Risk Assessment of Phthalate Esters in Baiyangdian Lake and Typical Rivers in China
Abstract
:1. Introduction
2. Material and Methods
2.1. Solvents and Chemical Standards
2.2. Sample Collection and Preparation
2.3. Chemical Analysis
2.4. Collection of Data
- (1)
- Toxicity data
- (2)
- Exposure data
2.5. Deriving of ALCs and SQCs for PAEs
- (1)
- Deriving of ALCs
- (2)
- Deriving of SQCs
2.6. Ecological Risk Assessment
- (1)
- Hazard quotient (HQ)
- (2)
- Probabilistic ecological risk assessment (PERA)
3. Results
3.1. Occurrence and Composition of PAEs in Baiyangdian Lake
3.2. The Ecological Risk Assessments of PAEs in Baiyangdian Lake
3.3. The Ecological Risk Assessments of PAEs in Typical Rivers
3.4. The Ecological Risk Assessments of PAEs in Sediments
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.-M.; Zhang, H.-H.; Zhang, J.; Wang, Q.-W.; Yang, G.-P. Occurrence, distribution, and ecological risks of phthalate esters in the seawater and sediment of Changjiang River Estuary and its adjacent area. Sci. Total Environ. 2018, 619–620, 93–102. [Google Scholar] [CrossRef]
- Li, B.; Liu, R.; Gao, H.; Tan, R.; Zeng, P.; Song, Y. Spatial distribution and ecological risk assessment of phthalic acid esters and phenols in surface sediment from urban rivers in Northeast China. Environ. Pollut. 2016, 219, 409–415. [Google Scholar] [CrossRef]
- Janjua, N.R.; Mortensen, G.K.; Andersson, A.-M.; Kongshoj, B.; Skakkebæk, N.E.; Wulf, H.C. Systemic Uptake of Diethyl Phthalate, Dibutyl Phthalate, and Butyl Paraben Following Whole-Body Topical Application and Reproductive and Thyroid Hormone Levels in Humans. Environ. Sci. Technol. 2007, 41, 5564–5570. [Google Scholar] [CrossRef]
- Prasad, B.; Prasad, K.S.; Dave, H.; Das, A.; Asodariya, G.; Talati, N.; Swain, S.; Kapse, S. Cumulative human exposure and environmental occurrence of phthalate esters: A global perspective. Environ. Res. 2022, 210, 112987. [Google Scholar] [CrossRef]
- Hajiouni, S.; Mohammadi, A.; Ramavandi, B.; Arfaeinia, H.; De-La-Torre, G.E.; Tekle-Röttering, A.; Dobaradaran, S. Occurrence of microplastics and phthalate esters in urban runoff: A focus on the Persian Gulf coastline. Sci. Total Environ. 2021, 806, 150559. [Google Scholar] [CrossRef] [PubMed]
- Nikolopoulou, V.; Alygizakis, N.A.; Nika, M.C.; Oswaldova, M.; Oswald, P.; Kostakis, M.; Slobodnik, J. Screening of legacy and emerging substances in surface water, sediment, biota and groundwater samples collected in the Siverskyi Donets River Basin employing wide-scope target and suspect screening. Sci. Total Environ. 2022, 805, 150253. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Liu, W.; Wang, S.; Zhao, J.; Xu, S.; Yao, H.; Wang, H.; Bai, L.; Wang, Y.; Gu, H.; et al. Risk assessments of emerging contaminants in various waters and changes of microbial diversity in sediments from Yangtze River chemical contiguous zone, Eastern China. Sci. Total Environ. 2021, 803, 149982. [Google Scholar] [CrossRef] [PubMed]
- Chai, X.L.; Ji, R.; Wu, J.; Tong, H.H.; Zhao, Y.C. Abiotic association of PAEswith humic substances and its influence on the fate of PAEs in landfillleachate. Chemosphere 2010, 78, 1362–1367. [Google Scholar]
- Sha, Y.J.; Xia, X.H.; Yang, Z.F.; Huang, G.H. Distribution of PAEs in the middle and lower reaches of the YellowRiver, China. Environ. Monit. Assess. 2007, 124, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Wang, S.L.; Fan, C.Q. Atmospheric distribution of particulate and gasphase phthalic esters (PAEs) in a Metropolitan City, Nanjing, East China. Chemosphere 2008, 72, 1567–1572. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.-W.; Wang, D.-X.; Zhang, G. Assessment of persistent organic pollutants (POPs) in sediments of the Eastern Indian Ocean. Sci. Total Environ. 2020, 710, 136335. [Google Scholar] [CrossRef] [PubMed]
