Non–Negligible Ecological Risks of Urban Wetlands Caused by Cd and Hg on the Qinghai–Tibet Plateau, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Soil Sampling
2.3. Chemical Analysis
2.4. Evaluation Methods
2.4.1. Geo–Accumulation Index
2.4.2. Geo–Accumulation Index Potential Ecological Risk Assessment
2.5. Data Analysis
3. Results
3.1. Concentrations of Heavy Metals in Soil
3.2. Spatial Distribution Characteristics of Soil Heavy Metal Concentration
3.3. Accumulation and Ecological Risks of Soil Heavy Metals
4. Discussion
4.1. Regulation for Ecological Risks of Soil Heavy Metals in HNWP
4.2. Comparison between HNWP and Other Wetlands in China
4.3. Influence Factors and Pollution Sources of Heavy Metals in Soils
5. Conclusions
- (1)
- The vertical distribution of As and Cu was characterized by clustering in the surface layer and accumulation in the lower layer, respectively. At the same time, Cd, Hg, Pb, Ni, Zn, and Cr showed an accumulation trend to the lower layer. On the spatial scale, the order of heavy metal content was Haihu > Beichuan > Ninghu zone.
- (2)
- Both the whole HNWP and the three zones have reached a strong risk level for heavy metal pollution, with the main pollution contribution coming from Cd and Hg, but dropping to a slight risk level after excluding two heavy metal risks.
- (3)
- In this study, HNWP has a significant weakening effect on heavy metal pollution. The primary sources of eight heavy metals include compound sources of living and atmospheric impact, traffic, and industrial pollution.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Sarkar, D.J.; Sarkar, S.D.; Das, B.K.; Sahoo, B.K.; Samanta, S. Occurrence, fate and removal of microplastics as heavy metal vector in natural wastewater treatment wetland system. Water Res. 2021, 192, 116853. [Google Scholar] [CrossRef] [PubMed]
- Birami, F.A.; Keshavarzi, B.; Moore, F.; Kamali, M. Microplastics in surface sediments of a highly urbanized wetland. Environ. Pollut. 2022, 314, 120276. [Google Scholar] [CrossRef]
- Matos, G.S.B.D.; Neto, A.B.B.; Gama, M.A.P.; Goncalves, D.A.M.; Cardoso, D.F.S.R.; Ramos, H.M.N. Soil potentially toxic element contents in an area under different land uses in the Brazilian Amazon. Heliyon 2023, 9, e17108. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, A.; Naz, A.; Maiti, S.K. Distribution, speciation, and bioaccumulation of potentially toxic elements in the grey mangroves at Indian Sundarbans, in relation to vessel movements. Mar. Environ. Res. 2023, 189, 106042. [Google Scholar] [CrossRef] [PubMed]
- Qin, M.H.; Jin, Y.L.; Peng, T.Y.; Zhao, B.; Hou, D.Y. Heavy metal pollution in Mongolian-Manchurian grassland soil and effect of long-range dust transport by wind. Environ. Int. 2023, 117, 108019. [Google Scholar] [CrossRef] [PubMed]
- Hakanson, L. An ecological risk index for aquatic pollution control: A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Ho, M.; Richardson, C.J. A five−year study of floristic succession in a restored urban wetland. Ecol. Eng. 2013, 61, 511–518. [Google Scholar] [CrossRef]
- Li, H.S.; Gu, Y.G.; Liang, R.Z. Heavy metals in riverine/estuarine sediments from an aquaculture wetland in metropolitan areas, China: Characterization, bioavailability and probabilistic ecological risk. Environ. Pollut. 2023, 324, 121370. [Google Scholar] [CrossRef] [PubMed]
- Golia, E.E.; Angelakiy, A.; Giannoulis, K.D.; Skoufogianni, E.; Vleioras, S. Evaluation of soil properties, irrigation and solid waste application levels on Cu and Zn uptake by industrial hemp. Agron. Res. 2021, 19, 92–99. [Google Scholar]
