Scholar] [CrossRef] [Green Version]
- Hayat, K.; Afzal, M.; Aqueel, M.A.; Ali, S.; Khan, Q.M.; Ashfaq, U. Determination of insecticide residues and their adverse effects on blood profile of occupationally exposed individuals. Ecotoxicol. Environ. Saf. 2018, 163, 382–390. [Google Scholar] [CrossRef] [PubMed]
- Heuser, V.D.; Erdtmann, B.; Kvitko, K.; Rohr, P.; da Silva, J. Evaluation of genetic damage in Brazilian footwear-workers: Biomarkers of exposure, effect, and susceptibility. Toxicology 2007, 232, 235–247. [Google Scholar] [CrossRef]
- Gillet, L.C.; Schärer, O.D. Molecular mechanisms of mammalian global genome nucleotide excision repair. Chem. Rev. 2006, 106, 253–276. [Google Scholar] [CrossRef]
- Hernández-Toledano, D.S.; Estrada-Muñiz, E.; Vega, L. Genotoxicity of the organophosphate pesticide malathion and its metabolite dimethylthiophosphate in human cells in vitro. Mutat. Res. Genet. Toxicol. Environ. Mutagen 2020, 856–857, 503233. [Google Scholar] [CrossRef] [PubMed]
- Olakkaran, S.; Kizhakke Purayil, A.; Antony, A.; Mallikarjunaiah, S.; Hunasanahally Puttaswamygowda, G. Oxidative stress-mediated genotoxicity of malathion in human lymphocytes. Mutat. Res. Genet. Toxicol. Environ. Mutagen 2020, 849, 503138. [Google Scholar] [CrossRef] [PubMed]
- Edwards, F.L.; Tchounwou, P.B. Environmental toxicology and health effects associated with methyl parathion exposure—A scientific review. Int. J. Environ. Res. Public Health 2005, 2, 430–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edwards, F.L.; Yedjou, C.G.; Tchounwou, P.B. Involvement of oxidative stress in methyl parathion and parathion-induced toxicity and genotoxicity to human liver carcinoma (HepG2) cells. Environ. Toxicol. 2013, 28, 342–348. [Google Scholar] [CrossRef] [Green Version]
- Patnaik, R.; Padhy, R.N. Evaluation of geno-toxicity of methyl parathion and chlorpyrifos to human liver carcinoma cell line (HepG2). Environ. Sci. Pollut. Res. Int. 2016, 23, 8492–8499. [Google Scholar] [CrossRef]
- Silva, A.M.; Silva, S.C.; Soares, J.P.; Martins-Gomes, C.; Teixeira, J.P.; Leal, F.; Gaivão, I. Ginkgo biloba L. leaf extract protects HepG2 cells against paraquat-induced oxidative DNA damage. Plants 2019, 8, 556. [Google Scholar] [CrossRef] [Green Version]
- Barrón-Cuenca, J.; de Oliveira Galvão, M.F.; Ünlü Endirlik, B.; Tirado, N.; Dreij, K. In vitro cytotoxicity and genotoxicity of single and combined pesticides used by Bolivian farmers. Environ. Mol. Mutagen 2022, 63, 4–17. [Google Scholar] [CrossRef]
- Celik, A.; Mazmanci, B.; Camlica, Y.; Cömelekoğlu, U.; Aşkin, A. Evaluation of cytogenetic effects of lambda-cyhalothrin on Wistar rat bone marrow by gavage administration. Ecotoxicol. Environ. Saf. 2005, 61, 128–133. [Google Scholar] [CrossRef]
- Naravaneni, R.; Jamil, K. Evaluation of cytogenetic effects of lambda-cyhalothrin on human lymphocytes. J. Biochem. Mol. Toxicol. 2005, 19, 304–310. [Google Scholar] [CrossRef]
- Bull, S.; Fletcher, K.; Boobis, A.R.; Battershill, J.M. Evidence for genotoxicity of pesticides in pesticide applicators: A review. Mutagenesis 2006, 21, 93–103. [Google Scholar] [CrossRef] [Green Version]
