Estimation of Polycyclic Aromatic Hydrocarbons in Groundwater from Campania Plain: Spatial Distribution, Source Attribution and Health Cancer Risk Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area: Campania Plain
2.2. Groundwater Sampling
2.3. Samples Pretreatment and Instrumental Analysis
2.4. Quality Control and Quality Assurance
2.5. Mapping Technique of Groundwater
2.6. Health Risk Assessment
3. Results and Discussions
3.1. Levels of PAHs in Groundwater
3.2. Spatial Distribution of PAHs in Groundwater
3.3. Potential Source Identification
3.4. Human Health Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Canadian, I.A.H.; Solutions, G.C.L. International Association of Hydrogeologists. U.S. National Chapter. 2010, 39-2.
- Lezzaik, K.; Milewski, A.; Mullen, J. The groundwater risk index: Development and application in the Middle East and North Africa region. Sci. Total Environ. 2018, 628–629, 1149–1164. [Google Scholar] [CrossRef] [PubMed]
- Megdal, S.B. Invisible water: The importance of good groundwater governance and management. NPJ Clean Water 2018, 1, 15. [Google Scholar] [CrossRef]
- USEPA (US Environmental Protection Agency). Regional Screening Levels for Chemical Contaminants at Superfund Sites. Regional Screening Table. User’s Guide. 2012. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2713671/ (accessed on 4 May 2022).
- An, N.; Liu, S.; Yin, Y.; Cheng, F.; Dong, S.; Wu, X. Spatial distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in the reservoir sediments after impoundment of Manwan Dam in the middle of Lancang River, China. Ecotoxicology 2016, 25, 1072–1081. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wu, J.; Zhao, Z. Spatial and temporal distribution of Polycyclic Aromatic Hydrocarbons (PAHs) in sediments from Poyang Lake, China. PLoS ONE 2018, 13, e0205484. [Google Scholar] [CrossRef] [PubMed]
- Montuori, P.; De Rosa, E.; Di Duca, F.; De Simone, B.; Scippa, S.; Russo, I.; Triassi, M. Polycyclic Aromatic Hydrocarbons (PAHs) in the Dissolved Phase, Particulate Matter, and Sediment of the Sele River, Southern Italy: A Focus on Distribution, Risk Assessment, and Sources. Toxics 2022, 10, 401. [Google Scholar] [CrossRef] [PubMed]
- Larsson, M.; Lam, M.M.; van Hees, P.; Giesy, J.P.; Engwall, M. Occurrence and leachability of polycyclic aromatic compounds in contaminated soils: Chemical and bioanalytical characterization. Sci. Total Environ. 2018, 622–623, 1476–1484. [Google Scholar] [CrossRef]
- Aslam, R.; Sharif, F.; Baqar, M.; Shahzad, L. Source identification and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in air and dust samples of Lahore City. Sci. Rep. 2022, 12, 2459. [Google Scholar] [CrossRef]
- Green, T.R.; Taniguchi, M.; Kooi, H.; Gurdak, J.J.; Allen, D.M.; Hiscock, K.M. Beneath the surface of global change: Impacts of climate change on groundwater. J. Hydrol. 2011, 405, 532–560. [Google Scholar] [CrossRef]
- Zhang, B.T.; Zhang, Y.; Teng, Y.; Fan, M. Sulfate radical and its application in decontamination technologies. Crit. Rev. Environ. Sci. Technol. 2014, 45, 1756–1800. [Google Scholar] [CrossRef]
- Lee, C.C.; Chen, C.S.; Wang, Z.X.; Tien, C.J. Polycyclic aromatic hydrocarbons in 30 river ecosystems, Taiwan: Sources, and ecological and human health risks. Sci. Total Environ. 2021, 95, 148867. [Google Scholar] [CrossRef]
- Ambade, B.; Sethi, S.S. Health risk assessment and characterization of polycyclic aromatic hydrocarbon from the hydrosphere. J. Hazard. Toxic Radioact. Waste 2021, 25, 05020008. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, G.; Wang, R.; Huang, H. Polycyclic aromatic hydrocarbons in the water-SPM-sediment system from the middle reaches of Huai River, China: Distribution, partitioning, origin tracing and ecological risk assessment. Environ. Pollut. 2017, 230, 61–71. [Google Scholar] [CrossRef]
