Quantitative Source Apportionment of Potentially Toxic Elements in Baoshan Soils Employing Combined Receptor Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Preparation and Quality Control
2.3. Pollution Assessment
2.3.1. Pollution Factors
2.3.2. Geoaccumulation Index
2.4. Receptor Models
2.4.1. APCS-MLR
- (1)
- Standardizing raw data
- (2)
- Introducing a factor with a concentration of 0
2.4.2. PMF
2.4.3. UNMIX Model
2.5. Data Treatment with Computer Software
3. Results and Discussion
3.1. Pollution Characteristics of Soil PTEs
3.1.1. Soil PTE Concentration
3.1.2. Assessment of Soil PTE Pollution
3.2. Spatial Distribution of Soil PTEs
3.3. Source Apportionment of Soil PTEs
3.3.1. Multivariate Statistical Analysis
3.3.2. APCS-MLR Model
3.3.3. PMF Model
3.3.4. UNMIX Model
3.4. Model Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barsby, A.; McKinley, J.M.; Ofterdinger, U.; Young, M.; Cave, M.R.; Wragg, J. Bioaccessibility of trace elements in soils in Northern Ireland. Sci. Total Environ. 2012, 433, 398–417. [Google Scholar] [CrossRef] [Green Version]
- Ahado, S.K.; Nwaogu, C.; Sarkodie, V.Y.O.; Borůvka, L. Modeling and Assessing the Spatial and Vertical Distributions of Potentially Toxic Elements in Soil and How the Concentrations Differ. Toxics 2021, 9, 181. [Google Scholar] [CrossRef]
- Hou, D.; O’Connor, D.; Nathanail, P.; Tian, L.; Ma, Y. Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: A critical review. Environ. Pollut. 2017, 231, 1188–1200. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; O’Connor, D.; Sik Ok, Y.; Tsang, D.C.W.; Liu, A.; Hou, D. Assessment of sources of heavy metals in soil and dust at children’s playgrounds in Beijing using GIS and multivariate statistical analysis. Environ. Int. 2019, 124, 320–328. [Google Scholar] [CrossRef]
- Jadoon, S.; Muhammad, S.; Hilal, Z.; Ali, M.; Khan, S.; Khattak, N. Spatial distribution of potentially toxic elements in urban soils of Abbottabad city, (N Pakistan): Evaluation for potential risk. Microchem. J. 2020, 153, 104489. [Google Scholar] [CrossRef]
- Moghtaderi, T.; Shakeri, A.; Rodríguez-Seijo, A. Potentially Toxic Element Content in Arid Agricultural Soils in South Iran. Agronomy 2020, 10, 564. [Google Scholar] [CrossRef]
- Wang, X.; Wang, L.; Zhang, Q.; Liang, T.; Li, J.; Bruun, H.H.C.; Sabry, M.S.; Vasileios, A.; Nanthi, B.; Jörg, R. Integrated assessment of the impact of land use types on soil pollution by potentially toxic elements and the associated ecological and human health risk. Environ. Pollut. 2022, 299, 118911. [Google Scholar] [CrossRef] [PubMed]
- Zuzolo, D.; Cicchella, D.; Lima, A.; Guagliardi, I.; Cerino, P.; Pizzolante, A.; Thiombane, M.; De Vivo, B.; Albanese, S. Potentially toxic elements in soils of Campania region (Southern Italy): Combining raw and compositional data. J. Geochem. Explor. 2020, 213, 106524. [Google Scholar] [CrossRef]
- Nogueira, T.A.R.; Abreu-Junior, C.H.; Alleoni, L.R.F.; He, Z.; Soares, M.R.; Vieira, C.d.S.; Lessa, L.G.F.; Capra, G.F. Background concentrations and quality reference values for some potentially toxic elements in soils of São Paulo State, Brazil. J. Environ. Manag. 2018, 221, 10–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Available online: http://www.baoshan.gov.cn/info/egovinfo/1001/zfxxgkpt/zfxxgkptzn-content/01525525-X-/2021-1229001.htm (accessed on 12 December 2022.).
