High-Dose Primaquine Induces Proximal Tubular Degeneration and Ventricular Cardiomyopathy Linked to Host Cells Mitochondrial Dysregulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Permission
2.2. Experimental Procedure
2.3. Sample Collection and Mitochondrial Extraction
2.4. Electron Microscopic Study
2.5. Histopathological Study
2.6. Immunohistochemical Study
2.7. qRT-PCR
2.8. Statistical Analysis
3. Results
3.1. Clinicohematological Data
3.2. High Dose of PQ-Induced Renal Degeneration and Ventricular Cardiomyopathy
3.3. High Dose of PQ Caused Mitochondrial Alteration in the Kidney and Liver
3.4. Upregulation of Drp-1 and Caspase-3 Were Observed in the Kidney and Liver Mitochondria Induced by a High Dose of PQ
3.5. Upregulation of Drp-1 and Caspase-3 were Observed in the Heart Induced by a High Dose of PQ
3.6. High Dose of PQ Upregulated Pro-Apoptotic Genes in Association with Mitochondrial Apoptosis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The Lancet. Malaria in 2022: A year of opportunity. Lancet 2022, 399, 1573. [Google Scholar] [CrossRef] [PubMed]
- Taylor, W.R.; White, N.J. Antimalarial drug toxicity: A review. Drug Saf. 2004, 27, 25–61. [Google Scholar] [CrossRef] [PubMed]
- Ashley, E.A.; Recht, J.; White, N.J. Primaquine: The risks and the benefits. Malar. J. 2014, 13, 418. [Google Scholar] [CrossRef]
- Cohen, R.J.; Sachs, J.R.; Wicker, D.J.; Conrad, M.E. Methemoglobinemia provoked by malarial chemoprophylaxis in Vietnam. N. Engl. J. Med. 1968, 279, 1127–1131. [Google Scholar] [CrossRef]
- Recht, J.; Ashley, E.; White, N.J. Safety of 8-Aminoquinoline Antimalarial Medicines; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Baker, J.K.; Hullihen, J.M.; Pedersen, P.L. Selective toxicity of the antimalarial primaquine-evidence for both uncoupling and inhibitory effects of a metabolite on the energetics of mitochondria and its ATP synthase complex. Pharm. Res. 1986, 3, 290–293. [Google Scholar] [CrossRef] [PubMed]
- Laleve, A.; Vallieres, C.; Golinelli-Cohen, M.P.; Bouton, C.; Song, Z.; Pawlik, G.; Tindall, S.M.; Avery, S.V.; Clain, J.; Meunier, B. The antimalarial drug primaquine targets Fe-S cluster proteins and yeast respiratory growth. Redox Biol. 2016, 7, 21–29. [Google Scholar] [CrossRef]
- Lanners, H.N. Effect of the 8-aminoquinoline primaquine on culture-derived gametocytes of the malaria parasite Plasmodium falciparum. Parasitol. Res. 1991, 77, 478–481. [Google Scholar] [CrossRef]
- Ampawong, S.; Isarangkul, D.; Reamtong, O.; Aramwit, P. Adaptive effect of sericin on hepatic mitochondrial conformation through its regulation of apoptosis, autophagy and energy maintenance: A proteomics approach. Sci. Rep. 2018, 8, 14943. [Google Scholar] [CrossRef]
