Residues and Safety Assessment of Cyantraniliprole and Indoxacarb in Wild Garlic (Allium vineale)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Standards and Reagents
2.2. Field Experiments
2.3. Sample Pretreatment and Analysis
2.4. Method Validation
2.5. Initial Residue Calculations
2.6. Half-Life Calculations
2.7. Safety Assessments
3. Results and Discussion
3.1. Method Validation
3.2. Initial Depositions and Dissipations of Cyantraniliprole and Indoxacarb
3.3. Residual Behavior of Pesticides
3.4. Pre-Harvest Interval (PHI)
3.5. Safety Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, B.M.; Joon, S.P.; Jeong, H.C.; Abd El-Aty, A.M.; Tae, W.N.; Jae, H.S. Residual Determination of Clothianidin and Its Metabolites in Three Minor Crops via Tandem Mass Spectrometry. Food Chem. 2012, 131, 1546–1551. [Google Scholar] [CrossRef]
- Walorczyk, S.; Dariusz, D.; Roman, K. Determination of Pesticide Residues in Samples of Green Minor Crops by Gas Chromatography and Ultra Performance Liquid Chromatography Coupled to Tandem Quadrupole Mass Spectrometry. Talanta 2015, 132, 197–204. [Google Scholar] [CrossRef]
- Kim, I.K.; Sung, W.K.; Abd El-Aty, A.M.; Musfiqur, R.; Humayun, K.; Han, S.L.; Hyung, S.C.; Ji, H.J.; Ho, C.S.; Jae, H.S. Decline Patterns and Risk Assessment of 10 Multi-Class Pesticides in Young Sprout Amaranth (Amaranthus mangostanus) under Greenhouse Growing Conditions. Environ. Sci. Pollut. Res. 2017, 24, 24880–24895. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.G.; Suk, K.L. Monitoring and Risk Assessment of Pesticide Residues in Yuza Fruits (Citrus Junos Sieb. Ex Tanaka) and Yuza Tea Samples Produced in Korea. Food Chem. 2012, 135, 2930–2933. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.J.; Mun, S.; Kim, H.J.; Han, S.J.; Kim, D.W.; Cho, B.S.; Kim, A.G.; Park, D.W. Effectiveness of DifferentWashing Strategies on Pesticide Residue Removal: The First Comparative Study on Leafy Vegetables. Foods 2022, 11, 2916. [Google Scholar] [CrossRef] [PubMed]
- Jeong, M.J.; Hyun, J.S.; Hak, G.K.; Dong, J.P.; Seong, H.Y.; Eunji, C.; Yuwon, S.; Balkrishna, G.; Myung, S.C. The Optimal Cultivation Conditions for Wild Garlic (Allium victorialis Var. Platyphyllum) under the Forests as a Non-Timber Forest Product (NTFP). Agrofor. Syst. 2020, 94, 747–760. [Google Scholar] [CrossRef]
- Lee, K.T.; Jung, H.C.; Dong, H.K.; Kun, H.S.; Won, B.K.; Sang, H.K.; Hee, J.P. Constituents and the Antitumor Principle of Allium Victorialis Var. Platyphyllum. Arch. Pharmacal Res. 2001, 24, 44–50. [Google Scholar] [CrossRef]
- Turner, A. The Pesticide Manual, 17th ed.; British Crop. Protection Council: Alton, UK, 2015; p. 1357. [Google Scholar]
- Zhang, C.; Fang, N.; Li, Y.; Wang, X.; He, H.; Jiang, J.; Tang, T.; Xu, Z.; Zhao, X.; Li, Y. Uptake, Translocation and Distribution of Cyantraniliprole in Rice Planting System. J. Hazard. Mater. 2022, 436, 129125. [Google Scholar] [CrossRef]
- Tiwari, S.; Lukasz, L.S. Effects of Cyantraniliprole, a Novel Anthranilic Diamide Insecticide, against Asian Citrus Psyllid under Laboratory and Field Conditions. Pest Manag. Sci. 2013, 69, 1066–1072. [Google Scholar] [CrossRef]
- Dong, F.; Liu, X.; Xu, J.; Li, J.; Li, Y.; Shan, W.; Song, W.; Zheng, Y. Determination of Cyantraniliprole and Its Major Metabolite Residues in Vegetable and Soil Using Ultra-Performance Liquid Chromatography/Tandem Mass Spectrometry. Biomed. Chromatogr. 2012, 26, 377–383. [Google Scholar] [CrossRef]