- Chai, Y.; Guo, F. Potentially Toxic Element Contamination in Soils Affected by the Antimony Mine Spill in Northwest China. Toxics 2023, 11, 359. [Google Scholar] [CrossRef]
- Yin, F.; Feng, K.; Yin, J.C. Evaluation and source analysis of heavy metal in cultivated soil around typical industrial district of Qinghai province. China Environ. Sci. 2021, 41, 5217–5226. [Google Scholar]
- Wang, J.G.; Li, Z.H.; Zhu, Q.; Wang, C.P.; Tang, X.J. Review on arsenic environment behaviors in aqueous solution and soil. Chemosphere 2023, 333, 138869. [Google Scholar] [CrossRef]
- Zhang, S.X.; Zeng, X.; Sun, P.; Ni, T.H. Ecological risk characteristics of sediment-bound heavy metals in large shallow lakes for aquatic organisms: The case of Taihu Lake, China. J. Environ. Manag. 2023, 342, 118253. [Google Scholar] [CrossRef] [PubMed]
- Baker, A.M. Accumulators and excluders strategies in the response of plants to heavy metals. J. Plant Nutr. 2019, 3, 643–654. [Google Scholar] [CrossRef]
- Wang, S.H.; Wang, W.W.; Chen, J.Y.; Zhao, L.; Zhang, B.; Jiang, X. Geochemical baseline establishment and pollution source determination of heavy metals in lake sediments: A case study in Lihu Lake, China. Sci. Total Environ. 2019, 657, 978–986. [Google Scholar] [CrossRef]
- Xia, P.H.; Ma, L.; Sun, R.G.; Yang, Y.; Yi, Y. Evaluation of potential ecological risk, possible sources and controlling factors of heavy metals in surface sediment of Caohai Wetland, China. Sci. Total Environ. 2020, 740, 140231. [Google Scholar] [CrossRef]
- Yan, X.; An, J.; Yin, Y.; Gao, C.; Wang, B.; Wei, S. Heavy metals uptake and translocation of typical wetland plants and their ecological effects on the coastal soil of a contaminated bay in Northeast China. Sci. Total Environ. 2022, 803, 149871. [Google Scholar] [CrossRef]
- Lima, M.W.D.; Pereira, W.V.D.S.; Souza, E.S.D.; Teixeira, R.A.; Palheta, D.D.C.; Faial, F.D.C.F.; Costa, H.F.; Fernandes, A.R. Bioaccumulation and human health risks of potentially toxic elements in fish species from the southeastern Carajás Mineral Province, Brazil. Environ. Res. 2022, 204, 1122024. [Google Scholar] [CrossRef]
- Liu, S.L.; Ali, S.; Yang, R.J.; Tao, J.J.; Ren, B. A newly discovered Cd-hyperaccumulator Lantana camara L. J. Hazard. Mater. 2019, 371, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.J.; Zhang, H.H.; Zeng, X.D.; Zhu, L.; Li, F.B. Spatial variation and environmental indications of soil arsenic in Guangdong province. J. Ecol. Environ. Sci. 2011, 20, 956–961. [Google Scholar]
- Chen, H.Y.; Teng, Y.G.; Lu, S.J.; Wang, Y.Y.; Wang, J.S. Contamination features and health risk of soil heavy metals in China. Sci. Total Environ. 2015, 512, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Li, S.C.; Zhang, Y.L.; Wang, Z.F.; Li, L.H. Mapping human influence intensity in the Tibetan Plateau for conservation of ecological service functions. Ecosyst. Serv. 2018, 30, 276–286. [Google Scholar] [CrossRef]
- Wang, P.Q.; Li, R.J.; Liu, D.J. Dynamic characteristics and responses of ecosystem services under land use/land cover change scenarios in the Huangshui River Basin, China. Ecol. Indic. 2022, 144, 109539. [Google Scholar] [CrossRef]
- Li, S.; Li, Z.; Xue, J.; Chen, S.; Li, H.; Ji, J.; Liang, Y.; Fei, J.; Jiang, W. Pollution and Distribution of Microplastics in Grassland Soils of Qinghai–Tibet Plateau, China. Toxics 2023, 11, 86. [Google Scholar] [CrossRef]