- Li, Q.; Hu, Q.; Zhang, C.; Jin, Z. Effects of Pb, Cd, Zn, and Cu on Soil Enzyme Activity and Soil Properties Related to Agricultural Land-Use Practices in Karst Area Contaminated by Pb-Zn Tailings. Pol. J. Environ. Stud. 2018, 27, 2623–2632. [Google Scholar] [CrossRef]
- Jaradat, Q.M.; Massadeh, A.M.; Momani, K.A.; Al Saleem, M.A. The Spatial Distribution of Pb, Cd, Zn, and Cu in Agricultural Roadside Soils. SoilSediment Contam. 2010, 19, 58–71. [Google Scholar] [CrossRef]
- Zhou, R.; Liu, X.; Luo, L.; Zhou, Y.; Wei, J.; Chen, A.; Tang, L.; Wu, H.; Deng, Y.; Zhang, F.; et al. Remediation of Cu, Pb, Zn and Cd-contaminated agricultural soil using a combined red mud and compost amendment. Int. Bioeterioration Biodegrad. 2017, 118, 73–81. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, D.; Zhang, W.; Chen, X.; Zhao, Q.; Chen, X.; Zou, C. Health risk assessment of heavy metals (Zn, Cu, Cd, Pb, As and Cr) in wheat grain receiving repeated Zn fertilizers. Environ. Pollut. 2020, 257, 113581. [Google Scholar] [CrossRef]
- Liao, Z.; Chen, Y.; Ma, J.; Islam, M.S.; Weng, L.; Li, Y. Cd, Cu, and Zn Accumulations Caused by Long-Term Fertilization in Greenhouse Soils and Their Potential Risk Assessment. Int. J. Environ. Res. Public Health 2019, 16, 2805. [Google Scholar] [CrossRef] [Green Version]
- Zhan, J.; Li, X.; Christie, P.; Wu, L. A review of soil potentially toxic element contamination in typical karst regions in southwest China. Curr. Opin. Environ. Sci. Health 2021, 23, 100284. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, Z.; Peng, M.; Cheng, X. Contamination Levels and the Ecological and Human Health Risks of Potentially Toxic Elements (PTEs) in Soil of Baoshan Area, Southwest China. Appl. Sci. 2022, 12, 1693. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Z.; Liu, L.; Liu, Y. Source Analysis of Soil Heavy Metals in Agriccultural Land the Ming Area Based on APCS-MLR Receptor Model and Geostatistical Method. Environ. Sci. 2022, 1–14. [Google Scholar] [CrossRef]
- Khorasanipour, M.; Karimabadi, F.; Espahbodi, M.; Ebrahimnejad, M. The effect of flotation desulfurization on the trace element geochemistry of Sarcheshmeh mine tailings, SE of Iran: Recycling and the environmental opportunities. Environ. Earth Sci. 2021, 80, 420. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, W.; Yang, W.; Bai, Z.; Zhao, X. Chemical Compositions of PM2.5 Emitted from Diesel Trucks and Construction Equipment. Aerosol Sci. Eng. 2018, 2, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Rozanski, S.; Castejon, J.; McGahan, D. Child risk assessment of selected metal(loid)s from urban soils using in vitro UBM procedure. Ecol. Indic. 2021, 127, 107726. [Google Scholar] [CrossRef]
- Cicchella, D.; Zuzolo, D.; Albanese, S.; Fedele, L.; Di Tota, I.; Guagliardi, I.; Thiombane, M.; De Vivo, B.; Lima, A. Urban soil contamination in Salerno (Italy): Concentrations and patterns of major, minor, trace and ultra-trace elements in soils. J. Geochem. Explor. 2020, 213, 106519. [Google Scholar] [CrossRef]
- Li, J.; Wu, J.; Jiang, J.; Teng, Y.; He, L.; Song, L. Review on Source Apportionment of Soil Pollutants in Recent Ten Years. Soil Sci. 2018, 49, 232–242. [Google Scholar] [CrossRef]