- Lee, J.; Jung, M.W.; Lee, J.; Lee, J.; Shin, Y.; Kim, J.H. Dissipation of the Insecticide Cyantraniliprole and Its Metabolite IN-J9Z38 in Proso Millet during Cultivation. Sci. Rep. 2019, 9, 11648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ham, H.-J.; Sardar, S.W.; Ishag, A.E.S.A.; Choi, J.-Y.; Hur, J.-H. Optimization of an Analytical Method for Indoxacarb Residues in Fourteen Medicinal Herbs Using GC–µ ECD, GC–MS/MS and LC–MS/MS. Separations 2022, 9, 232. [Google Scholar] [CrossRef]
- Malhat, F.; Konstantinos, M.K.; Shehata, S. Magnitude of Cyantraniliprole Residues in Tomato Following Open Field Application: Pre-Harvest Interval Determination and Risk Assessment. Environ. Monit. Assess. 2018, 190, 116. [Google Scholar] [CrossRef]
- Kumar, N.; Narayanan, N.; Banerjee, T.; Sharma, R.K.; Gupta, S. Quantification of Field-Incurred Residues of Cyantraniliprole and IN-J9Z38 in Cabbage/Soil Using QuEChERS/HPLC-PDA and Dietary Risk Assessment. Biomed. Chromatogr. 2021, 35, e5213. [Google Scholar] [CrossRef]
- Xu, F.; Lu, Z.; Xu, D.; Lu, H.; Qiu, J.; Zha, X. Dissipation Behavior, Residue Transfer, and Safety Evaluation of Chlorantraniliprole and Indoxacarb during Tea Growing and Brewing by Ultrahigh-Performance Liquid Chromatography-Tandem Mass Spectrometry. Environ. Sci. Pollut. Res. 2022, 29, 63735–63752. [Google Scholar] [CrossRef]
- Sardar, S.W.; Geon, D.B.; Jeong, Y.C.; Hun, J.H.; Abd Elaziz, S.A.I.; Jang, H.H. Residual Characteristics and Safety Assessment of the Insecticides Spiromesifen and Chromafenozide in Lettuce and Perilla. Sci. Rep. 2022, 12, 4675. [Google Scholar] [CrossRef] [PubMed]
- Korean Rural Development Administration. Available online: http://www.rda.go.kr2018 (accessed on 12 November 2022).
- Kang, M.-S.; Park, P.-H.; Kim, K.-Y.; Lim, B.-G.; Ryu, K.-S.; Lee, Y.-J.; Lim, J.-H.; Kang, C.-W.; Kim, Y.-H.; Lee, S.-Y.; et al. Dissipation of Bifenthrin and Chlorothalonil in Crown Daisy during Cultivation and Their Biological Half-Lives. J. Food Hyg. Saf. 2019, 34, 191–198. [Google Scholar] [CrossRef]
- Kim, Y.A.; Abd El-Aty, A.M.; Musfiqur, R.; Ji, H.J.; Ho, C.S.; Jing, W.; Sung, S.S.; Jae, H.S. Method Development, Matrix Effect, and Risk Assessment of 49 Multiclass Pesticides in Kiwifruit Using Liquid Chromatography Coupled to Tandem Mass Spectrometry. J. Chromatogr. B 2018, 1076, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Cabizza, M.; Dedola, F.; Satta, M. Residues Behavior of Some Fungicides Applied on Two Greenhouse Tomato Varieties Different in Shape and Weight. J. Environ. Sci. Health Part B 2012, 47, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Kerier, F.; Jörg, S. Permeation of Lipophilic Chemicals across Plant Cuticles: Prediction from Partition Coefficients and Molar Volumes. Arch. Environ. Contam. Toxicol. 1988, 17, 7–12. [Google Scholar] [CrossRef]
- Lee, J.; Byung, J.K.; Eunhye, K.; Jeong, H.K. Dissipation Kinetics and the Pre-Harvest Residue Limits of Acetamiprid and Chlorantraniliprole in Kimchi Cabbage Using Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry. Molecules 2019, 24, 2616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakthiselvi, T.; Paramasivam, M.; Vasanthi, D.; Bhuvaneswari, K. Persistence, Dietary and Ecological Risk Assessment of Indoxacarb Residue in/on Tomato and Soil Using GC–MS. Food Chem. 2020, 328, 127134. [Google Scholar] [CrossRef]
- Ripley, B.D.; Gwen, M.; Ritcey, C.; Ronald, H.; Mary, A.D.; Linda, I.L. Comparative Persistence of Pesticides on Selected Cultivars of Specialty Vegetables. J. Agric. Food Chem. 2003, 51, 1328–1335. [Google Scholar] [CrossRef] [PubMed]