- Le, T.M.; Nguyen, H.M.N.; Nguyen, V.K.; Nguyen, A.V.; Vu, N.D.; Yen, N.T.H.; Hoang, A.Q.; Minh, T.B.; Kannan, K.; Tran, T.M. Profiles of phthalic acid esters (PAEs) in bottled water, tap water, lake water, and wastewater samples collected from Hanoi, Vietnam. Sci. Total Environ. 2021, 788, 147831. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, K.K.; Sundaramoorthy, G.; Ravichandran, P.K.; Girijan, G.K.; Sampath, S.; Ramaswamy, B.R. Phthalate esters in water and sediments of the Kaveri River, India: Environmental levels and ecotoxicological evaluations. Environ. Geochem. Health 2015, 37, 83–96. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Wang, Y.; Yang, Q.; Lv, Y.; Jin, X.; Giesy, J.P.; Johnson, A.C. Probabilistic assessment of risks of diethylhexyl phthalate (DEHP) in surface waters of China on reproduction of fish. Environ. Pollut. 2016, 213, 482–488. [Google Scholar] [CrossRef]
- Zhang, Q.Q.; Ying, G.G.; Pan, C.G.; Liu, Y.S.; Zhao, J.L. Comprehensive Evaluation of Antibiotics Emi-ssion and Fate in the River Basins of China: Source Analysis, Multimedia Modeling, and Linkage to Bacterial Resistance. Environ. Sci. Technol. 2015, 49, 6772–6782. [Google Scholar] [CrossRef]
- Kamrin, M.A. Phthalate risks, phthalate regulation, and public health: A review. Toxicol. Environ. Health B Crit. Rev. 2009, 12, 157–174. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.-Y.; Huang, I.-C.; Chang, B.-V. Biodegradation of dibutyl phthalate and di-(2-ethylhexyl) phthalate and microbial community changes in mangrove sediment. J. Hazard. Mater. 2010, 184, 826–831. [Google Scholar] [CrossRef]
- US EPA. Priority Pollutants. 2014. Available online: http://water.epa.gov/scitech/methods/cwa/pollutants.cfm (accessed on 1 September 2021).
- GB 3838-2002; PRC-NS; Environmental Quality Standard for Surface Water. Ministry of Environmental Protection of the People’s Repubic of China and General Administration of Quality Supervision: Beijing, China; China Environmental Science Press: Beijing, China, 2022.
- Wu, F.; Meng, W.; Zhao, X.; Li, H.; Zhang, R.; Cao, Y.; Liao, H. China Embarking on Development of its Own National Water Quality Criteria System. Environ. Sci. Technol. 2010, 44, 7992–7993. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, J.R.; Grist, E.P.; Leung, K.M.; Morritt, D.; Crane, M. Species sensitivity distributions: Data and model choice. Mar. Pollut. Bull. 2002, 45, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Li, Y.; Zhang, B.; Zhou, A.; Zhu, Y.; Li, J.; Xu, S. Urinary concentrations of phthalate metab-olites associated with changes in clinical hemostatic and hematologic parameters in pr-egnant women. Environ. Int. 2018, 120, 34–42. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, T.; Duan, Y.; Zhao, Z.; Huang, X.; Bai, X.; Xie, L.; He, Y.; Ouyang, J.; Yang, Y.; et al. Human exposure to phthalate esters associated with e-waste dismantling: Exposure levels, sources, and risk assessment. Environ. Int. 2019, 124, 1–9. [Google Scholar] [CrossRef]
- Caldwell, D.J.; Mastrocco, F.; Hutchinson, T.H.; Länge, R.; Heijerick, D.; Janssen, C.; Anderson, P.D.; Sumpter, J.P. Derivation of an Aquatic Predicted No-Effect Concentration for the Synthetic Hormone, 17α-Ethinyl Estradiol. Environ. Sci. Technol. 2008, 42, 7046–7054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, X.; Wang, Y.; Jin, W.; Rao, K.; Giesy, J.P.; Hollert, H.; Richardson, K.L.; Wang, Z. Ecological Risk of Nonylphenol in China Surface Waters Based on Reproductive Fitness. Environ. Sci. Technol. 2013, 48, 1256–1262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martino-Andrade, A.J.; Chahoud, I. Reproductive toxicity of phthalate esters. Mol. Nutr. Food Res. 2010, 54, 148–157. [Google Scholar] [CrossRef] [PubMed]
- US EPA. Guidelines for Ecological Risk assessment.Ecological Risk Assessment Step 2; U.S. EPA: Washington, DC, USA, 1998.
