A Comprehensive Exploration on Occurrence, Distribution and Risk Assessment of Potentially Toxic Elements in the Multi-Media Environment from Zhengzhou, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Sample Preparation
2.3. Sample Analysis
2.4. Quality Assurance and Quality Control (QA/QC)
2.5. Assessment Methods for PTEs
2.5.1. Igeo
2.5.2. RI
3. Results and Discussion
3.1. Contents of Potentially Toxic Elements
3.1.1. Road Dust
3.1.2. Roadside Soils
3.1.3. River Surface Sediment
3.2. Comparison of PTE between Road Dust, Roadside Soils and Surface Sediments
3.3. Pollution Assessment
3.3.1. Igeo
3.3.2. RI
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, T.; Huang, J.; Wu, Y.; Yuan, Y.; Xie, Y.; Fan, Z.; Zheng, Z. Risk Assessment and Source Apportionment of Soil Heavy Metals under Different Land Use in a Typical Estuary Alluvial Island. Int. J. Env. Res. Public Health 2020, 17, 4841. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Han, G.; Liu, M.; Li, X.; Wang, L.; Liang, B. Distribution and Contamination Assessment of Soil Heavy Metals in the Jiulongjiang River Catchment, Southeast China. Int. J. Env. Res. Public Health 2019, 16, 4674. [Google Scholar] [CrossRef] [Green Version]
- Wiseman, C.L.S.; Levesque, C.; Rasmussen, P.E. Characterizing the sources, concentrations and resuspension potential of metals and metalloids in the thoracic fraction of urban road dust. Sci. Total Environ. 2021, 786, 147467. [Google Scholar] [CrossRef]
- Vlasov, D.; Kosheleva, N.; Kasimov, N. Spatial distribution and sources of potentially toxic elements in road dust and its PM10 fraction of Moscow megacity. Sci. Total Environ. 2021, 761, 143267. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Shao, Y.; Yin, C.; Jiang, Y.; Li, X. An index for estimating the potential metal pollution contribution to atmospheric particulate matter from road dust in Beijing. Sci. Total Environ. 2016, 550, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Ewen, C.; Anagnostopoulou, M.A.; Ward, N.I. Monitoring of heavy metal levels in roadside dusts of Thessaloniki, Greece in relation to motor vehicle traffic density and flow. Environ. Monit. Assess. 2009, 157, 483–498. [Google Scholar] [CrossRef] [Green Version]
- Wei, B.H.; Yang, L.S. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem. J. 2010, 94, 99–107. [Google Scholar] [CrossRef]
- Christoforidis, A.; Stamatis, N. Heavy metal contamination in street dust and roadside soil along the major national road in Kavala’s region, Greece. Geoderma 2009, 151, 257–263. [Google Scholar] [CrossRef]
- Wheeler, G.L.; Rolfe, G.L. The relationship between daily traffic volume and the distribution of lead in roadside soil and vegetation. Environ. Pollut. 1979, 18, 265–274. [Google Scholar] [CrossRef]
- Yan, G.; Mao, L.; Liu, S.; Mao, Y.; Ye, H.; Huang, T.; Li, F.; Chen, L. Enrichment and sources of trace metals in roadside soils in Shanghai, China: A case study of two urban/rural roads. Sci. Total Environ. 2018, 631, 942–950. [Google Scholar] [CrossRef]
- Cui, L.; Gao, X.Y.; Tian, B.; Zhang, J.; Wang, X.; Liu, Z. Human health ambient water quality criteria for 13 heavy metals and health risk assessment in Taihu Lake. Front. Environ. Sci. Eng. 2022, 16, 41. [Google Scholar] [CrossRef]
- Dukes, A.D.I.; Eklund, R.T.; Morgan, Z.D.; Layland, R.C. Heavy metal concentration in the water and sediment of the Lake Greenwood Watershed. Water Air Soil Pollut. 2020, 231, 11. [Google Scholar] [CrossRef]