- Gesesew, H.A.; Woldemichael, K.; Massa, D.; Mwanri, L. Farmers knowledge, attitudes, practices and health problems associated with pesticide use in rural irrigation villages, Southwest Ethiopia. PLoS ONE 2016, 11, e0162527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okoffo, E.D.; Mensah, M.; Fosu-Mensah, B.Y. Pesticide exposure and the use of personal protective equipment by cocoa farmers in Ghana. Environ. Syst. Res. 2016, 5, 17. [Google Scholar] [CrossRef] [Green Version]
- Sookhtanlou, M.; Allahyari, M.S. Farmers’ health risk and the use of personal protective equipment (PPE) during pesticide application. Environ. Sci. Pollut. Res. Int. 2021, 28, 28168–28178. [Google Scholar] [CrossRef] [PubMed]
- Polidoro, B.A.; Dahlquist, R.M.; Castillo, L.E.; Morra, M.J.; Somarriba, E.; Bosque-Pérez, N.A. Pesticide application practices, pest knowledge, and cost-benefits of plantain production in the Bribri-Cabécar Indigenous Territories, Costa Rica. Environ. Res. 2008, 108, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Hutter, H.P.; Poteser, M.; Lemmerer, K.; Wallner, P.; Shahraki Sanavi, S.; Kundi, M.; Moshammer, H.; Weitensfelder, L. Indicators of genotoxicity in farmers and laborers of ecological and conventional banana plantations in Ecuador. Int. J. Environ. Res. Public Health 2020, 17, 1435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, A.C.d.; Camponogara, S.; Viero, C.M.; Menegat, R.P.; Dias, G.L.; Miorin, J.D. Socioeconomic profile of Rural Workers cancer sufferers. Rev. Pesqui. Cuid. Fundam. Online 2016, 8, 4891–4897. [Google Scholar] [CrossRef] [Green Version]
- Guyton, K.Z.; Loomis, D.; Grosse, Y.; El Ghissassi, F.; Benbrahim-Tallaa, L.; Guha, N.; Scoccianti, C.; Mattock, H.; Straif, K.; International Agency for Research on Cancer Monograph Working Group, IARC, Lyon, France. Carcinogenicity of tetrachlorvinphos, parathion, malathion, diazinon, and glyphosate. Lancet Oncol. 2015, 16, 490–491. [Google Scholar] [CrossRef]
- IARC (International Agency for Research on Cancer). Some Organophosphate Insecticides and Herbicides: Tetrachlorvinphos, Parathion, Malathion, Diazinon and Glyphosate; IARC Working Group: Lyon, France, 2017; Volume 112, pp. 321–412. ISBN 978-92-832-0178-6. [Google Scholar]
- Belaid, A.; Methneni, N.; Nasri, E.; Bchir, S.; Anthonissen, R.; Verschaeve, L.; Le Tilly, V.; Lo Turco, V.; Di Bella, G.; Ben Mansour, H.; et al. Endocrine disruption, cytotoxicity, and genotoxicity of an organophosphorus insecticide. Sustainability 2021, 13, 11512. [Google Scholar] [CrossRef]
- Valencia-Quintana, R.; Bahena-Ocampo, I.U.; González-Castañeda, G.; Bonilla, E.; Milić, M.; Bonassi, S.; Sánchez-Alarcón, J. miRNAs: A potentially valuable tool in pesticide toxicology assessment-current experimental and epidemiological data review. Chemosphere 2022, 295, 133792. [Google Scholar] [CrossRef] [PubMed]
- Bahena-Ocampo, I.U.; González-Castañeda, G.; Bonilla-González, X.; Sánchez-Alarcón, J.; Valencia Quintana, R. Evaluación de la expresión de miR-133a-3p, miR-181a-5p y miR-223-3p como posibles marcadores séricos de exposición a plaguicidas. BAG J. Basic Appl. Genet. 2021, 32, 241. [Google Scholar] [CrossRef]