- Ghosh, S.; Banerjee, S.; Prajapati, J.; Mandal, J.; Mukherjee, A.; Bhattacharyya, P. Pollution and health risk assessment of mine tailings contaminated soils in India from toxic elements with statistical approaches. Chemosphere 2023, 324, 138267. [Google Scholar] [CrossRef]
- Dai, L.J.; Wang, L.Q.; Liang, T.; Zhang, H. Geostatistical analyses and co-occurrence correlations of heavy metals distribution with various types of land use within a watershed in eastern Qinghai–Tibet Plateau, China. Sci. Total Environ. 2019, 653, 849–859. [Google Scholar] [CrossRef]
- Sun, Y.F.; Jia, Z.; Chen, Q. Spatial Pattern and Spillover Effects of the Urban Land Green Use Efficiency for the Lanzhou–Xining Urban Agglomeration of the Yellow River Basin. Land 2023, 12, 59. [Google Scholar] [CrossRef]
- Jaskuła, J.; Sojka, M. Assessment of spatial distribution of sediment contamination with heavy metals in the two biggest rivers in Poland. Catena 2022, 211, 105959. [Google Scholar] [CrossRef]
- Vandenberghe, J.; Wang, X.Y.; Lu, H.Y. The impact of differential tectonic movement on fluvial morphology and sedimentology along the northeastern Tibetan Plateau. Geomorphology 2011, 134, 171–185. [Google Scholar] [CrossRef]
- Mao, X.F.; Wei, X.Y.; Chen, Q.; Liu, F.G.; Tao, Y.Q.; Zhang, Z.F. An ECPS framework–based assessment on wetland restoration of the Huangshui National Wetland Park in Qinghai province, China. Geogr. Res. 2019, 38, 760–771. [Google Scholar]
- Li, X.P.; Zhang, M.; Gao, Y.; Zhang, Y.C.; Zhang, X.; Yan, X.Y.; Wang, S.; Yang, R.; Liu, B.; Yu, H.T. Urban street dust bound 24 potentially toxic metal/metalloids (PTMs) from Xining valley-city, NW China: Spatial occurrences, sources and health risks. Ecotoxicol. Environ. Saf. 2018, 162, 474–487. [Google Scholar] [CrossRef]
- Ji, M.Q. Analysis on the contribution of industrial parks to the local economy in Xining city. China Urban Econ. 2010, 5, 225–227. (In Chinese) [Google Scholar]
- Lu, R.K. Analytical Methods for Soil and Agro–Chemical Analysis; China Agricultural Science and Technology Press: Beijing, China, 2000. (In Chinese) [Google Scholar]
- Zhang, G.L.; Gong, Z.T. Soil Survey Laboratory Methods; Science Press: Beijing, China, 2012. (In Chinese) [Google Scholar]
- Muller, G. Index of Geo-accumulation in sediments of the Rhine river. Geojournal 1969, 2, 109–118. [Google Scholar]
- Ma, X.L.; Zuo, H.; Liu, J.J.; Liu, Y. Distribution, risk assessment, and statistical source identification of heavy metals in aqueous system from three adjacent regions of the Yellow River. Environ. Sci. Pollut. Res. 2016, 23, 8963–8975. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, Q.; Su, W.; Cao, G.; Fu, G.; Du, W. Potential Sources, Pollution, and Ecological Risk Assessment of Potentially Toxic Elements in Surface Soils on the North–Eastern Margin of the Tibetan Plateau. Toxics 2022, 10, 368. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, Z.; Zhang, Y.; Hu, Z. The effects of the Qinghai–Tibet railway on heavy metals enrichment in soils. Sci. Total Environ. 2012, 439, 240–248. [Google Scholar] [CrossRef]
- Xu, Y.; Shi, H.D.; Wang, C. Heavy metal pollution sources in soil affected by key pollution enterprises in Suxian district, Chenzhou City, Hunan Province. Res. Environ. Sci. 2021, 34, 1213–1222. (In Chinese) [Google Scholar]
- Xu, M.L.; Fang, F.M.; Lin, Y.S. Advances in source, pollution characteristics and ecological assessment of heavy metals in wetland soils. Chin. J. Soil Sci. 2015, 46, 762–768. (In Chinese) [Google Scholar]
- Geng, J.; Wang, Y.; Luo, H. Distribution, sources, and fluxes of heavy metals in the Pearl River Delta, South China. Mar. Pollut. Bull. 2015, 101, 914–921. [Google Scholar] [CrossRef]