- Long, E.R.; Macdonald, D.D.; Smith, S.L.; Calder, F. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ. Manag. 1995, 19, 81–97. [Google Scholar] [CrossRef]
- Müller, G. Index of geoaccumulation in sediments of the Rhine River. Geology. J. 1969, 2, 108–118. [Google Scholar]
- Kowalska, J.B.; Mazurek, R.; Gasiorek, M.; Zaleski, T. Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination-A review. Environ. Geochem. Health 2018, 40, 2395–2420. [Google Scholar] [CrossRef] [Green Version]
- Brady, J.P.; Ayoko, G.A.; Martens, W.N.; Goonetilleke, A. Development of a hybrid pollution index for heavy metals in marine and estuarine sediments. Environ. Monit. Assess. 2015, 187, 306. [Google Scholar] [CrossRef] [Green Version]
- CNEMC (China National Environmental Monitoring Center). The Backgrounds of Soil Environment in China; Environmental Science Press of China: Beijing, China, 1990. [Google Scholar]
- Men, C.; Liu, R.; Xu, L.; Wang, Q.; Guo, L.; Miao, Y.; Shen, Z. Source-specific ecological risk analysis and critical source identification of heavy metals in road dust in Beijing, China. J. Hazard. Mater. 2020, 388, 121763. [Google Scholar] [CrossRef]
- Chen, X.; Guo, M.; Feng, J.; Liang, S.; Han, D.; Cheng, J. Characterization and risk assessment of heavy metals in road dust from a developing city with good air quality and from Shanghai, China. Environ. Sci. Pollut. Res. 2019, 26, 11387–11398. [Google Scholar] [CrossRef]
- Huang, B.; Zhou, Y.; Chang, W.; Li, Z.; Zeng, H. Differential characteristics of heavy metal pollution in road dust and its ecological risk in different function areas of Shenzhen city. Ecol. Environ. Sci. 2019, 28, 2398–2408. [Google Scholar]
- Liu, E.; Wang, X.; Liu, H.; Liang, M.; Zhu, Y.; Li, Z. Chemical speciation, pollution and ecological risk of toxic metals in readily washed off road dust in a megacity (Nanjing), China. Ecotoxicol. Environ. Saf. 2019, 173, 381–392. [Google Scholar] [CrossRef]
- Wang, C.; Hui, F.; Wang, Z.; Zhu, X.; Zhang, X. Chemical characteristics of size-fractioned particles at a suburban site in Shijiazhuang, North China: Implication of secondary particle formation. Atmos. Res. 2021, 259, 105680. [Google Scholar] [CrossRef]
- Dong, S.; Zhang, S.; Wang, L.; Ma, G.; Lu, X.; Li, X. Concentrations, Speciation, and Bioavailability of Heavy Metals in Street Dust as well as Relationships with Physiochemcal Properties: A Case Study of Jinan City in East China. Environ. Sci. Pollut. Res. 2020, 27, 35724–35737. [Google Scholar] [CrossRef]
- Yan, H.; Xiao, J.; Zhang, J. Concentrations and particle size effect of heavy metals in the street dust of Xuchang City. J. Earth Environ. 2016, 7, 183–191. [Google Scholar] [CrossRef]
- Han, Q.; Wang, M.; Cao, J.; Gui, L.; Liu, Y.; He, X.; He, Y.; Liu, Y. Health risk assessment and bioaccessibilities of heavy metals for children in soil and dust from urban parks and schools of Jiaozuo, China. Ecotoxicol. Environ. Saf. 2020, 191, 110157. [Google Scholar] [CrossRef]
- Ma, J.; Dong, Y.; Chen, Y. Background values of heavy metals in surface dusts in the vicinity of Kaifeng, Henan Province. Acta Sci. Circumstantiae 2020, 40, 1798–1806. [Google Scholar] [CrossRef]
- Krupnova, T.G.; Rakova, O.V.; Gavrilkina, S.V.; Antoshkina, E.G.; Baranov, E.O.; Yakimova, O.N. Road dust trace elements contamination, sources, dispersed composition, and human health risk in Chelyabinsk, Russia. Chemosphere 2020, 261, 127799. [Google Scholar] [CrossRef]