- Solomon, K.; Giesy, J.; Jones, P. Probabilistic risk assessment of agrochemicals in the environment. Crop. Prot. 2000, 19, 649–655. [Google Scholar] [CrossRef]
- Wang, X.; Tao, S.; Dawson, R.; Xu, F. Characterizing and comparing risks of polycyclic aromatic hydrocarbons in a Tianjin wastewater-irrigated area. Environ. Res. 2002, 90, 201–206. [Google Scholar] [CrossRef]
- Giesy, J.P.; Solomon, K.R.; Coats, J.R.; Dixon, K.R.; Giddings, J.M.; Kenaga, E.E. Chlorpyrifos: Ecological risk assessment in North American aquatic environments. Rev. Environ. Contam. Toxicol. 1999, 160, 1–129. [Google Scholar] [PubMed]
- Paluselli, A.; Kim, S.K. Horizontal and vertical distribution of phthalates acid ester (PAEs) in seawater and sediment of East China Sea and Korean South Sea: Traces of plastic debris? Mar. Pollut. Bull. 2020, 151, 110831. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Pan, J.; Gao, F.; An, Z.; Liu, H.; Huang, Y.; Wang, X. Seawater quality criteria derivation and ecological risk assessment for oil pollution in China. Mar. Pollut. Bull. 2019, 142, 25–30. [Google Scholar] [CrossRef]
- MEP. Ministry of Ecology and Environment of the People’s Republic of China, HJ 831- 2022: Technical Guideline for Deriving Water Quality Criteria for the Protection of Freshwater Aquatic Organisms; China Environmental Press: Beijing, China, 2022. [Google Scholar]
- Li, R.; Liang, J.; Gong, Z.; Zhang, N.; Duan, H. Occurrence, spatial distribution, historical trend and ecological risk of phthalate esters in the Jiulong River, Southeast China. Sci. Total Environ. 2017, 580, 388–397. [Google Scholar] [CrossRef]
- Jin, X.; Wang, Y.; Giesy, J.P.; Richardson, K.L.; Wang, Z. Development of aquatic life criteria in China: Viewpoint on the challenge. Environ. Sci. Pollut. Res. 2014, 21, 61–66. [Google Scholar] [CrossRef]
- Lemly, A. Evaluation of the Hazard Quotient Method for Risk Assessment of Selenium. Ecotoxicol. Environ. Saf. 1996, 35, 156–162. [Google Scholar] [CrossRef]
- European Commission Technical Guidance on Risk Assessment in Support of Commission Directive 93/67/EEC on Risk Assessment for New Notified Substances Commission Regulation (EC) No 1488/94[R]; Office for Official Publications of the European Communities: Luxembourg, 2003; pp. 1–337.