- Esfandiar, N.; Suri, R.; McKenzie, E.R. Competitive sorption of Cd, Cr, Cu, Ni, Pb and Zn from stormwater runoff by five low-cost sorbents; Effects of co-contaminants, humic acid, salinity and pH. J. Hazard. Mater. 2022, 423, 126938. [Google Scholar] [CrossRef]
- Cui, L.J.; Pang, B.L.; Li, W.; Ma, M.Y.; Sun, B.T.; Zhang, Y.Q. Evaluation of ecosystem services in the Zhalong wetland. Acta Ecol. Sin. 2016, 36, 828–836. (In Chinese) [Google Scholar]
- Yong, J.; Jie, Z.; Li, W.Z.; Wang, D.D. Analysis of heavy metals in the surface sediments of shallow lakes in Nanjishan (Poyang Lake) Natural Wetland in China. J. Environ. Biol. 2017, 38, 561–570. [Google Scholar] [CrossRef]
- Liang, J.; Liu, J.; Yuan, X.; Zeng, G.; Lai, X.; Li, X.; Wu, H.; Yuan, Y.; Li, F. Spatial and temporal variation of heavy metal risk and source in sediments of Dongting Lake wetland, mid−south China. J. Environ. Sci. Health 2015, 50, 100–108. [Google Scholar] [CrossRef]
- Xiao, H.; Shahab, A.; Li, J.Y.; Xi, B.D.; Sun, X.J.; He, H.J.; Yu, G. Distribution, ecological risk assessment and source identification of heavy metals in surface sediments of Huixian karst wetland, China. Ecotoxicol. Environ. Saf. 2019, 185, 109700. [Google Scholar] [CrossRef]
- Bai, J.; Cui, B.; Chen, B.; Zhang, K.; Wei, D.; Gao, H.; Rong, X. Spatial distribution and ecological risk assessment of heavy metals in surface sediments from a typical plateau lake wetland, China. Ecol. Modell. 2011, 222, 301–306. [Google Scholar] [CrossRef]
- Huang, L.; Rad, S.; Xu, L.; Gui, L.; Chen, Z. Heavy metals distribution, sources, and ecological risk assessment in Huixian Wetland, South China. Water 2020, 12, 431. [Google Scholar] [CrossRef] [Green Version]
- China Environmental Monitoring Station. Chinese Soil Element Background Value; China Environmental Science Press: Beijing, China, 1990. (In Chinese) [Google Scholar]
- GB 15618–1995; Environmental Quality Standard for Soils; State Bureau of Environmental Protection, State Bureau of Technical Supervision. China Standards Press: Beijing, China, 1995. (In Chinese)
- Chen, H.P.; Ai, Y.L.; Jia, Y.F.; Li, J.; Gu, M.Y.; Chen, M.F. Effective and simultaneous removal of heavy metals and neutralization of acid mine drainage using an attapulgite-soda residue based adsorbent. Sci. Total Environ. 2022, 843, 157120. [Google Scholar] [CrossRef]
- Borggaard, O.K.; Holm, P.E.; Strobel, B.W. Potential of dissolved organic matter (DOM) to extract As, Cd, Co, Cr, Cu, Ni, Pb and Zn from polluted soils: A review. Geoderma 2019, 343, 235–246. [Google Scholar] [CrossRef]
- Fu, K.Z.; An, M.Y.; Song, Y.W.; Fu, G.W.; Ruan, W.F.; Wu, D.M.; Li, X.W.; Yuan, K.; Wan, X.M.; Chen, Z.H.; et al. Soil heavy metals in tropical coastal interface of eastern Hainan Island in China: Distribution, sources and ecological risks. Ecol. Indic. 2023, 154, 110659. [Google Scholar] [CrossRef]
- Du, H.L.; Wang, J.S.; Wang, Y.; Yao, Y.B.; Liu, X.Y.; Zhou, Y. Contamination characteristics, source analysis, and spatial prediction of soil heavy metal concentrations on the Qinghai–Tibet Plateau. J. Soils Sediments 2023, 23, 2202–2215. [Google Scholar] [CrossRef]
- Jiang, H.H.; Cai, L.M.; Hu, G.C.; Wen, H.H.; Chen, L.G. An integrated exploration on health risk assessment quantification of potentially hazardous elements in soils from the perspective of sources. Ecotoxicol. Environ. Saf. 2021, 208, 111489. [Google Scholar] [CrossRef] [PubMed]
RI | |||||
---|---|---|---|---|---|