- Bian, Y.; Wang, J.; Liu, F.; Mao, B.; Huang, H.; Xu, J.; Li, X.; Guo, Y. Residue Behavior and Removal of Iprodione in Garlic, Green Garlic, and Garlic Shoot. J. Sci. Food Agric. 2020, 100, 4705–4713. [Google Scholar] [CrossRef]
- Mate, C.J.; Irani, M. Mobility of Spiromesifen in Packed Soil Columns under Laboratory Conditions. Environ. Monit. Assess. 2014, 186, 7195–7202. [Google Scholar] [CrossRef]
- Grávalos, C.; Esther, F.; Ana, B.; Inmaculada, M.; Caridad, R.; Pablo, B. Cross-Resistance and Baseline Susceptibility of Mediterranean Strains of Bemisia Tabaci to Cyantraniliprole. Pest Manag. Sci. 2015, 71, 1030–1036. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Huang, H.H.; Ding, J.; Wang, Y.H. Embryotoxicity and Teratogenicity of Pesticide Indoxacarb to Sea Urchin (Strongylocentrotus intermedius). Water Sci. Technol. 2010, 61, 2733–2739. [Google Scholar] [CrossRef]
- Farha, W.; Abd El-Aty, A.M.; Musfiqur, R.; Ho, C.S.; Jae, H.S. An Overview on Common Aspects Influencing the Dissipation Pattern of Pesticides: A Review. Environ. Monit. Assess. 2016, 188, 693. [Google Scholar] [CrossRef]
- Chun, O.K.; Kang, H.G. Estimation of Risks of Pesticide Exposure, by Food Intake, to Koreans. Food Chem. Toxicol. 2003, 41, 1063–1076. [Google Scholar] [CrossRef] [PubMed]
Pesticides | Fortification Level (mg/kg) | (Recoveries ± RSDs (a)) (%) | LOQ (b) (mg/kg) | |
---|---|---|---|---|
Intraday | Interday | |||
Cyantraniliprole | 0.01 0.1 | 94.2 ± 5.9 98.7 ± 6.0 | 89.8 ± 7.4 93.8 ± 7.7 | 0.01 |
Indoxacarb | 0.01 0.1 | 111.4 ± 4.2 105.0 ± 1.8 | 98.5 ± 5.7 95.2 ± 4.2 |
Pesticides | Residual Amount at 0 Day (mg/kg) | Initial Residual Amount (mg/kg) |
---|---|---|
Cyantraniliprole | 0.04 | 0.4 |
Indoxacarb | 0.14 | 0.7 |
Pesticides | Days after the Last Spraying | Average Residual Amount (mg/kg) |
---|---|---|
Cyantraniliprole | 0 | 0.04 B |
3 | 0.03 CB | |
7 | 0.01 ED | |
14 | 0.01 ED | |
Indoxacarb | 0 | 0.14 A |
3 | 0.02 CD | |
7 | 0.01 ED | |
14 | <0.01 E |
Pesticides | Recommended PHI | MRL (mg/kg) |
---|---|---|
Cyantraniliprole | Two treatments 7 days before harvest | 0.03 (a) |
Indoxacarb | 0.05 |
Pesticides | MRL (mg/kg) | Daily Intake (g/Day) | EDI (mg/kg) | %ADI (mg/kg) | TMDI (%) |
---|---|---|---|---|---|
Cyantraniliprole | 0.03 (1) | 0.02 | 0.1 × 10−5 | 0.3 × 10−4 | 9.80 |
Indoxacarb | 2.0 (2) | 0.4 × 10−4 | 6.7 × 10−2 | 60.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sardar, S.W.; Choi, J.Y.; Jo, Y.J.; Ishag, A.E.S.A.; Kim, M.-w.; Ham, H.J. Residues and Safety Assessment of Cyantraniliprole and Indoxacarb in Wild Garlic (Allium vineale). Toxics 2023, 11, 219. https://doi.org/10.3390/toxics11030219
Sardar SW, Choi JY, Jo YJ, Ishag AESA, Kim M-w, Ham HJ. Residues and Safety Assessment of Cyantraniliprole and Indoxacarb in Wild Garlic (Allium vineale). Toxics. 2023; 11(3):219. https://doi.org/10.3390/toxics11030219
Chicago/Turabian StyleSardar, Syed Wasim, Jeong Yoon Choi, Yeong Ju Jo, Abd Elaziz Sulieman Ahmed Ishag, Min-woo Kim, and Hun Ju Ham. 2023. "Residues and Safety Assessment of Cyantraniliprole and Indoxacarb in Wild Garlic (Allium vineale)" Toxics 11, no. 3: 219. https://doi.org/10.3390/toxics11030219
APA StyleSardar, S. W., Choi, J. Y., Jo, Y. J., Ishag, A. E. S. A., Kim, M. -w., & Ham, H. J. (2023). Residues and Safety Assessment of Cyantraniliprole and Indoxacarb in Wild Garlic (Allium vineale). Toxics, 11(3), 219. https://doi.org/10.3390/toxics11030219