- Singh, S.; Ashesh, A.; Devi, N.L.; Yadav, I.C. A comprehensive review on occurrence, source, effect, and measurement techniques of polycyclic aromatic hydrocarbons in India. Microchem. J. 2022, 183, 108005. [Google Scholar] [CrossRef]
- Kumar, A.; Ambade, B.; Sankar, T.K.; Sethi, S.S.; Kurwadkar, S. Source identification and health risk assessment of atmospheric PM2. 5-bound polycyclic aromatic hydrocarbons in Jamshedpur, India. Sustain. Cities Soc. 2020, 52, 101801. [Google Scholar] [CrossRef]
- Ambade, B.; Sankar, T.K.; Kumar, A.; Sethi, S.S. Characterization of PAHs and n-alkanes in atmospheric aerosol of Jamshedpur City, India. J. Hazard. Toxic Radioact. Waste 2020, 24, 04020003. [Google Scholar] [CrossRef]
- Ambade, B.; Sethi, S.S.; Kumar, A.; Sankar, T.K.; Kurwadkar, S. Health risk assessment, composition, and distribution of polycyclic aromatic hydrocarbons (PAHs) in drinking water of Southern Jharkhand, East India. Arch. Environ. Contam. Toxicol. 2021, 80, 120–133. [Google Scholar] [CrossRef]
- Li, H.; Chen, J.; Wu, W.; Piao, X. Distribution of polycyclic aromatic hydrocarbons in different size fractions of soil from a coke oven plant and its relationship to organic carbon content. J. Hazard. Mater. 2010, 176, 729–734. [Google Scholar] [CrossRef]
- Castro-Jiménez, J.; Berrojalbiz, N.; Wollgast, J.; Dachs, J. Polycyclic aromatic hydrocarbons (PAHs) in the Mediterranean Sea: Atmospheric occurrence, deposition and decoupling with settling fluxes in the water column. Environ. Pollut. 2012, 166, 40–47. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, J.; Ma, Q.; Chen, Y.; Ju, H. Polycyclic aromatic hydrocarbons (PAHs) in water and sediment from a river basin: Sediment–water partitioning, source identification and environmental health risk assessment. Environ. Geochem. Health 2017, 39, 63–74. [Google Scholar] [CrossRef]
- Li, J.; Li, F.; Liu, Q. PAHs behavior in surface water and groundwater of the Yellow River estuary: Evidence from isotopes and hydrochemistry. Chemosphere 2017, 178, 143–153. [Google Scholar] [CrossRef]
- Sun, K.; Song, Y.; He, F.; Jing, M.; Tang, J.; Liu, R. A review of human and animals exposure to polycyclic aromatic hydrocarbons: Health risk and adverse effects, photo-induced toxicity and regulating effect of microplastics. Sci. Total Environ. 2021, 773, 145403. [Google Scholar] [CrossRef] [PubMed]
- Smail, E.A.; Webb, E.A.; Franks, R.P.; Bruland, K.W.; Sanudo-Wilhelmy, S.A. Status of metal contamination in surface waters of the coastal ocean off Los Angeles, California since the implementation of the Clean Water Act. Environ. Sci. Technol. 2012, 46, 4304–4311. [Google Scholar] [CrossRef] [PubMed]
- Bichet, C.; Scheifler, R.; Coeurdassier, M.; Julliard, R.; Sorci, G.; Loiseau, C. Urbanization, trace metal pollution, and malaria prevalence in the house sparrow. PLoS ONE 2013, 8, 53866. [Google Scholar] [CrossRef] [PubMed]
- Esposito, F.; Nardone, A.; Fasano, E.; Scognamiglio, G.; Esposito, D.; Agrelli, D.; Cirillo, T. A systematic risk characterization related to the dietary exposure of the population to potentially toxic elements through the ingestion of fruit and vegetables from a potentially contaminated area. A case study: The issue of the “Land of Fires” area in Campania region, Italy. Environ. Pollut. 2018, 243, 1781–1790. [Google Scholar] [CrossRef]
- Legambiente. Rapporto Ecomafia—I Numeri e le Storie Della Criminalità Ambientale Legambiente: Roma, Italy. 2007. Available online: http://www.amblav.it/download/0417_ecomafia_introduzione.pdf (accessed on 16 November 2022).