- Wu, J.; Long, J.; Liu, L.; Li, J.; Liao, H.; Zhang, M.; Zhao, C.; Wu, Q. Risk Assessment and Source Identification of Toxic Metals in the Agricultural Soil around a Pb/Zn Mining and Smelting Area in Southwest China. Int. Environ. Res. Public Health 2018, 15, 1838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Negahban, S.; Mokarram, M. Potential Ecological Risk Assessment of Ni, Cu, Zn, Cd, and Pb in Roadside Soils. Earth Space Sci. 2021, 8, e2020EA001120. [Google Scholar] [CrossRef]
- Li, Y.; Gou, X.; Wang, G.; Zhang, Q.; Su, Q.; Xiao, G. Heavy metal contamination and source in arid agricultural soil in central Gansu Province, China. Environ. Sci. 2008, 20, 607–612. [Google Scholar] [CrossRef]
- Li, N.; Li, Y.; Wang, G.; Zhang, H.; Zhang, X.; Wen, J.; Cheng, X. The sources risk assessment combined with APCS/MLR model for potentially toxic elements in farmland of a first-tier city, China. Environ. Sci. Pollut. Res. 2022, 29, 50717–50726. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Ding, Y.; Jiang, X.; Duan, H.; Ruan, X.; Li, Z.; Li, Y. Combination of UNMIX, PMF model and Pb-Zn-Cu isotopic compositions for quantitative source apportionment of heavy metals in suburban agricultural soils. Ecotoxicol. Environ. Saf. 2022, 234, 113369. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Anwar, S.; Fang, L.; Chen, L.; Xu, W.; Xiao, L.; Zhong, B.; Liu, D. Source Apportionment of Agricultural Soil Heavy Metals Based on PMF Model and Multivariate Statistical Analysis. Environ. Forensics 2022, 1–9. [Google Scholar] [CrossRef]
- Lv, J. Multivariate receptor models and robust geostatistics to estimate source apportionment of heavy metals in soils. Environ. Pollut. 2018, 244, 72–83. [Google Scholar] [CrossRef]
- Wang, J.; Yang, J.; Chen, T. Source appointment of potentially toxic elements (PTEs) at an abandoned realgar mine: Combination of multivariate statistical analysis and three common receptor models. Chemosphere 2022, 307, 135923. [Google Scholar] [CrossRef]
- Zhang, L.; McKinley, J.; Cooper, M.; Peng, M.; Wang, Q.; Song, Y.; Cheng, H. A regional soil and river sediment geochemical study in Baoshan area, Yunnan province, southwest China. Geochem. Explor. 2020, 217, 106557. [Google Scholar] [CrossRef]
- Lei, M.; Li, K.; Guo, G.; Ju, T. Source-specific health risks apportionment of soil potential toxicity elements combining multiple receptor models with Monte Carlo simulation. Sci. Total Environ. 2022, 817, 152899. [Google Scholar] [CrossRef] [PubMed]
- Candeias, C.; Avila, P.; da Silva, E.; Teixeira, J. Integrated approach to assess the environmental impact of mining activities: Estimation of the spatial distribution of soil contamination (Panasqueira mining area, Central Portugal). Environ. Monit. Assess. 2015, 187, 135. [Google Scholar] [CrossRef]
- Turan, D.; Kocahakimoglu, C.; Kavcar, P.; Gaygısız, H.; Atatanir, L.; Turgut, C.; Sofuoglu, S. The use of olive tree (Olea europaea L.) leaves as a bioindicator for environmental pollution in the Province of Aydın, Turkey. Env. Sci. Pollut. Res. 2011, 18, 355–364. [Google Scholar] [CrossRef] [Green Version]