- Shi, R.; Yang, C.; Su, R.; Jin, J.; Chen, Y.; Liu, H.; Giesy, J.P.; Yu, H. Weighted species sensitivity distribution method to derive site-specific quality criteria for copper in Tai Lake, China. Environ. Sci. Pollut. Res. 2014, 21, 12968–12978. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.; Meng, F.; Zhou, Y.; Jin, X.; Giesy, J.P.; Liu, F. Improvement on species sensitivity distribution methods for deriving site-specific water quality criteria. Environ. Sci. Pollut. Res. 2014, 22, 5271–5282. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.L.; Liu, R.Z.; Zao, Y.W. Correlation analysis of landscape pattern and water quality in Baiyangdian watershed. Procedia Environ. Sci. 2012, 13, 2188–2196. [Google Scholar] [CrossRef] [Green Version]
- Jin, D.; Kong, X.; Li, Y.; Bai, Z.; Zhuang, G.; Zhuang, X.; Deng, Y. Biodegradatio-n of di-n-Butyl Phthalate by Achromobacter sp Isolated from Rural Domestic Wastewater. Int. J. Environ. Res. Health 2015, 12, 13510–13522. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Yin, P.; Zhao, L. Phthalate esters in water and surface sediments of the Pearl River Estuary: Distribution, ecological, and human health risks. Environ. Sci. Pollut. Res. 2016, 23, 19341–19349. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.; Li, Z.; Wen, Z.; Ren, N. Occurrence and fate of phthalate esters in full-scale domestic wastewater treatment plants and their impact on receiving waters along the Songhua River in China. Chemosphere 2014, 95, 24–32. [Google Scholar] [CrossRef]
- He, W.; Qin, N.; Kong, X.; Liu, W.; He, Q.; Ouyang, H.; Yang, C.; Jiang, Y.; Wang, Q.; Yang, B.; et al. Spatio-temporal distributions and the ecological and health risks of phthalate esters (PAEs) in the surface water of a large, shallow Chinese lake. Sci. Total Environ. 2013, 461–462, 672–680. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Hu, G.J.; Sun, C.; Chen, S.L.; Yang, M.N.; Li, J.; Zhao, Y.; Wang, H. Trace analysis of persistent toxic substances in the main stream of Jiangsu section of the Yangtze River, China. Environ. Sci. Pollut. Res. 2011, 18, 638–648. [Google Scholar] [CrossRef]
- Chen, H.; Mao, W.; Shen, Y.; Feng, W.; Mao, G.; Zhao, T.; Wu, X. Distribution, source, and environmental risk assessment of phthalate esters (PAEs) in water, suspended particulate matter, and sediment of a typical Yangtze River Delta City, China. Environ. Sci. Pollut. Res. Int. 2019, 26, 24609–24619. [Google Scholar] [CrossRef]
- Zhang, L.; Dong, L.; Ren, L.; Shi, S.; Zhou, L.; Zhang, T.; Huang, Y. Concentration and source identification of polycyclic aromatic hydrocarbons and phthalic acid esters in the surface water of the Yangtze River Delta, China. J. Environ. Sci. 2012, 24, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Li, J.; Wang, X.; Zhou, J.; Fan, B.; Li, W.; Liu, Z. Exposure and ecological risk of phthalate esters in the Taihu Lake basin, China. Ecotoxicol. Environ. Saf. 2019, 171, 564–570. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Shen, J.M.; Zhang, H.; Li, X.; Chen, Z.L.; Wang, X.C. The occurrence and spatial distribution of phthalate esters (PAEs) in the Lanzhou section of the Yellow River. Environ. Sci. Pollut. Res. 2020, 27, 19724–19735. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, B.-T.; Teng, Y. Distribution of phthalate acid esters in lakes of Beijing and its relationship with anthropogenic activities. Sci. Total Environ. 2014, 476–477, 107–113. [Google Scholar] [CrossRef]