- Roy, S.; Gupta, S.K.; Prakash, J.; Habib, G.; Baudh, K.; Nasr, M. Ecological and human health risk assessment of heavy metal contamination in road dust in the National Capital Territory (NCT) of Delhi, India. Environ. Sci. Pollut. Res. 2019, 26, 30413–30425. [Google Scholar] [CrossRef]
- Ramírez, O.; Sánchez De La Campa, A.M.; Amato, F.; Moreno, T.; Silva, L.F.; de la Rosa, J.D. Physicochemical characterization and sources of the thoracic fraction of road dust in a Latin American megacity. Sci. Total Environ. 2019, 652, 434–446. [Google Scholar] [CrossRef]
- O’Shea, M.J.; Vann, D.R.; Hwang, W.; Giere, R. A mineralogical and chemical investigation of road dust in Philadelphia, PA, USA. Environ. Sci. Pollut. Res. 2020, 27, 14883–14902. [Google Scholar] [CrossRef]
- Sharma, V.K.; Sohn, M. Aquatic arsenic: Toxicity, speciation, transformations, and remediation. Environ. Int. 2009, 35, 743–759. [Google Scholar] [CrossRef]
- Yuan, G.; Sun, T.; Han, P.; Li, J.; Lang, X. Source identification and ecological risk assessment of heavy metals in topsoil using environmental geochemical mapping: Typical urban renewal area in Beijing, China. J. Geochem. Explor. 2014, 136, 40–47. [Google Scholar] [CrossRef]
- Chen, J.; Lu, X.; Zhai, M. Sources and potential risk of heavy metals in roadside soils of Xi’an City. Chin. J. Appl. Ecol. 2011, 22, 1810–1816. [Google Scholar] [CrossRef]
- De Silva, S.; Ball, A.S.; Huynh, T.; Reichman, S.M. Metal accumulation in roadside soil in Melbourne, Australia: Effect of road age, traffic density and vehicular speed. Environ. Pollut. 2016, 208, 102–109. [Google Scholar] [CrossRef]
- Nannoni, F.; Protano, G. Chemical and biological methods to evaluate the availability of heavy metals in soils of the Siena urban area (Italy). Sci. Total Environ. 2016, 568, 1–10. [Google Scholar] [CrossRef]
- Wiseman, C.L.S.; Zereini, F.; Püttmann, W. Traffic-related trace element fate and uptake by plants cultivated in roadside soils in Toronto, Canada. Sci. Total Environ. 2013, 442, 86–95. [Google Scholar] [CrossRef]
- Mahanta, M.J.; Bhattacharyya, K.G. Total concentrations, fractionation and mobility of heavy metals in soils of urban area of Guwahati, India. Environ. Monit. Assess. 2011, 173, 221–240. [Google Scholar] [CrossRef]
- Khan, D.H.; Frankland, B. Chemical forms of cadmium and lead in some contaminated soils. Environ. Pollut. Ser. B Chem. Phys. 1983, 6, 15–31. [Google Scholar] [CrossRef]
- Zhang, H.; Reynolds, M. Cadmium exposure in living organisms: A short review. Sci. Total Environ. 2019, 678, 761–767. [Google Scholar] [CrossRef]
- Sun, Y.; Tao, J.; Chen, G.; Yan, B.; Cheng, Z. Distribution of Hg during sewage sludge and municipal solid waste Co-pyrolysis: Influence of multiple factors. Waste Manag. 2020, 107, 276–284. [Google Scholar] [CrossRef]
- Cheng, L.; Wang, L.; Geng, Y.; Wang, N.; Mao, Y.; Cai, Y. Occurrence, speciation and fate of mercury in the sewage sludge of China. Ecotoxicol. Environ. Saf. 2019, 186, 109787. [Google Scholar] [CrossRef]
- MacDonald, D.D.; Ingersoll, C.G.; Berger, T.A. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Environ. Contam. Toxicol. 2000, 39, 20–31. [Google Scholar] [CrossRef]
- Ding, T.; Li, Q.; Du, S.; Liu, Y.; Zhang, J.; Wang, Y.; He, L. Pollution characteristics and ecological risk assessment of heavy metals in Shaying River Basin. Environ. Chem. 2019, 38, 2386–2401. [Google Scholar] [CrossRef]