- ISTAT, Istituto Nazionale di Statistica. 2015. Available online: http://dati.istat.it/Index.aspx?DataSetCode=DCIS_POPRES1&Lang (accessed on 4 May 2022).
- Mastrocicco, M.; Gervasio, M.P.; Busico, G.; Colombani, N. Natural and anthropogenic factors driving groundwater resources salinization for agriculture use in the Campania plains (Southern Italy). Sci. Total Environ. 2021, 758, 144033. [Google Scholar] [CrossRef]
- Ducci, D.; Tranfaglia, G. Effects of climate change on groundwater resources in Campania (southern Italy). Geol. Soc. Lond. Spec. Publ. 2008, 288, 25–38. [Google Scholar] [CrossRef]
- Albanese, S.; De Vivo, B.; Lima, A.; Cicchella, D. Geochemical background and baseline values of toxic elements in stream sediments of Campania region (Italy). J. Geochem. Explor. 2007, 93, 21–34. [Google Scholar] [CrossRef]
- Ducci, D.; Della Morte, R.; Mottola, A.; Onorati, G.; Pugliano, G. Nitrate trends in groundwater of the Campania region (southern Italy). Environ. Sci. Pollut. Res. 2017, 26, 2120–2131. [Google Scholar] [CrossRef]
- Fusco, F.; Allocca, V.; De Vita, P. Hydro-geomorphological modelling of ash-fall pyroclastic soils for debris flow initiation and groundwater recharge in Campania (southern Italy). Catena 2017, 158, 235–249. [Google Scholar] [CrossRef]
- Celico, P.; Dall’Aglio, M.; Ghiara, M.R.; Stanzione, D.; Brondi, M.; Prosperi, M. Geochemical monitoring of the thermalfluids in the Phlegraean Fields from 1970 to 1990. Boll. Soc. Geol. Ital. 1992, 111, 409–422. [Google Scholar]
- Pizzolante, A.; Nicodemo, F.; Pierri, A.; Ferro, A.; Pierri, B.; Buonerba, C.; Cerino, P. Development of a municipality index of environmental pressure in Campania, Italy. Future Sci. OA 2021, 7, FSO720. [Google Scholar] [CrossRef] [PubMed]
- Qiao, P.; Li, P.; Cheng, Y.; Wei, W.; Yang, S.; Lei, M.; Chen, T. Comparison of common spatial interpolation methods for analyzing pollutant spatial distributions at contaminated sites. Environ. Geochem. Health 2019, 41, 2709–2730. [Google Scholar] [CrossRef] [PubMed]
- Pasupuleti, S.; Singha, S.S.; Singha, S.; Kumar, S.; Singh, R.; Dhada, I. Groundwater characterization and non-carcinogenic and carcinogenic health risk assessment of nitrate exposure in the Mahanadi River Basin of India. J. Environ. Manag. 2022, 319, 115746. [Google Scholar] [CrossRef]
- US EPA. RAGS: Part F, Supplemental Guidance for Inhalation Risk Assessment; EPA/540/R/070/002; US EPA: Washington, DC, USA, 2009.