- Rehman, I.; Ishaq, M.; Ali, L.; Khan, S.; Ahmad, I.; Din, I.; Ullah, H. Enrichment, spatial distribution of potential ecological and human health risk assessment via toxic metals in soil and surface water ingestion in the vicinity of Sewakht mines, district Chitral, Northern Pakistan. Ecotoxicol. Environ. Saf. 2018, 154, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, S.; Chakraborty, S.; Bhadoria, P.B.S.; Li, B.; Weindorf, D. Assessment of heavy metal and soil organic carbon by portable X-ray fluorescence spectrometry and NixProTM sensor in landfill soils of India. Geoderma Reg. 2020, 20, e00249. [Google Scholar] [CrossRef]
- Thurston, G.; Spengler, J. A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston. Atmos. Environ. 1985, 19, 9–25. [Google Scholar] [CrossRef]
- Paatero, P.; Tapper, U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 1994, 5, 111–126. [Google Scholar] [CrossRef]
- CNEMC. Chinese Soil Element Background Value; Environmental Science Press: Beijing, China, 1990. [Google Scholar]
- Gholizadeh, A.; Borůvka, L.; Saberioon, M.M.; Kozák, J.; Vašát, R.; Němeček, K. Comparing Different Data Preprocessing Methods for Monitoring Soil Heavy Metals Based on Soil Spectral Features. Soil and Water Research. 2015, 10, 218–227. [Google Scholar] [CrossRef] [Green Version]
- Xing, R.; Wu, Z.; Du, G. Risk assessment and source analysis soil heavy metal pollution in Xuanzhou District, Anhui Province. East China Geol. 2022, 43, 336–344. [Google Scholar] [CrossRef]
- Gao, Y.; Li, F.; Mao, L.; Gu, B.; Peng, C.; Yang, Q.; Lu, L.; Chen, X.; Zhang, D.; Tao, H. Potential Loss of Toxic Elements from Slope Arable Soil Erosion into Watershed in Southwest China: Effect of Spatial Distribution and Land-Uses. Minerals 2021, 11, 1422. [Google Scholar] [CrossRef]
- Xiao, J.; Chen, W.; Wang, L.; Zhang, X.; Wen, Y.; Bostick, B.; Wen, Y.; He, X.; Zhang, L.; Zhuo, X.; et al. New strategy for exploring the accumulation of heavy metals in soils derived from different parent materials in the karst region of southwestern China. Geoderma 2022, 417, 115806. [Google Scholar] [CrossRef]
- Cabral Pinto, M.; Silva, M.; Ferreira da Silva, E.; Dinis, P.; Rocha, F. Transfer processes of potentially toxic elements (PTE) from rocks to soils and the origin of PTE in soils: A case study on the island of Santiago (Cape Verde). Geochem. Explor. 2017, 183, 140–151. [Google Scholar] [CrossRef]
- Duan, B.; Qiang, F. Comparison of the Potential Ecological and Human Health Risks of Heavy Metals from Sewage Sludge and Livestock Manure for Agricultural Use. Toxics 2021, 9, 145. [Google Scholar] [CrossRef] [PubMed]
- Francos, N.; Gholizadeh, A.; Ben Dora, E. Spatial distribution of lead (Pb) in soil: A case study in a contaminated area of the Czech Republic. Geomat. Nat. Hazards Risk 2022, 12, 610–620. [Google Scholar] [CrossRef]
- Tu, C.; Yang, K.; He, C.; Zhang, L.; Li, B.; Wei, Z.; Jian, X.; Yang, M. Sources and Risk Assessment of Heavy Metals in Small Watersheds in Typical Coal Mining Areas of Eastern Yunnan. East China Geol. 2022, pp. 1–16. Available online: http://kns.cnki.net/kcms/detail/11.1167.P.20220330.1029.002.html (accessed on 16 January 2023).