Value | Category | Value | Class | Value | Class |
< 0 | Uncontaminated | < 40 | Slight risk | RI < 150 | Slight risk |
0 < ≤ 1 | Slight enrichment | 40 ≤ < 80 | Medium risk | 150 ≤ RI < 300 | Medium risk |
1 < ≤ 2 | Moderately enrichment | 80 ≤ < 160 | Strong risk | 300 ≤ RI < 600 | Strong risk |
2 < ≤ 3 | Moderately to heavily enrichment | 160 ≤ < 320 | Very strong risk | RI ≥ 600 | Very strong risk |
3 < ≤ 4 | Heavily enrichment | ≥ 320 | Extremely strong risk | ||
4 < ≤ 5 | Heavily to extremely enrichment | ||||
> 5 | Extremely enrichment |
Depth (cm) | Heavy Metals (mg·kg−1) | Cr | Cd | Cu | Hg | Ni | Pb | Zn | As |
---|---|---|---|---|---|---|---|---|---|
0–10 | Max | 63.23 | 4.56 | 24.13 | 1.68 | 23.99 | 793.12 | 469.08 | 25.97 |
Min | 29.45 | 1.37 | 11.38 | 0.16 | 9.35 | 13.97 | 62.18 | 2.05 | |
Mean | 51.21 | 2.00 | 17.34 | 0.38 | 19.20 | 131.84 | 171.70 | 11.78 | |
STD | 8.74 | 0.85 | 2.80 | 0.34 | 3.50 | 188.25 | 114.96 | 6.41 | |
10–20 | Max | 64.99 | 3.85 | 23.64 | 0.95 | 25.55 | 330.07 | 417.27 | 18.96 |
Min | 26.86 | 1.34 | 12.13 | 0.13 | 14.48 | 25.04 | 35.03 | 0.66 | |
Mean | 49.45 | 1.97 | 17.67 | 0.34 | 20.15 | 87.45 | 161.60 | 8.33 | |
STD | 10.38 | 0.66 | 2.91 | 0.19 | 3.41 | 71.75 | 86.36 | 4.83 | |
20–30 | Max | 117.52 | 4.74 | 81.64 | 1.05 | 23.86 | 737.52 | 590.57 | 19.66 |
Min | 33.44 | 1.32 | 13.93 | 0.17 | 13.85 | 18.27 | 66.44 | 0.17 | |
Mean | 53.68 | 2.02 | 21.45 | 0.37 | 19.51 | 157.54 | 196.40 | 8.25 | |
STD | 16.69 | 0.83 | 14.90 | 0.24 | 2.81 | 194.90 | 128.79 | 6.10 |
Wetland | Province | Cr | Cd | Cu | Hg | Ni | Pb | Zn | As |
---|---|---|---|---|---|---|---|---|---|
Zhalong | Heilongjiang | 46.47 | 0.155 | 18.17 | 0.065 | – | 21.38 | 52.09 | 10.26 |
Poyang Lake | Jiangxi | 105.77 | 0.42 | 12.25 | – | 30.47 | 27.81 | 79.45 | 6.39 |
Dongting Lake | Hunan | 91.33 | 4.39 | 36.27 | 0.19 | 46.36 | 54.82 | – | 25.67 |
Huixian | Guangxi | 114.67 | 0.67 | 37.12 | 0.20 | 40.16 | 45.22 | 125.43 | 17.62 |
Caohai | Guizhou | 116.4 | 3.2 | 24.1 | 0.61 | 54.9 | 49.8 | 171.0 | – |
Yilong Lake | Yunnan | 86.73 | 0.76 | 31.40 | – | 35.99 | 53.19 | 86.82 | 15.46 |
HNWP | Qinghai | 51.21 | 2.00 | 17.34 | 0.38 | 19.20 | 131.84 | 171.70 | 11.78 |
Mean of Chinese Wetlands | – | 100.11 | 4.56 | 28.96 | 0.13 | 38.79 | 46.37 | 163.98 | 14.52 |
Background value of Qinghai | – | 70.1 | 0.14 | 22.2 | 0.02 | 29.6 | 20.9 | 80.3 | 14.0 |
National Class I standard soil environmental quality | – | 90.0 | 0.2 | 35.0 | 0.15 | 40.0 | 35.0 | 100.0 | 15.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Mao, X.; Song, X.; Wei, X.; Yu, H.; Xie, S.; Zhang, L.; Tang, W. Non–Negligible Ecological Risks of Urban Wetlands Caused by Cd and Hg on the Qinghai–Tibet Plateau, China. Toxics 2023, 11, 654. https://doi.org/10.3390/toxics11080654
Wang L, Mao X, Song X, Wei X, Yu H, Xie S, Zhang L, Tang W. Non–Negligible Ecological Risks of Urban Wetlands Caused by Cd and Hg on the Qinghai–Tibet Plateau, China. Toxics. 2023; 11(8):654. https://doi.org/10.3390/toxics11080654
Chicago/Turabian StyleWang, Lei, Xufeng Mao, Xiuhua Song, Xiaoyan Wei, Hongyan Yu, Shunbang Xie, Lele Zhang, and Wenjia Tang. 2023. "Non–Negligible Ecological Risks of Urban Wetlands Caused by Cd and Hg on the Qinghai–Tibet Plateau, China" Toxics 11, no. 8: 654. https://doi.org/10.3390/toxics11080654
APA StyleWang, L., Mao, X., Song, X., Wei, X., Yu, H., Xie, S., Zhang, L., & Tang, W. (2023). Non–Negligible Ecological Risks of Urban Wetlands Caused by Cd and Hg on the Qinghai–Tibet Plateau, China. Toxics, 11(8), 654. https://doi.org/10.3390/toxics11080654