- Han, J.; Liang, Y.; Zhao, B.; Wang, Y.; Xing, F.; Qin, L. Polycyclic aromatic hydrocarbon (PAHs) geographical distribution in China and their source, risk assessment analysis. Environ. Pollut. 2019, 251, 312–327. [Google Scholar] [CrossRef] [PubMed]
- Akpan, A.D.; Okori, B.S.U.; Ekpechi, D.C. Human Health Risk Assessment of Polycyclic Aromatic Hydrocarbons in Water Samples around Eket Metropolis, Akwa Ibom State, Nigeria. Asian J. Environ. Sci. 2022, 19, 58–71. [Google Scholar] [CrossRef]
- Li, Y.; Liu, J.; Cao, Z.; Lin, C.; Yang, Z. Spatial distribution and health risk of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in the water of the Luanhe River basin, China. Environ. Monit. Assess. 2010, 163, 1–13. [Google Scholar] [CrossRef]
- Wu, J.; Sun, Z. Evaluation of shallow groundwater contamination and associated human health risk in an alluvial plain impacted by agricultural and industrial activities, mid-west China. Expo. Health 2016, 8, 311–329. [Google Scholar] [CrossRef]
- Qiao, X.; Zheng, B.; Li, X.; Zhao, X.; Dionysiou, D.D.; Liu, Y. Influencing factors and health risk assessment of polycyclic aromatic hydrocarbons in groundwater in China. J. Hazard. Mater. 2021, 402, 123419. [Google Scholar] [CrossRef]
- Ilić, P.; Ilić, S.; Markić, D.N.; Bjelić, L.S.; Farooqi, Z.U.R.; Sole, B.; Adimalla, N. Source identification and ecological risk of polycyclic aromatic hydrocarbons in soils and groundwater. Ecol. Chem. Eng. 2021, 28, 355–363. [Google Scholar] [CrossRef]
- Liu, J.; Liu, G.; Zhang, J.; Yin, H.; Wang, R. Occurrence and risk assessment of polycyclic aromatic hydrocarbons in soil from the Tiefa coal mine district, Liaoning, China. J. Environ. Monit. 2012, 14, 2634–2642. [Google Scholar] [CrossRef]
- Sechu, G.L.; Nilsson, B.; Iversen, B.V.; Møller, A.B.; Greve, M.B.; Troldborg, L.; Greve, M.H. Mapping groundwater-surface water interactions on a national scale for the stream network in Denmark. J. Hydrol. Reg. Stud. 2022, 40, 101015. [Google Scholar] [CrossRef]
- Ju, Q.; Hu, Y.; Chen, K.; Liu, Q. Hydrogeochemical Processes and Connection of Multi-Layer Groundwater System in Sunan Mining Area, Eastern China. Int. J. Environ. Res. Public Health 2022, 19, 12392. [Google Scholar] [CrossRef] [PubMed]
- Ravindra, K.; Mor, S. Distribution and health risk assessment of arsenic and selected heavy metals in Groundwater of Chandigarh, India. Environ. Pollut. 2019, 250, 820–830. [Google Scholar] [CrossRef] [PubMed]
- Liang, M.; Liang, H.; Rao, Z.; Hong, X. Characterization of polycyclic aromatic hydrocarbons in urban-rural integration area soil, North China: Spatial distribution, sources and potential human health risk assessment. Chemosphere 2019, 234, 875–884. [Google Scholar] [CrossRef] [PubMed]
- Montuori, P.; Aurino, S.; Garzonio, F.; Sarnacchiaro, P.; Nardone, A.; Triassi, M. Distribution, sources and ecological risk assessment of polycyclic aromatic hydrocarbons in water and sediments from Tiber River and estuary, Italy. Sci. Total Environ. 2016, 566, 1254–1267. [Google Scholar] [CrossRef] [PubMed]