- Lai, S.; Cao, R.; Tan, G. Study on accumulation characteristics of heavy metal elements in topsoil of southern Longhai City, Fujian Province. East China Geol. 2021, 42, 29–36. [Google Scholar] [CrossRef]
- Hu, Y.; He, K.; Sun, Z.; Chen, G.; Cheng, H. Quantitative source apportionment of heavy metal(loid)s in the agricultural soils of an industrializing region and associated model uncertainty. Hazard. Mater. 2020, 391, 122244. [Google Scholar] [CrossRef]
- Gong, C.; Wang, S.; Wang, D.; Lu, H.; Dong, H.; Liu, J.; Yan, B.; Wang, L. Ecological and human health risk assessment of heavy metal(loid)s in agricultural soil in hotbed chives hometown of Tangchang, Southwest China. Sci. Rep. 2022, 12, 8563. [Google Scholar] [CrossRef]
- Singh, H.; Pandey, R.; Singh, S.K.; Shukla, D.N. Assessment of heavy metal contamination in the sediment of the River Ghaghara, a major tributary of the River Ganga in Northern India. Appl. Water Sci. 2017, 7, 4133–4149. [Google Scholar] [CrossRef]
- Jin, G.; Fang, W.; Shafi, M.; Wu, D.; Li, Y.; Zhong, B.; Ma, J.; Liu, D. Source apportionment of heavy metals in farmland soil with application of APCS-MLR model: A pilot study for restoration of farmland in Shaoxing City Zhejiang, China. Ecotoxicol. Environ. Saf. 2019, 184, 109495. [Google Scholar] [CrossRef]
- Samsudin, M.; Azid, A.; Khalit, S.; Saudi, A.; Zaudi, M. River water quality assessment using APCS-MLR and statistical process control in Johor River Basin, Malaysia. Adv. Appl. Sci. 2017, 4, 84–97. [Google Scholar] [CrossRef]
- Jiang, H.; Cai, L.; Wen, H.; Hu, G.; Chen, L.; Luo, J. An integrated approach to quantifying ecological and human health risks from different sources of soil heavy metals. Total Environ. 2020, 701, 134466. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Lei, M.; Zhang, S.; Zhang, D.; Guo, G.; Zhao, X. Apportionment and Spatial Pattern Analysis of Soil Heavy Metal Pollution Sources Related to Industries of Concern in a County in Southwestern China. Environ. Res. Public Health 2022, 19, 7421. [Google Scholar] [CrossRef]
- Li, C.; Zhang, C.; Yu, T.; Liu, X.; Xia, X.; Hou, Q.; Yang, Y.; Yang, Z.; Wang, L. Annual net input fluxes of cadmium in paddy soils in karst and non-karst areas of Guangxi, China. Geochem. Explor. 2022, 241, 107072. [Google Scholar] [CrossRef]
- Wu, J.; Chen, Y.; Ma, J.; Cao, J.; Jiang, Y. Sustainable Strategies for the Agricultural Development of Shaanxi Province Based on the Risk Assessment of Heavy Metal Pollution. Foods 2022, 11, 1409. [Google Scholar] [CrossRef]
- Wu, H.; Wang, J.; Guo, J.; Hu, X.; Bao, H.; Chen, J. Record of heavy metals in Huguangyan Maar Lake sediments: Response to anthropogenic atmospheric pollution in Southern China. Sci. Total Environ. 2022, 831, 154829. [Google Scholar] [CrossRef] [PubMed]
- Xiao, G.; Chen, J.; Bai, B.; Li, Y.; Zhu, N. Content Characteristics and Risk Assessment of Heavy Metals in Soil of Typical High Geological Background Areas, Yunnan Province. Geol. Explor. 2021, 57, 1077–1086. [Google Scholar]