- Tirawanchai, N.; Kengkoom, K.; Isarangkul, D.; Burana-Osot, J.; Kanjanapruthipong, T.; Chantip, S.; Phattanawasin, P.; Sotanaphun, U.; Ampawong, S. A combination extract of kaffir lime, galangal, and lemongrass maintains blood lipid profiles, hepatocytes, and liver mitochondria in rats with nonalcoholic steatohepatitis. Biomed. Pharmacother. 2020, 124, 109843. [Google Scholar] [CrossRef]
- Fongsodsri, K.; Thaipitakwong, T.; Rujimongkon, K.; Kanjanapruthipong, T.; Ampawong, S.; Reamtong, O.; Aramwit, P. Mulberry-Derived 1-Deoxynojirimycin Prevents Type 2 Diabetes Mellitus Progression via Modulation of Retinol-Binding Protein 4 and Haptoglobin. Nutrients 2022, 14, 4538. [Google Scholar] [CrossRef]
- Ampawong, S.; Isarangkul, D.; Aramwit, P. Sericin ameliorated dysmorphic mitochondria in high-cholesterol diet/streptozotocin rat by antioxidative property. Exp. Biol. Med. 2017, 242, 411–421. [Google Scholar] [CrossRef] [PubMed]
- Ampawong, S.; Isarangkul, D.; Aramwit, P. Sericin improves heart and liver mitochondrial architecture in hypercholesterolaemic rats and maintains pancreatic and adrenal cell biosynthesis. Exp. Cell Res. 2017, 358, 301–314. [Google Scholar] [CrossRef] [PubMed]
- Rujimongkon, K.; Ampawong, S.; Isarangkul, D.; Reamtong, O.; Aramwit, P. Sericin-mediated improvement of dysmorphic cardiac mitochondria from hypercholesterolaemia is associated with maintaining mitochondrial dynamics, energy production, and mitochondrial structure. Pharm. Biol. 2022, 60, 708–721. [Google Scholar] [CrossRef] [PubMed]
- Svingen, T.; Letting, H.; Hadrup, N.; Hass, U.; Vinggaard, A.M. Selection of reference genes for quantitative RT-PCR (RT-qPCR) analysis of rat tissues under physiological and toxicological conditions. PeerJ 2015, 3, e855. [Google Scholar] [CrossRef]
- Liang, W.; Cai, A.; Chen, G.; Xi, H.; Wu, X.; Cui, J.; Zhang, K.; Zhao, X.; Yu, J.; Wei, B.; et al. Shikonin induces mitochondria-mediated apoptosis and enhances chemotherapeutic sensitivity of gastric cancer through reactive oxygen species. Sci. Rep. 2016, 6, 38267. [Google Scholar] [CrossRef]
- Gunjan, S.; Singh, S.K.; Sharma, T.; Dwivedi, H.; Chauhan, B.S.; Imran Siddiqi, M.; Tripathi, R. Mefloquine induces ROS mediated programmed cell death in malaria parasite: Plasmodium. Apoptosis 2016, 21, 955–964. [Google Scholar] [CrossRef]
- Sahu, K.; Langeh, U.; Singh, C.; Singh, A. Crosstalk between anticancer drugs and mitochondrial functions. Curr. Res. Pharmacol. Drug Discov. 2021, 2, 100047. [Google Scholar] [CrossRef]
- Giovanella, F.; Ferreira, G.K.; de Pra, S.D.; Carvalho-Silva, M.; Gomes, L.M.; Scaini, G.; Goncalves, R.C.; Michels, M.; Galant, L.S.; Longaretti, L.M.; et al. Effects of primaquine and chloroquine on oxidative stress parameters in rats. An. Acad. Bras. Cienc. 2015, 87, 1487–1496. [Google Scholar] [CrossRef]
- Katewa, S.D.; Katyare, S.S. Treatment with antimalarials adversely affects the oxidative energy metabolism in rat liver mitochondria. Drug Chem. Toxicol. 2004, 27, 41–53. [Google Scholar] [CrossRef]