- Li, B.; Hu, X.; Liu, R.; Zeng, P.; Song, Y. Occurrence and distribution of pht-halic acid esters and phenols in Hun River Watersheds. Environ. Earth Sci. 2015, 73, 5095–5106. [Google Scholar] [CrossRef]
- Wang, X.T.; Ma, L.L.; Sun, Y.Z.; Xu, X.B. Phthalate esters in sediments from Guanting Reservoir and the Yongding River, Beijing, People’s Republic of China. Bull. Environ. Contam. Toxicol. 2006, 76, 799–806. [Google Scholar] [CrossRef]
- Fan, W.; Xinghui, X.; Yujuan, S. Distribution of phthalic acid esters in Wuhan section of the Yangtze River, China. J. Hazard. Mater. 2008, 154, 317–324. [Google Scholar]
- Liu, H.; Liang, H.; Liang, Y.; Zhang, D.; Wang, C.; Cai, H.; Shvartsev, S.L. Distribution of phthalate esters in alluvial sediment: A case study at JiangHan Plain, Central China. Chemosphere 2010, 78, 382–388. [Google Scholar] [CrossRef]
- Sun, J.; Huang, J.; Zhang, A.; Liu, W.; Cheng, W. Occurrence of phthalate esters in sediments in Qiantang River, China and inference with urbanization and river flow regime. J. Hazard. Mater. 2013, 248–249, 142–149. [Google Scholar] [CrossRef]
- Yuan, S.Y.; Liu, C.; Liao, C.S.; Chang, B.V. Occurrence and microbial degrada-tion of phthalate esters in Taiwan river sediments. Chemosphere 2002, 49, 1295–1299. [Google Scholar] [CrossRef]
- Huang, P.-C.; Tien, C.-J.; Sun, Y.-M.; Hsieh, C.-Y.; Lee, C.-C. Occurrence of phthalates in sediment and biota: Relationship to aquatic factors and the biota-sediment accumulation factor. Chemosphere 2008, 73, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.W.; Chen, C.F.; Dong, C.D. Distribution of Phthalate Esters in Sediments of Kaohsiung Harbor, Taiwan. Taylor Fr. Group. 2013, 22, 119–131. [Google Scholar] [CrossRef]
- Zheng, X.; Yan, Z.; Liu, P.; Li, H.; Zhou, J.; Wang, Y.; Fan, J.; Liu, Z. Derivation of aquatic life criteria for four phthalate esters and their ecological risk assessment in Liao River. Chemosphere 2018, 220, 802–810. [Google Scholar] [CrossRef] [PubMed]
PAEs | N | Mean | (μg/L) | ALC (μg/L) | SQC (μg/g dw) |
---|---|---|---|---|---|
DEHP | 12 | 223.44 | 0.87000 | 0.29000 | 0.77604 |
DBP | 14 | 3009.4 | 2.8100 | 0.93667 | 0.76115 |
BBP | 7 | 7427.7 | 2.9700 | 0.99000 | 0.88773 |
DEP | 8 | 10,862 | 15.830 | 5.2767 | 4.1376 |
DIBP | - | - | - | 0.90000 | 0.050000 |
Rivers | Sites | Concentration (μg/L) | |||||||
---|---|---|---|---|---|---|---|---|---|
DBP | DEHP | DMP | DEP | BBP | DOP | DIBP | Reference | ||
Baiyangdian Lake | 0.26 | 0.42 | ND | ND | ND | ND | 0.16 | This study | |
Pearl River | 8.5 | 5.6 | 2.4 | 0.046 | ND | ND | ND | [42] | |
Jiulong River | 0.67 | 1.7 | 0.088 | 0.085 | ND | ND | 3.4 | [34] | |
Songhua River | 5.1 | 0.20 | 2.5 | 2.4 | 2.5 | 2.4 | ND | [43] | |
Chaohu Lake | 3.2 | 0.20 | 0.42 | 0.14 | 0.071 | 0.035 | ND | [44] | |