- Zhang, C.; Zou, X.; Yang, H.; Liang, J.; Zhu, T. Bioaccumulation and Risk Assessment of Potentially Toxic Elements in Soil-Rice System in Karst Area, Southwest China. Front. Environ. Sci. 2022, 10, 866427. [Google Scholar] [CrossRef]
- Li, Y.; Xu, Z.; Ren, H.; Wang, D.; Wang, J.; Wu, Z.; Cai, P. Spatial Distribution and Source Apportionment of Heavy Metals in the Topsoil of Weifang City, East China. Front. Environ. Sci. 2022, 10, 893938. [Google Scholar] [CrossRef]
- Wang, J.; Wu, H.; Wei, W.; Xu, C.; Tan, X.; Wen, Y.; Lin, A. Health risk assessment of heavy metal(loid)s in the farmland of megalopolis in China by using APCS-MLR and PMF receptor models: Taking Huairou District of Beijing as an example. Total Environ. 2022, 835, 155313. [Google Scholar] [CrossRef]
- Chen, Z.; Xu, J.; Duan, R.; Lu, S.; Hou, Z.; Yang, F.; Peng, M.; Zong, Q.; Shi, Z.; Yu, L. Ecological Health Risk Assessment and Source Identification of Heavy Metals in Surface Soil Based on a High Geochemical Background: A Case Study in Southwest China. Toxics 2022, 10, 282. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Cai, L.; Wen, H.; Luo, J.; Wang, Q.; Liu, X. Spatial distribution and source apportionment of heavy metals in soil from a typical county-level city of Guangdong Province, China. Sci. Total Environ. 2019, 655, 92–101. [Google Scholar] [CrossRef]
- Han, L.; Xu, X. Quantitative Evaluation of Human Health Risk of Heavy Meyals in Soil Based on Postitive Matrix Factorization Model and Geo-statistics. Environ. Sci. 2020, 41, 5114–5124. [Google Scholar] [CrossRef]
- Atafar, Z.; Mesdaghinia, A.; Nouri, J.; Homaee, M.; Yunesian, M.; Ahmadimoghaddam, M.; Mahvi, A. Effect of fertilizer application on soil heavy metal concentration. Environ Monit Assess. Environ. Monit. Assess. 2010, 160, 83. [Google Scholar] [CrossRef]
- Zhang, F.; Peng, M.; Wang, H.; Ma, H.; Xu, R.; Cheng, X.; Hou, Z.; Chen, Z.; Li, K.; Cheng, H. Ecological risk assessment of heavy metals at township scale in thehigh background of heavy metals, southwestern China. Environ. Sci. 2020, 41, 4197–4209. [Google Scholar] [CrossRef]
- Luo, X.; Wu, C.; Lin, Y.; Li, W.; Deng, M.; Tan, J.; Xue, S. Soil heavy metal pollution from Pb/Zn smelting regions in China and the remediation potential of biomineralization. Environ. Sci. 2022, 125, 662–677. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Kuang, H.; Hu, C.; Ge, G. Source Apportionment of Heavy Metal Pollution in Agricultural Soils around the Poyang Lake Region Using UNMIX Model. Sustainability 2021, 13, 5272. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, L.; Zhang, W.; Wang, L.; Shi, X.; Lu, X. Pollution assessment and source apportionment of trace metals in urban topsoil of Xi’ a City in Northwest China. Arch. Environ. Contam. Toxicol. 2019, 77, 575–586. [Google Scholar] [CrossRef]
- Guan, Q.; Zhao, R.; Pan, N.; Wang, F.; Yang, Y.; Luo, H. Source apportionment of heavy metals in farmland soil of Wuwei, China: Comparison of three receptor models. Clean. Prod. 2019, 237, 117792. [Google Scholar] [CrossRef]