- Marchi, S.; Guilbaud, E.; Tait, S.W.G.; Yamazaki, T.; Galluzzi, L. Mitochondrial control of inflammation. Nat. Rev. Immunol. 2022, 23, 1–15. [Google Scholar] [CrossRef]
- Wang, C.; Youle, R.J. The role of mitochondria in apoptosis*. Annu. Rev. Genet. 2009, 43, 95–118. [Google Scholar] [CrossRef]
- Bras, M.; Yuste, V.J.; Roue, G.; Barbier, S.; Sancho, P.; Virely, C.; Rubio, M.; Baudet, S.; Esquerda, J.E.; Merle-Beral, H.; et al. Drp1 mediates caspase-independent type III cell death in normal and leukemic cells. Mol. Cell Biol. 2007, 27, 7073–7088. [Google Scholar] [CrossRef]
- Jenner, A.; Pena-Blanco, A.; Salvador-Gallego, R.; Ugarte-Uribe, B.; Zollo, C.; Ganief, T.; Bierlmeier, J.; Mund, M.; Lee, J.E.; Ries, J.; et al. DRP1 interacts directly with BAX to induce its activation and apoptosis. EMBO J. 2022, 41, e108587. [Google Scholar] [CrossRef] [PubMed]
- Gui, C.; Ren, Y.; Chen, J.; Wu, X.; Mao, K.; Li, H.; Yu, H.; Zou, F.; Li, W. p38 MAPK-DRP1 signaling is involved in mitochondrial dysfunction and cell death in mutant A53T alpha-synuclein model of Parkinson’s disease. Toxicol. Appl. Pharmacol. 2020, 388, 114874. [Google Scholar] [CrossRef]
- Luna-Sanchez, M.; Beninca, C.; Cerutti, R.; Brea-Calvo, G.; Yeates, A.; Scorrano, L.; Zeviani, M.; Viscomi, C. Opa1 Overexpression Protects from Early-Onset Mpv17(-/-)-Related Mouse Kidney Disease. Mol. Ther. 2020, 28, 1918–1930. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Tian, C.; Puszyk, W.M.; Ogunwobi, O.O.; Cao, M.; Wang, T.; Cabrera, R.; Nelson, D.R.; Liu, C. OPA1 downregulation is involved in sorafenib-induced apoptosis in hepatocellular carcinoma. Lab. Investig. 2013, 93, 8–19. [Google Scholar] [CrossRef] [PubMed]
- Nezu, M.; Suzuki, N. Roles of Nrf2 in Protecting the Kidney from Oxidative Damage. Int. J. Mol. Sci. 2020, 21, 2951. [Google Scholar] [CrossRef]
- Jokinen, M.P.; Lieuallen, W.G.; Boyle, M.C.; Johnson, C.L.; Malarkey, D.E.; Nyska, A. Morphologic aspects of rodent cardiotoxicity in a retrospective evaluation of National Toxicology Program studies. Toxicol. Pathol. 2011, 39, 850–860. [Google Scholar] [CrossRef]
- Frazier, K.S.; Seely, J.C.; Hard, G.C.; Betton, G.; Burnett, R.; Nakatsuji, S.; Nishikawa, A.; Durchfeld-Meyer, B.; Bube, A. Proliferative and nonproliferative lesions of the rat and mouse urinary system. Toxicol. Pathol. 2012, 40, 14S–86S. [Google Scholar] [CrossRef]
- Mubagwa, K. Cardiac effects and toxicity of chloroquine: A short update. Int. J. Antimicrob. Agents 2020, 56, 106057. [Google Scholar] [CrossRef]
- Wiwanitkit, V. Antimalarial drug and renal toxicity. J. Nephropharmacol. 2016, 5, 11–12. [Google Scholar] [PubMed]
