Analysis of the Mercury Content in Fish for Human Consumption in Poland
Abstract
:1. Introduction
2. Materials and Methods
- C—concentration of contaminant;
- CR—average daily contact;
- EF—exposure frequency;
- ED—exposure duration;
- BW—body weight;
- AT—averaging time.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Teng, D.; Mao, K.; Ali, W.; Xu, G.; Huang, G.; Niazi, N.K.; Fenga, X.; Zhang, H. Describing the toxicity and sources and the remediation technologies for mercury contaminated soil. RSC Adv. 2020, 10, 23221–23232. [Google Scholar] [CrossRef] [PubMed]
- Tariq, M. Toxicity of mercury in human: A review. J. Clin. Toxicol. 2019, 9, 1–4. [Google Scholar]
- Rocha, J.B.T.; Aschner, M.; Dórea, J.; Ceccatelli, S.; Farina, M.; Silveira, L.C.L. Mercury toxicity. J. Biomed. Biotech. 2012, 2012, 831890. [Google Scholar] [CrossRef]
- Kuras, R.; Janasik, B.; Stanislawska, M.; Kozlowska, L.; Wasowicz, W. Assessment of mercury intake from fish meals based on intervention research in the Polish subpopulation. Biol. Trace Elem. Res. 2017, 27, 23–31. [Google Scholar] [CrossRef]
- Brambilla, G.; Abete, M.C.; Binato, G.; Chiaravalle, E.; Cossu, M.; Dellatte, E.; Miniero, R.; Orletti, R.; Piras, P.; Roncarati, A.; et al. Mercury occurrence in Italian seafood from the Mediterranean Sea and possible intake scenarios of the Italian coastal population. Regul. Toxicol. Pharmacol. 2013, 65, 269–277. [Google Scholar] [CrossRef]
- Duma, P.; Pawlos, M.; Rudy, M. Zawartość Metali Ciężkich w Wybranych Produktach Spożywczych Województwa Podkarpackiego. Bromat. Chem. Toksykol. 2012, 45, 94–100. [Google Scholar]
- Di Bella, C.; Traina, A.; Giosuè, C.; Carpintieri, D.; Lo Dico, G.M.; Bellante, A.; Del Core, M.; Falco, F.; Gherardi, S.; Uccello, M.M.; et al. Heavy metals and PAHs in meat, milk, and seafood from Augusta Area (Southern Italy): Contamination levels, dietary intake, and human exposure assessment. Fron. Public Health. 2020, 8, 273. [Google Scholar] [CrossRef]
- Han, J.L.; Pan, X.D.; Chen, Q.; Huang, B.F. Health risk assessment of heavy metals in marine fish to the population in Zhejiang, China. Sci. Rep. 2021, 11, 11079. [Google Scholar] [CrossRef]
- Maurya, P.M.; Malik, D.S.; Yadav, K.K.; Kumar, A.; Kumar, S.; Kamyab, H. Bioaccumulation and potential sources of heavy metal contamination in fish species in River Ganga basin: Possible human health risks evaluation. Toxicol. Rep. 2019, 6, 472–481. [Google Scholar] [CrossRef]
- Kumari, P.; Chowdhury, A.; Maiti, S.K. Assessment of heavy metal in the water, sediment, and two edible fish species of Jamshedpur Urban Agglomeration, India with special emphasis on human health risk. Hum. Ecol. Risk Assess. 2018, 24, 1477–1500. [Google Scholar] [CrossRef]
- Taweel, A.; Shuhaimi-Othman, M.; Ahmad, A.K. Evaluation of copper, lead and arsenic level in tilapia fish in Cempaka Lake (Bangi, Malaysia) and human daily/weekly intake. Biologia 2013, 68, 983–991. [Google Scholar] [CrossRef]
- Sackett, D.K.; Cope, W.G.; Rice, J.A.; Aday, D.D. The influence of fish length on tissue mercury dynamics: Implications on natural resource management and human health risk. Int. J. Environ. Res. Public Health 2013, 10, 638–659. [Google Scholar] [CrossRef] [PubMed]
- Zrnčić, S.; Oraić, D.; Ćaleta, M.; Mihaljeviź, Ž.; Zanella, D.; Bilandžić, N. Biomonitoring of heavy metals in fish from Danube River. Environ. Monit. Assess. 2013, 185, 1189–1198. [Google Scholar] [CrossRef] [PubMed]
- Eisler, R. Handbook of Chemical Risk Assessment Health Hazards to Humans, Plants, and Animals; Lewis Publishers: Boca Raton, FL, USA, 2000; pp. 344–440. [Google Scholar]