- Jia, Y.; Fang, M.; Wu, Y.; Liu, H.; Miao, Y.; Wang, X.; Lin, W.; Tong, X. Pollution characteristics and potential ecological risk of heavy metals in river sediments of Shanghai. China Environ. Sci. 2013, 33, 147–153. (In Chinese) [Google Scholar]
- Xu, F.; Liu, Z.; Cao, Y.; Qiu, L.; Feng, J.; Xu, F.; Tian, X. Assessment of heavy metal contamination in urban river sediments in the Jiaozhou Bay catchment, Qingdao, China. Catena 2017, 150, 9–16. [Google Scholar] [CrossRef]
- Tang, Z.; Yue, Y.; Cheng, J. Pollution characteristics of risks of heavy metals in the sediments from the middle and small rivers in Wuhan. J. Soil Water Conserv. 2009, 23, 132–136. (In Chinese) [Google Scholar]
- Wang, H.; Zhang, J.; Ding, S.; Guo, T.; Fu, X. Distribution characteristics, sources identification and risk assessment of heavy metals in surface sediments of urban rivers in Kaifeng. Acta Sci. Circumstantiae 2016, 36, 4520–4530. [Google Scholar] [CrossRef]
- Paul, V.; Sankar, M.S.; Vattikuti, S.; Dash, P.; Arslan, Z. Pollution assessment and land use land cover influence on trace metal distribution in sediments from five aquatic systems in southern USA. Chemosphere 2021, 263, 128243. [Google Scholar] [CrossRef]
- Duodu, G.O.; Goonetilleke, A.; Ayoko, G.A. Comparison of pollution indices for the assessment of heavy metal in Brisbane River sediment. Environ. Pollut. 2016, 219, 1077–1091. [Google Scholar] [CrossRef]
- Islam, M.S.; Ahmed, M.K.; Raknuzzaman, M.; Habibullah-Al-Mamun, M.D.; Islam, M.K. Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country. Ecol. Indic. 2015, 48, 282–291. [Google Scholar] [CrossRef]
- Sadip, M. Toxic Metal Chemistry in Marine Environments; Marcel Dekker: New York, NY, USA, 1992; 154p. [Google Scholar]
- Liang, S.; Cui, J.; Bi, X.; Luo, X.; Li, X. Deciphering source contributions of trace metal contamination in urban soil, road dust, and foliar dust of Guangzhou, southern China. Sci. Total Environ. 2019, 695, 133596. [Google Scholar] [CrossRef]
- Kumar, M.; Furumai, H.; Kasuga, I.; Kurisu, F. Metal partitioning and leaching vulnerability in soil, soakaway sediments, and road dust in the urban area of Japan. Chemosphere 2020, 252, 126605. [Google Scholar] [CrossRef]
Cr | Ni | Cu | Zn | As | Cd | Hg | Pb | |
---|---|---|---|---|---|---|---|---|
Max | 165.22 | 108.91 | 174.88 | 307.21 | 27.35 | 3.76 | 1.10 | 97.21 |
Min | 30.29 | 11.09 | 13.28 | 54.30 | 7.61 | 0.17 | 0.057 | 24.89 |
Mean | 74.00 | 22.01 | 43.93 | 119.25 | 16.39 | 0.61 | 0.14 | 40.78 |
Median | 64.64 | 18.18 | 39.65 | 104.52 | 16.41 | 0.49 | 0.10 | 36.16 |
SD 1 | 30.98 | 14.27 | 23.15 | 52.30 | 4.35 | 0.47 | 0.15 | 15.00 |
Skewness | 1.08 | 4.14 | 3.05 | 1.90 | 0.058 | 5.07 | 4.88 | 1.73 |
Kurtosis | 0.51 | 22.02 | 15.45 | 3.93 | −0.41 | 32.69 | 27.75 | 3.31 |
CV 2 | 0.42 | 0.65 | 0.53 | 0.44 | 0.27 | 0.77 | 1.07 | 0.37 |
BV 3 | 63.80 | 26.70 | 19.70 | 60.10 | 10.40 | 0.074 | 0.034 | 19.60 |
Cr | Ni | Cu | Zn | As | Cd | Hg | Pb | |
---|---|---|---|---|---|---|---|---|
Max | 91.96 | 37.29 | 45.98 | 265.64 | 14.22 | 2.25 | 0.16 | 46.96 |
Min | 44.03 | 15.53 | 12.89 | 44.15 | 6.70 | 0.09 | 0.04 | 13.88 |
Mean | 65.58 | 24.27 | 22.88 | 88.57 | 10.97 | 0.41 | 0.08 | 24.76 |
SD | 8.93 | 3.86 | 6.43 | 34.77 | 1.75 | 0.40 | 0.02 | 7.17 |
CV | 0.14 | 0.16 | 0.28 | 0.39 | 0.16 | 0.99 | 0.30 | 0.29 |
BV | 63.8 | 26.7 | 19.7 | 60.1 | 10.4 | 0.074 | 0.034 | 19.6 |
Level I 1 | 90 | 40 | 35 | 100 | 15 | 0.20 | 0.15 | 35 |