- Campos, S.B.; Rouch, L.H.; Seguro, A.C. Effects of sodium artesunate, a new antimalarial drug, on renal function. Kidney Int. 2001, 59, 1044–1051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Gene | Primers | |
---|---|---|
18S | F | 5′GCCGCTAGAGGTGAAATTCTTG3′ |
R | 5′GAAAACATTCTTGGCAAATGCTT3′ | |
Bax | F | 5′AGAACCATCATGGGCTGGAC3′ |
R | 5′AGATGGTCACTGTCTGCCATGT3′ | |
Bnip3 | F | 5′CAGAGCGGGGAGGAGAAC3′ |
R | 5′GAAGCTGGAACGCTGCTC3′ |
Parameters | Normal Range # | Control | 200 mg/kg of PQ |
---|---|---|---|
WBC (106/µL) | 3.51–4.95 | 4.92 ± 7.37 | 5.07 ± 5.09 ↑ |
RBC (106/µL) | 8.64–9.90 | 9.01 ± 0.27 | 7.56 ± 0.77 * ↓ |
HGB (g/dL) | 16.76–18.80 | 17.15 ± 0.07 | 15.65 ± 1.62 ↓ |
HCT (%) | 52.65–60.25 | 54.55 ± 0.49 | 47.45 ± 5.02 * ↓ |
MCV (fl) | 59.18–62.68 | 63.55 ± 3.18 | 62.75 ± 0.21 |
MCH (pg) | 18.69–20.71 | 20.20 ± 0.84 | 20.70 ± 0.00 |
MCHC (g/dL) | 31.12–31.88 | 31.75 ± 0.02 | 22.95 ± 0.07 * ↓ |
PLT (103/µL) | 667.62–941.38 | 1032.50 ± 132.22 ↑ | 941.50 ± 94.04 |
RDW (%) | 15.85–19.73 | 15.00 ± 0.56 | 12.45 ± 0.21 * ↓ |
Neutrophils (%) | 4.75–18.71 | 13.70 ± 10.32 | 21.50 ± 7.77 ↑ |
Lymphocytes (%) | 72.85–86.91 | 80.20 ± 4.52 | 74.00 ± 11.31 |
Eosinophils (%) | 0.84–1.50 | 0.05 ± 0.07 | 0.50 ± 0.70 |
Basophils (%) | 0.00–0.73 | 0.35 ± 0.49 | 0.00 ± 0.00 |
Monocytes (%) | 5.38–8.36 | 5.70 ± 5.23 | 4.00 ± 4.24 |
Blood urea nitrogen (mg/dL) | 18.22–23.24 | 21.10 ± 0.98 | 28.10 ± 16.70 ↑ |
Creatinine (mg/dL) | 0.63–0.71 | 0.16 ± 0.01 | 0.63 ± 0.00 * |
SGPT (U/L) | 43.03–63.33 | 36.84 ± 6.84 | 593.60 ± 124.87 ** ↑ |
SGOT (U/L) | 81.77–105.69 | 30.55 ± 2.05 | 55.3 ± 10.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rabiablok, A.; Hanboonkunupakarn, B.; Tuentam, K.; Fongsodsri, K.; Kanjanapruthipong, T.; Ampawong, S. High-Dose Primaquine Induces Proximal Tubular Degeneration and Ventricular Cardiomyopathy Linked to Host Cells Mitochondrial Dysregulation. Toxics 2023, 11, 146. https://doi.org/10.3390/toxics11020146
Rabiablok A, Hanboonkunupakarn B, Tuentam K, Fongsodsri K, Kanjanapruthipong T, Ampawong S. High-Dose Primaquine Induces Proximal Tubular Degeneration and Ventricular Cardiomyopathy Linked to Host Cells Mitochondrial Dysregulation. Toxics. 2023; 11(2):146. https://doi.org/10.3390/toxics11020146
Chicago/Turabian StyleRabiablok, Atthasit, Borimas Hanboonkunupakarn, Khwanchanok Tuentam, Kamonpan Fongsodsri, Tapanee Kanjanapruthipong, and Sumate Ampawong. 2023. "High-Dose Primaquine Induces Proximal Tubular Degeneration and Ventricular Cardiomyopathy Linked to Host Cells Mitochondrial Dysregulation" Toxics 11, no. 2: 146. https://doi.org/10.3390/toxics11020146
APA StyleRabiablok, A., Hanboonkunupakarn, B., Tuentam, K., Fongsodsri, K., Kanjanapruthipong, T., & Ampawong, S. (2023). High-Dose Primaquine Induces Proximal Tubular Degeneration and Ventricular Cardiomyopathy Linked to Host Cells Mitochondrial Dysregulation. Toxics, 11(2), 146. https://doi.org/10.3390/toxics11020146