- Storelli, A.; Barone, G.; Garofalo, R.; Busco, A.; Storelli, M.M. Determination of mercury, methylmercury and selenium concentrations in elasmobranch eat: Fish consumption safety. Int. J. Environ. Res. Public Health 2022, 19, 788. [Google Scholar] [CrossRef]
- Zillioux, E.J. Mercury in Fish: History, Sources, Pathways, Effects, and Indicator Use; Springer Science+Business Media: Dordrecht, The Netherlands, USA, 2015; pp. 743–761. [Google Scholar] [CrossRef]
- Watras, C.J.; Bloom, N.S. Mercury and methylmercury, in individual zooplankton: Implications for bioaccumulation. Limnol. Oceanogr. 1992, 37, 1313–1318. [Google Scholar] [CrossRef]
- Bank, M.S.; Frantzen, S.; Duinker, A.; Amouroux, D.; Tessier, E.; Nedreaas, K.; Maage, A.; Nilsen, B.M. Rapid temporal decline of mercury in Greenland halibut (Reinhardtius hippoglossoides). Environ. Pollut. 2021, 289, 117843. [Google Scholar] [CrossRef]
- Carocci, A.; Rovito, N.; Sinicropi, M.S.; Genchi, G. Mercury toxicity and neurodegenerative effects. In Reviews of Environmental Contamination and Toxicology; Springer: Cham, Switzerland, 2014; Volume 229, pp. 1–18. [Google Scholar]
- European Market Observatory for Fisheries and Aquaculture Products (EUMORFA). Available online: https://www.eumofa.eu/documents/20178/61322/European+Union.pdf. (accessed on 4 January 2023).
- EFSA Panel on Contaminants in the Food Chain (CONTAM), Scientific Opinion on the risk for public health related to the presence of mercury and methylmercury in food. EFSA J. 2012, 10, 2985.
- Commission Regulation (EC) No 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs. Official Journal of the European Union. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:364:0005:0024:EN:PDF (accessed on 4 January 2023).
- Commission Regulation (EU) 2023/915 of 25 April 2023 on Maximum Levels for Certain Contaminants in Food and Repealing Regulation (EC) No 1881/2006. Official Journal of the European Union. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32023R0915 (accessed on 4 January 2023).
- Council Marine Stewardship. Tuńczyk–Kompendium Wiedzy o Zrównoważonych Połowach. Polska. 2020. Available online: https://www.msc.org/docs/default-source/po-files/tunczyk/tunczyk-raport-msc-2020.pdf. (accessed on 6 January 2023).
- Komisja Europejska. Główne Obszary Połowowe FAO. Available online: https://fish-commercial-names.ec.europa.eu/fish-names/fishing-areas_pl. (accessed on 6 January 2023).
- Commission Regulation (EU) No 836/2011 of 19 August 2011 Amending Regulation (EC) No 333/2007 Laying Down the Methods of Sampling and Analysis for the Official Control of the Levels of Lead, Cadmium, Mercury, Inorganic tin, 3-MCPD and Benzo(a)pyrene in Foodstuffs. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32011R0836 (accessed on 6 January 2023).
- Spectro-Lab. Analizator Rtęci AMA 254. Available online: http://www.spectro-lab.pl/produkt/analizator-rteci-ama-254/ (accessed on 6 March 2023).
- Różycka, K.; Rolka, G. Zastosowanie Techniki ASA do Oznaczania Rtęci na Przykładzie Badań Surowców Używanych w Przemyśle Materiałów Budowlanych. Prace ICiMB 2015, 21, 58–66. [Google Scholar]
- Consortium “Modas”. Polish Certified Reference Material (CRM) for Multielement Trace Analysis. Available online: https://assets.lgcstandards.com/sys-master%2Fpdfs%2Fh85%2Fh25%2F10137885999134%2FCOA_MODAS-5_ST-WB-CERT-2507847-1-1-1.PDF?_ga=2.26111546.646806565.1598964405-1694923390.1578576529 (accessed on 16 March 2023).