- Yang, B.; Zhou, L.; Xue, N.; Li, F.; Li, Y.; Vogt, R.; Cong, X.; Yan, Y.; Liu, B. Source apportionment of polycyclic aromatic hydrocarbons in soils of Huanghuai Plain, China: Comparison of three receptor models. Sci. Total Environ. 2013, 443, 31–39. [Google Scholar] [CrossRef]
- Jin, Z.; Lv, J. Integrated receptor models and multivariate geostatistical simulation for source apportionment of potentially toxic elements in soils. CATENA 2020, 194, 104638. [Google Scholar] [CrossRef]
Test Items | Detection Method | GB Number | Detection Limits |
---|---|---|---|
Copper (Cu) Zinc (Zn) | Furnace atomic absorption spectrophotometry | GB/T17138-1997 | 0.01 0.5 |
Cadmium (Cd) lead (Pb) | Graphite furnace atomic absorption spectrophotometry | GB/T17141-1997 | 0.01 0.2 |
Arsenic (As) | Atomic fluorescence Spectrophotometer | GB/T22105 | 0.02 |
PF | Level of Pollution |
---|---|
PF ≤ 1 | Low pollution |
1 < PF ≤ 3 | Moderate pollution |
3 < PF ≤ 6 | Considerable pollution |
PF > 6 | Very high pollution |
Level | Igeo | Level of Pollution |
---|---|---|
Ⅰ | Igeo ≤ 0 | Not to weakly contaminated |
Ⅱ | 0 < Igeo ≤ 1 | Weakly to moderately contaminated |
Ⅲ | 1 < Igeo ≤ 2 | Moderately contaminated |
Ⅳ | 2 < Igeo ≤ 3 | Moderately to strongly contaminated |
Ⅴ | 3 < Igeo ≤ 4 | Strongly contaminated |
Ⅵ | 4 < Igeo ≤ 5 | Strongly to extremely contaminated |
Ⅶ | Igeo ≥ 5 | Extremely contaminated |
PTEs | Min | Max | Med | AM | SD | CV (%) | Sk | Ku | k-s Test | BG | RSV |
---|---|---|---|---|---|---|---|---|---|---|---|
Cd | 0.02 | 1.06 | 0.19 | 0.28 | 0.251 | 91.3 | 1.921 | 2.806 | 0 | 0.22 | 0.3 |
Pb | 15.15 | 112 | 28.14 | 31.42 | 15.28 | 49.0 | 2.168 | 7.119 | 0 | 40.6 | 120 |
Cu | 5 | 181.3 | 44.6 | 47.59 | 29.129 | 61.2 | 1.575 | 4.018 | 0 | 38.38 | 100 |
Zn | 15.44 | 239 | 87.74 | 100.46 | 39.664 | 39.5 | 0.493 | −0.177 | 0 | 89.7 | 250 |
As | 1.23 | 54.46 | 9.39 | 12.36 | 10.076 | 81.5 | 2.016 | 4.63 | 0 | 18.4 | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, C.; Zhang, H.; Yang, H.; Wei, Z.; Zhang, N.; Bao, L. Quantitative Source Apportionment of Potentially Toxic Elements in Baoshan Soils Employing Combined Receptor Models. Toxics 2023, 11, 268. https://doi.org/10.3390/toxics11030268
Dong C, Zhang H, Yang H, Wei Z, Zhang N, Bao L. Quantitative Source Apportionment of Potentially Toxic Elements in Baoshan Soils Employing Combined Receptor Models. Toxics. 2023; 11(3):268. https://doi.org/10.3390/toxics11030268
Chicago/Turabian StyleDong, Chunyu, Hao Zhang, Haichan Yang, Zhaoxia Wei, Naiming Zhang, and Li Bao. 2023. "Quantitative Source Apportionment of Potentially Toxic Elements in Baoshan Soils Employing Combined Receptor Models" Toxics 11, no. 3: 268. https://doi.org/10.3390/toxics11030268
APA StyleDong, C., Zhang, H., Yang, H., Wei, Z., Zhang, N., & Bao, L. (2023). Quantitative Source Apportionment of Potentially Toxic Elements in Baoshan Soils Employing Combined Receptor Models. Toxics, 11(3), 268. https://doi.org/10.3390/toxics11030268