Level II 1 | 250 | 60 | 100 | 300 | 25 | 0.60 | 1.0 | 350 |
Level III 1 | 350 | 200 | 400 | 500 | 30 | 1.0 | 1.5 | 500 |
Cr | Ni | Cu | Zn | As | Cd | Hg | Pb | |
---|---|---|---|---|---|---|---|---|
Zhengzhou | 65.58 | 24.27 | 22.88 | 88.57 | 10.97 | 0.41 | 0.08 | 24.76 |
Beijing, China [32] | 60.3 | 23.3 | 31.3 | 83.8 | 8.55 | 0.174 | 0.316 | 33.7 |
Shanghai, China [10] | 56.1 | 34.7 | 41.6 | 274.6 | / | 0.34 | / | 44.2 |
Xi’an, China [33] | 75.1 | 22.7 | 27.4 | 67.7 | 10.9 | 23.9 | ||
Melbourne, Australia [34] | 18–29 | 7–20 | 4–12 | 10.36–88.73 | / | 0.06–0.59 | / | 16–144 |
Siena, Italy [35] | 70.9 | 40.3 | 52.3 | 142 | / | 0.31 | / | 104 |
Toronto, Canada [36] | 36.0 | / | 21.0 | / | / | 0.54 | / | 17.0 |
Guwahati, India [37] | 109.0 | 89.1 | 170.2 | 302.8 | / | 8.8 | / | 171.1 |
Cr | Ni | Cu | Zn | As | Cd | Hg | Pb | |
---|---|---|---|---|---|---|---|---|
Max | 93.63 | 51.78 | 75.31 | 281.00 | 15.28 | 1.66 | 0.22 | 71.49 |
Min | 50.28 | 16.74 | 13.12 | 43.77 | 5.19 | 0.07 | 0.04 | 14.23 |
Mean | 64.61 | 25.52 | 24.78 | 95.35 | 9.36 | 0.26 | 0.09 | 22.60 |
SD | 9.44 | 5.77 | 13.49 | 55.26 | 2.34 | 0.25 | 0.05 | 9.97 |
CV | 0.15 | 0.23 | 0.54 | 0.58 | 0.25 | 0.96 | 0.56 | 0.44 |
BV | 63.80 | 26.70 | 19.7 | 60.10 | 10.40 | 0.074 | 0.034 | 19.60 |
TEL 1 | 43.4 | 22.7 | 31.6 | 121 | 9.8 | 0.99 | 0.18 | 35.8 |
PEL 2 | 111 | 48.6 | 149 | 459 | 33 | 5 | 1.1 | 128 |
ERL 3 | 81 | 20.9 | 34 | 150 | 8.2 | 1.2 | 0.15 | 46.7 |
ERM 4 | 370 | 51.6 | 270 | 410 | 70 | 9.6 | 0.71 | 218 |
Cr | Ni | Cu | Zn | As | Cd | Hg | Pb | |
---|---|---|---|---|---|---|---|---|
Zhengzhou | 64.61 | 25.52 | 24.78 | 95.35 | 9.36 | 0.26 | 0.09 | 22.60 |
Shaying River, China [43] | 55.26 | 30.79 | 23.38 | 86.62 | 10.72 | 0.34 | 0.14 | 24.01 |
Shanghai, China [44] | 106.3 | / | 87.5 | 296.8 | / | 0.53 | 0.42 | 35.2 |
Qingdao, China [45] | 69.3 | / | 23.6 | 64.6 | 7.7 | 0.159 | / | 20.2 |
Wuhan, China [46] | 134.2 | 48.3 | / | 357.4 | 16.6 | 1.1 | 0.39 | 58.0 |
Kaifeng, China [47] | 67.86 | 28.46 | 290.65 | 1936.95 | / | 24.51 | / | 115.34 |
Lower Pearl River, USA [48] | 19.1 | / | 14.0 | 49.0 | 2.3 | 0.0 | / | 29.6 |
Brisbane River, Australia [49] | 15 | 15.3 | 29 | 106.6 | 3.6 | 0.3 | 0.4 | 25.6 |
Tsurumi River, Japan [50] | 102.9 | 36.6 | 133.0 | 381.1 | 11.0 | 1.0 | / | 40.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Zuo, Q.; Hu, H.; Feng, F.; Jia, H.; Ji, Y. A Comprehensive Exploration on Occurrence, Distribution and Risk Assessment of Potentially Toxic Elements in the Multi-Media Environment from Zhengzhou, China. Toxics 2023, 11, 140. https://doi.org/10.3390/toxics11020140
Li J, Zuo Q, Hu H, Feng F, Jia H, Ji Y. A Comprehensive Exploration on Occurrence, Distribution and Risk Assessment of Potentially Toxic Elements in the Multi-Media Environment from Zhengzhou, China. Toxics. 2023; 11(2):140. https://doi.org/10.3390/toxics11020140
Chicago/Turabian StyleLi, Jialu, Qiting Zuo, Hao Hu, Feng Feng, Hongtao Jia, and Yingxin Ji. 2023. "A Comprehensive Exploration on Occurrence, Distribution and Risk Assessment of Potentially Toxic Elements in the Multi-Media Environment from Zhengzhou, China" Toxics 11, no. 2: 140. https://doi.org/10.3390/toxics11020140
APA StyleLi, J., Zuo, Q., Hu, H., Feng, F., Jia, H., & Ji, Y. (2023). A Comprehensive Exploration on Occurrence, Distribution and Risk Assessment of Potentially Toxic Elements in the Multi-Media Environment from Zhengzhou, China. Toxics, 11(2), 140. https://doi.org/10.3390/toxics11020140