Characteristics | Control Group | Exposed Group | ||
---|---|---|---|---|
n | 18 | 41 | ||
Gender (M/F) (%) | 6/12 | (33.33/66.67) | 33/8 | (80.49/19.51) |
Age (years, mean ± SD) (range) | 43.56 ± 4.02 | (21-85) | 40.98 ± 2.24 | (23–73) |
BMI (kg/m2, mean ± SD) (range) | 25.73 ± 0.81 | (20.79-32.44) | 29.09 ± 0.94 | (14.52–41.73) |
Exposure time (in years, mean ± SD) (range) | NA | 7.07 ± 0.51 | (1 ≥ 10) | |
Smoking | ||||
Smokers, n (%) | 7 | (38.89) | 6 | (14.63) |
Non-smokers, n (%) | 11 | (61.11) | 35 | (85.37) |
Alcohol intake | ||||
yes, n (%) | 7 | (38.89) | 6 | (14.63) |
no, n (%) | 11 | (61.11) | 35 | (85.37) |
PPM, n (%) | NA | 37 of 41 | (90) |
P | CC | Compound | IUPAC Name | WHO | USEPA/IARC |
---|---|---|---|---|---|
I | Carbamate | Carbofuran (Furadan) | 2,2-Dimethyl-2,3-dihydro-1-benzofuran-7-yl methylcarbamate | Ib | NLC/NE |
Methomyl (Lannate) | (E,Z)-methyl N-{[(methylamino)carbonyl]oxy}ethanimidothioate | Ib | Group E/NE | ||
Oxamyl (Vydate) | Methyl 2-(dimethylamino)-N-[(methylcarbamoyl)oxy]-2-oxoethanimidothioate | Ia | Group E/NE | ||
Glycoside | Abamectin (Agrimec) | Mix of: (10E,14E,16E)-(1R,4S,5′S,6S,6′R,8R,12S,13S,20R,21R,24S)-6′-[(S)-sec-butyl]-21,24-dihydroxy-5′,11,13,22-tetramethyl-2-oxo-(3,7,19-trioxatetracyclo [15.6.1.14,8.020,24]pentacosa-10,14,16,22-tetraene)-6-spiro-2′-(5′,6′-dihydro-2′H-pyran)-12-yl 2,6-dideoxy-4-O-(2,6-dideoxy-3-O-methyl-α-L-arabino-hexopyranosyl)-3-O-methyl-α-L-arabino-hexopyranoside and (10E,14E,16E)-(1R,4S,5′S,6S,6′R,8R,12S,13S,20R,21R,24S)-21,22-dihydroxy-6′-isopropyl-5′,11,13,22-tetramethyl-2-oxo-(3,7,19-trioxatetracyclo [15.6.1.14,8.020,24] pentacosa-10,14,16,22-tetraene)-6-spiro-2′-(5′,6′-dihydro-2′H-pyran)-12-yl 2,6-dideoxy-4-O-(2,6-dideoxy-3-O-methyl-α-L-arabino-hexopyranosyl)-3-O-methyl-α-L-arabino-hexopyranoside. | Ib | NE/NE | |
Imide | Imidacloprid | (EZ)-1-(6-cloro-3-piridilmetil)-N-nitroimidazolidin-2-ilidenoamina | II | Group E/NE | |
Organochlorine | Aldrin | 1,2,3,4,10,10-Hexachloro-1,4,4a,5,8,8a-hexahydro-1,4:5,8-dimethanonaphthalene | O | Group B2/Group 2A | |
Dicofol (Kelthane) | 2,2,2-trichloro-1,1-bis(4-chlorophenyl)ethanol | II | Group C/Group 3 | ||
Endosulfan | 6,7,8,9,10,10-Hexachloro-1,5,5a,6,9,9a-hexahydro- 6,9-methano-2,4,3-benzodioxathiepine-3-oxide | II | NLC/NE | ||
Organophosphate | Acephate (Orthene) | N-(Methoxy-methylsulfanylphosphoryl)acetamide | II | Group C /NE | |
Azinphos-ethyl (Gusathion) | O,O-Diethyl S-[(4-oxo-1,2,3-benzotriazin-3(4H)-yl)methyl] phosphorodithioate | 1b | NE/NE | ||
Chlorpyrifos (Lorsban) | O,O-Diethyl O-3,5,6-trichloropyridin-2-yl phosphorothioate | II | Group E/NE | ||
Diazinon | O,O-Diethyl O-[4-methyl-6-(propan-2-yl)pyrimidin-2-yl] phosphorothioate | II | NLC /Group 2A | ||
Dimethoate | O,O-dimethyl S-[2-(methylamino)-2-oxoethyl] dithiophosphate | II | Group C/NE | ||
Malathion | Diethyl 2-[(dimethoxyphosphorothioyl)sulfanyl]butanedioate | III | SEC/Group 2A | ||
Methamidophos (Tamaron or Tramophos) | O,S-Dimethyl phosphoramidothioate | Ib | NLC/NE | ||
Parathion (Folidol) | O,O-Diethyl O-(4-nitrophenyl) phosphorothioate | Ia | Group C/Group 2B | ||