Yangtze River | Middle reaches of Jiangsu section | 0.21 | 0.010 | 0.025 | 0.057 | 0.010 | 0.010 | ND | [45] |
Lower jiangsu section | 0.11 | 0.010 | 0.013 | 0.060 | 0.010 | 0.010 | ND | [45] | |
Zhenjiang | 13 | 10 | 1.5 | 2.6 | ND | 1.1 | 13 | [46] | |
Nanjing | 0.19 | 1.1 | 0.010 | 0.14 | 0.010 | 0.020 | ND | [45] | |
Suzhou | ND | ND | 0.015 | 0.012 | ND | 0.034 | ND | [47] | |
Yangcheng Lake | 7.2 | 17 | 0.13 | 0.086 | 0.072 | 0.34 | ND | [47] | |
Taihu Lake | 1.6 | 1.3 | 0.71 | 0.72 | 0.50 | 0.16 | ND | [48] | |
Yellow River | Lanzhou | 0.80 | 0.83 | 0.64 | 0.46 | ND | 0.0020 | 0.48 | [49] |
Middle and lower reaches | 14 | 17 | 0.24 | 0.36 | ND | 1.9 | ND | [9] | |
Haihe River | Summer Palace | 0.34 | 0.26 | 0.062 | 0.0060 | 0.0060 | 0.019 | 0.26 | [50] |
Guanting reservoir | 0.30 | 0.087 | 0.056 | ND | 0.48 | 0.017 | 0.31 | [50] | |
Shichahai | 0.066 | 0.24 | 0.081 | 0.0090 | 0.19 | 0.019 | 0.18 | [50] | |
Liao River | Pu River | 1.2 | 1.0 | 0.66 | 0.16 | ND | ND | 11 | [51] |
Xi River | 2.2 | 0.70 | 0.46 | 0.49 | ND | ND | 3.1 | [51] |
Rivers | Concentration (μg/L) | |||||||
---|---|---|---|---|---|---|---|---|
DMP | DEP | DBP | BBP | DEHP | DOP | DIBP | Reference | |
Songhua River | 0.00300 | 0.0170 | 0.852 | 0.00500 | 6.56 | 0.0420 | ND | [32] |
Jiulong River | 0.00400 | 0.00600 | 0.230 | ND | 1.28 | ND | 0.140 | [34] |
Taihu Lake | 3.50 | 2.29 | 1.75 | 1.30 | 4.77 | 16.2 | ND | [45] |
Tongding River | 0.0210 | 0.0540 | 0.165 | ND | 1.09 | 0.0200 | 0.750 | [52] |
Yellow River | 1.04 | 1.12 | 72.2 | ND | 258 | ND | ND | [9] |
Yangtze River | 2.24 | 1.24 | 246 | ND | 221 | ND | ND | [53] |
JiangHan Plain | 0.238 | 1.87 | 0.290 | 0.0820 | 0.596 | ND | 0.639 | [54] |
Qiantang River | 0.179 | 0.218 | 0.241 | 0.0210 | 6.24 | 0.0190 | 0.769 | [55] |
Pearl River | 1.75 | 0.180 | 4.66 | 0.160 | 8.53 | 0.310 | ND | [49] |
Taiwan river | ND | 1.10 | 30.3 | 1.80 | 23.9 | ND | ND | [56] |
Taiwan’s rivers | ND | ND | 1.30 | 3.10 | 46.5 | ND | ND | [57] |
Kaohsiung Harbor, Taiwan | ND | ND | 1.31 | ND | 34.8 | 0.600 | ND | [58] |
Xi river | 0.266 | 0.197 | 2.43 | ND | 8.30 | 4.35 | 11.2 | [2] |
Pu river | 0.0530 | 0.0600 | 0.304 | ND | 44.5 | 1.47 | 0.404 | [2] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, Y.; Tu, M.; Li, C.; Liu, X.; Wang, J.; Wei, C.; Zheng, X.; Wu, Y. Risk Assessment of Phthalate Esters in Baiyangdian Lake and Typical Rivers in China. Toxics 2023, 11, 180. https://doi.org/10.3390/toxics11020180
Hou Y, Tu M, Li C, Liu X, Wang J, Wei C, Zheng X, Wu Y. Risk Assessment of Phthalate Esters in Baiyangdian Lake and Typical Rivers in China. Toxics. 2023; 11(2):180. https://doi.org/10.3390/toxics11020180
Chicago/Turabian StyleHou, Yin, Mengchen Tu, Cheng Li, Xinyu Liu, Jing Wang, Chao Wei, Xin Zheng, and Yihong Wu. 2023. "Risk Assessment of Phthalate Esters in Baiyangdian Lake and Typical Rivers in China" Toxics 11, no. 2: 180. https://doi.org/10.3390/toxics11020180
APA StyleHou, Y., Tu, M., Li, C., Liu, X., Wang, J., Wei, C., Zheng, X., & Wu, Y. (2023). Risk Assessment of Phthalate Esters in Baiyangdian Lake and Typical Rivers in China. Toxics, 11(2), 180. https://doi.org/10.3390/toxics11020180