- Birks, S.J.; Cho, S.; Taylor, E.; Yi, Y.; Gibson, J.J. Characterizing the PAHs in surface waters and snow in the Athabasca region: Implications for identifying hydrological pathways of atmospheric deposition. Sci. Total Environ. 2017, 603, 570–583. [Google Scholar] [CrossRef] [PubMed]
- Liang, M.; Liang, H.; Rao, Z.; Xu, D. Occurrence of polycyclic aromatic hydrocarbons in groundwater from rural areas in eastern China: Spatial distribution, source apportionment and health cancer risk assessment. Chemosphere 2020, 259, 127534. [Google Scholar] [CrossRef]
- Vinnarasi, F.; Srinivasamoorthy, K.; Saravanan, K.; Kanna, A.R.; Gopinath, S.; Prakash, R.; Ponnumani, G.; Babu, C. Hydrogeochemical characteristics and risk evaluation of potential toxic elements in groundwater from Shanmughanadhi, Tamilnadu, India. Environ. Res. 2022, 204, 112199. [Google Scholar] [CrossRef]
- Shukla, S.; Khan, R.; Bhattacharya, P.; Devanesan, S.; AlSalhi, M.S. Concentration, source apportionment and potential carcinogenic risks of polycyclic aromatic hydrocarbons (PAHs) in roadside soils. Chemosphere 2022, 292, 133413. [Google Scholar] [CrossRef]
- Grmasha, R.A.; Abdulameer, M.H.; Stenger-Kovács, C.; Al-Sareji, O.J.; Al-Gazali, Z.; Al-Juboori, R.A.; Meiczinger, M.; Hashim, K.S. Polycyclic aromatic hydrocarbons in the surface water and sediment along Euphrates River system: Occurrence, sources, ecological and health risk assessment. Mar. Pollut. Bull. 2023, 187, 114568. [Google Scholar] [CrossRef]
- Ali, N. Polycyclic aromatic hydrocarbons (PAHs) in indoor air and dust samples of different Saudi microenvironments; health and carcinogenic risk assessment for the general population. Sci. Total Environ. 2019, 696, 133995. [Google Scholar] [CrossRef] [PubMed]
- Di Duca, F.; Montuori, P.; Trama, U.; Masucci, A.; Borrelli, G.M.; Triassi, M. Health Risk Assessment of PAHs from Estuarine Sediments in the South of Italy. Toxics 2023, 11, 172. [Google Scholar] [CrossRef] [PubMed]
Minimum | Maximum | Mean | Std. Dev. | |
---|---|---|---|---|
NAPLES | ||||
pH | 6.1 | 8.7 | 7.1 | 1.12 |
Conductivity (µS/cm) | 405 | 3650 | 1050 | 420 |
Temperature (°C) | 8.1 | 18.2 | 12.2 | 6.20 |
CASERTA | ||||
pH | 7.5 | 9.1 | 8.1 | 0.90 |
Conductivity (µS/cm) | 503 | 3008 | 1220 | 350 |
Temperature (°C) | 6.2 | 15.0 | 9.2 | 7.0 |
SALERNO | ||||
pH | 6.5 | 8.0 | 7.5 | 1.10 |
Conductivity (µS/cm) | 396 | 2269 | 1056 | 400 |
Temperature (°C) | 7.3 | 16.0 | 10.0 | 7.5 |
AVELLINO | ||||
pH | 6.5 | 10.2 | 8.4 | 0.85 |
Conductivity (µS/cm) | 480 | 2893 | 1032 | 390 |
Temperature (°C) | 5.2 | 12.1 | 9.1 | 6.5 |
BENEVENTO | ||||
pH | 7.3 | 9.0 | 8.0 | 0.92 |
Conductivity (µS/cm) | 496 | 2860 | 1240 | 460 |
Temperature (°C) | 6.1 | 11.5 | 8.5 | 6.0 |
PAHs (ng L−1) | Min | Max | Mean | Total |
---|---|---|---|---|
Nap | <0.0063 | 1.8501 | 0.0788 | 9.68 |
Ace | <0.0063 | 0.0951 | 0.0110 | 0.807 |
Acy | <0.0063 | 0.0083 | 0.0081 | 0.652 |
Flu | <0.0063 | 0.0090 | 0.0089 | 0.711 |
Phe | 0.0211 | 0.1120 | 0.0531 | 34.15 |
Ant | <0.0063 | 0.7841 | 0.0149 | 1.862 |
Fla | <0.0063 | 1.2413 | 0.0152 | 4.04 |
Pyr | <0.0063 | 0.0102 | 0.0086 | 1.29 |
BaA | <0.0063 | 0.9864 | 0.0107 | 2.452 |