Pyrethrin | Pyrethrin | (Z)-(S)-2-metil-4-oxo-3-(penta-2,4-dienil)ciclopent-2-enil (1R,3R)-2,2- dimetil-3-(2-metilprop-1-enil)ciclopropancarboxilato | II | NLC/NE | |
Pyrethroids | Cyfluthrin (Baytroid) | (RS)-α-ciano-4-fluoro-3-fenoxibencil (1RS,3RS;1RS,3SR)-3-(2,2- diclorovinil)-2,2-dimetilciclopropanocarboxilato | Ib | NLC/NE | |
Lambda-cyhalothrin (Karate) | (R)-α-cyano-3-phenoxybenzyl (1S)-cis-3-[(Z)-2-chloro-3,3,3-trifluoropropenyl]-2,2-dimethylcyclopropanecarboxylate and (S)-a-cyano-3-phenoxybenzyl (1R)-cis-3-[(Z)-2-chloro-3,3,3-trifluoropropenyl]-2,2-dimethylcyclopropanecarboxylate | II | Group D/NE | ||
Permethrin | 3-fenoxibencil (1RS,3RS,1RS,3SR)-3-(2,2-diclorovinil)-2,2- dimetilciclopropancarboxilato | II | SEC/NE | ||
Zeta-cypermethrin (Mustang Max) | Mix of (S)-α-cyano-3-phenoxybenzyl (1RS,3RS;1RS,3SR)-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate | II | NLC/NE | ||
H | Organophosphate | Paraquat | 1,1′-Dimethyl-4,4′-bipyridinium dichloride | II | Group C/NE |
Phosphonomethylglycine | Glyphosate | N-(fosfonometil)glicina-isopropilamina (1:1) o isopropilaminio N-(fosfonometil)glicinato | III | NLC/Group 2A | |
F | Benzimidazole | Thiabendazole (Tecto-60) | 2-(tiazol-4-il) benzimidazol | III | SEC/NE |
Carbamate | Mancozeb (Manzate) | Zinc;manganese(2±);N-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate | U | Group B/Group 2B | |
Ureic | Diuron | 3-(3,4-Diclorofenil)-1,1-dimetilurea | III | Known/Likely carcinogen/NE |
Assay/Parameters | Control Group (n = 18) | Exposed Group (n = 41) | Level of Significance (p) |
---|---|---|---|
Tail Length | 20.58 ± 1.04 | 22.89 ± 1.29 | 0.271 |
Tail Intensity | 9.51 ± 0.83 | 12.55 ± 1.24 | 0.262 |
Tail Moment | 0.90 ± 0.10 | 1.44 ± 0.25 | 0.169 |
Olive Tail Moment | 0.80 ± 0.09 | 1.02 ± 0.34 | 0.220 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valencia-Quintana, R.; Milić, M.; Bonassi, S.; Ochoa-Ocaña, M.A.; Campos-Peña, V.; Tenorio-Arvide, M.G.; Pérez-Flores, G.A.; Sánchez-Alarcón, J. Effect of Pesticide Exposure over DNA Damage in Farmers from Los Reyes, Michoacan in Mexico. Toxics 2023, 11, 122. https://doi.org/10.3390/toxics11020122
Valencia-Quintana R, Milić M, Bonassi S, Ochoa-Ocaña MA, Campos-Peña V, Tenorio-Arvide MG, Pérez-Flores GA, Sánchez-Alarcón J. Effect of Pesticide Exposure over DNA Damage in Farmers from Los Reyes, Michoacan in Mexico. Toxics. 2023; 11(2):122. https://doi.org/10.3390/toxics11020122
Chicago/Turabian StyleValencia-Quintana, Rafael, Mirta Milić, Stefano Bonassi, Maria Antonieta Ochoa-Ocaña, Victoria Campos-Peña, Maria Guadalupe Tenorio-Arvide, Guillermo Alejandro Pérez-Flores, and Juana Sánchez-Alarcón. 2023. "Effect of Pesticide Exposure over DNA Damage in Farmers from Los Reyes, Michoacan in Mexico" Toxics 11, no. 2: 122. https://doi.org/10.3390/toxics11020122
APA StyleValencia-Quintana, R., Milić, M., Bonassi, S., Ochoa-Ocaña, M. A., Campos-Peña, V., Tenorio-Arvide, M. G., Pérez-Flores, G. A., & Sánchez-Alarcón, J. (2023). Effect of Pesticide Exposure over DNA Damage in Farmers from Los Reyes, Michoacan in Mexico. Toxics, 11(2), 122. https://doi.org/10.3390/toxics11020122