Chr | <0.0063 | 1.1004 | 0.0180 | 6.08 |
BbF | <0.0063 | 1.0551 | 0.0202 | 7.013 |
BkF | 0.0113 | 1.4781 | 0.0234 | 7.834 |
BaP | 0.0112 | 1.1101 | 0.0188 | 6.25 |
DahA | 0.0064 | 0.0236 | 0.0142 | 7.39 |
IcdP | <0.0063 | 0.0332 | 0.0172 | 10.42 |
BghiP | 0.0090 | 0.0236 | 0.0144 | 7.69 |
PAHs | DOSE | ILCR | Carcinogenic Risk | ||
---|---|---|---|---|---|
Ingestion | Dermal | Ingestion | Dermal | ||
Nap | 6.81 × 10−8 | 1.79 × 10−5 | 4.96 × 10−19 | 2.93 × 10−10 | ILCR < 1 × 10−6 Low or Zero Risk 1 × 10−6 < ILCR < 1 × 10−4 Medium Risk ILCR > 1 × 10−4 High Risk |
Ace | 1.27 × 10−8 | 3.35 × 10−5 | 9.27 × 10−20 | 5.47 × 10−11 | |
Acy | 1.00 × 10−8 | 2.64 × 10−5 | 7.31 × 10−20 | 4.32 × 10−11 | |
Flu | 1.10 × 10−8 | 2.89 × 10−5 | 7.98 × 10−20 | 4.71 × 10−11 | |
Phe | 6.63 × 10−8 | 1.75 × 10−5 | 4.83 × 10−20 | 2.85 × 10−10 | |
Ant | 1.59 × 10−8 | 4.18 × 10−5 | 1.15 × 10−19 | 6.84 × 10−11 | |
Fla | 1.61 × 10−8 | 4.24 × 10−5 | 1.17 × 10−19 | 6.93 × 10−11 | |
Pyr | 1.06 × 10−8 | 2.78 × 10−5 | 7.70 × 10−20 | 4.55 × 10−11 | |
BaA | 1.15 × 10−8 | 3.04 × 10−5 | 8.40 × 10−20 | 4.96 × 10−11 | |
Chr | 2.13 × 10−8 | 5.60 × 10−5 | 1.55 × 10−19 | 9.16 × 10−11 | |
BbF | 2.84 × 10−8 | 7.48 × 10−5 | 2.06 × 10−19 | 1.22 × 10−10 | |
BkF | 2.61 × 10−8 | 6.89 × 10−5 | 1.90 × 10−19 | 1.12 × 10−10 | |
BaP | 2.21 × 10−8 | 5.82 × 10−5 | 1.61 × 10−19 | 9.51 × 10−11 | |
DahA | 1.77 × 10−8 | 4.65 × 10−5 | 1.28 × 10−19 | 7.60 × 10−11 | |
IcdP | 2.12 × 10−8 | 5.57 × 10−5 | 1.54 × 10−19 | 911.0 × 10−11 | |
BghiP | 1.78 × 10−8 | 4.68 × 10−5 | 1.29 × 10−19 | 7.65 × 10−11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montuori, P.; De Rosa, E.; Cerino, P.; Pizzolante, A.; Nicodemo, F.; Gallo, A.; Rofrano, G.; De Vita, S.; Limone, A.; Triassi, M. Estimation of Polycyclic Aromatic Hydrocarbons in Groundwater from Campania Plain: Spatial Distribution, Source Attribution and Health Cancer Risk Evaluation. Toxics 2023, 11, 435. https://doi.org/10.3390/toxics11050435
Montuori P, De Rosa E, Cerino P, Pizzolante A, Nicodemo F, Gallo A, Rofrano G, De Vita S, Limone A, Triassi M. Estimation of Polycyclic Aromatic Hydrocarbons in Groundwater from Campania Plain: Spatial Distribution, Source Attribution and Health Cancer Risk Evaluation. Toxics. 2023; 11(5):435. https://doi.org/10.3390/toxics11050435
Chicago/Turabian StyleMontuori, Paolo, Elvira De Rosa, Pellegrino Cerino, Antonio Pizzolante, Federico Nicodemo, Alfonso Gallo, Giuseppe Rofrano, Sabato De Vita, Antonio Limone, and Maria Triassi. 2023. "Estimation of Polycyclic Aromatic Hydrocarbons in Groundwater from Campania Plain: Spatial Distribution, Source Attribution and Health Cancer Risk Evaluation" Toxics 11, no. 5: 435. https://doi.org/10.3390/toxics11050435
APA StyleMontuori, P., De Rosa, E., Cerino, P., Pizzolante, A., Nicodemo, F., Gallo, A., Rofrano, G., De Vita, S., Limone, A., & Triassi, M. (2023). Estimation of Polycyclic Aromatic Hydrocarbons in Groundwater from Campania Plain: Spatial Distribution, Source Attribution and Health Cancer Risk Evaluation. Toxics, 11(5), 435. https://doi.org/10.3390/toxics11050435