- United States Environmental Protection Agency (EPA). Child-Specific Exposure Scenarios Examples. Available online: https://ordspub.epa.gov/ords/eims/eimscomm.getfile?p_download_id=520166 (accessed on 18 March 2023).
- Główny Urząd Statystyczny, Statistics Poland. Warszawa. Trwanie Życia w 2021 r. Available online: https://stat.gov.pl/files/gfx/portalinformacyjny/pl/defaultaktualnosci/5470/2/16/1/trwanie_zycia_w_2021_roku.pdf (accessed on 16 March 2023).
- Europejskie Obserwatorium Rynku dla Rybołówstwa i Akwakultury. Profil Kraju Polska. Available online: https://www.eumofa.eu/documents/20178/61322/Poland_pl.pdf (accessed on 18 March 2023).
- Ahmed, I.; Jan, K.; Fatma, S.; Dawood, M.A.O. Muscle proximate composition of various food fish species and their nutritional significance: A review. J. Anim. Physiol. Anim. Nutr. 2022, 106, 690–719. [Google Scholar] [CrossRef]
- Hryszko, K. Rynek i Spożycie Ryb. In Proceedings of the Konferencja Hodowców Ryb Łososiowatych, Rumia, Poland, 13–15 October 2021. [Google Scholar]
- Nicklisch, S.C.T.; Bonito, L.T.; Sandin, S.; Hamdoun, A. Mercury levels of yellowfin tuna (Thunnus albacares) are associated with capture location. Environ. Pollut. 2017, 229, 87–93. [Google Scholar] [CrossRef]
- Garcia-Vazquez, E.; Geslin, V.; Turrero, P.; Rodriguez, N.; Machado-Schiaffino, G.; Ardura, A. Oceanic karma? Eco-ethical gaps in African EEE metal cycle may hit back through seafood contamination. Sci. Total Environ. 2021, 762, 143098. [Google Scholar] [CrossRef] [PubMed]
- Barone, G.; Storelli, A.; Garofalo, R.; Busco, V.P.; Quaglia, N.C.; Centrone, G.; Storelli, M.M. Assessment of mercury and cadmium via seafood consumption in Italy: Estimated dietary intake (EWI) and target hazard quotient (THQ). Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2015, 32, 1277–1286. [Google Scholar] [CrossRef] [PubMed]
- Annibaldi, A.; Truzzi, C.; Carnevali, O.; Pignalosa, P.; Api, M.; Scarponi, G.; Illuminati, S. Determination of Hg in farmed and wild atlantic Bluefin Tuna (Thunnus thynnus L.) muscle. Molecules 2019, 24, 1273. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, E.T.; Coelho, J.P.; Pereira, E.; Pardal, M.A. Are mercury levels in fishery products appropriate to ensure low risk to high fish-consumption populations? Mar. Pollut. Bull. 2023, 186, 114464. [Google Scholar] [CrossRef] [PubMed]
- Bilandžić, N.; Dokić, M.; Sedak, M. Metal content determination in four fish species from the Adriatic Sea. Food Chem. 2011, 124, 1005–1010. [Google Scholar] [CrossRef]
- Julshamn, K.; Grøsvik, B.E.; Nedreaas, K.; Maage, A. Mercury concentration in fillets of Greenland halibut (Reinhardtius hippoglossoides) caught in the Barents Sea in January 2006. Sci. Total Environ. 2006, 372, 345–349. [Google Scholar] [CrossRef]
- Julshamn, K.; Frantzen, S.; Valdersnes, S.; Nilsen, B.; Maage, A.; Nedreaas, K. Concentrations of mercury, arsenic, cadmium and lead in Greenland halibut (Reinhardtius hippoglossoides) caught off the coast of northern Norway. Mar. Biol. Res. 2011, 7, 733–745. [Google Scholar] [CrossRef]
- Łuczynska, J.; Łuczyński, M.J.; Nowosad, J.; Kowalska-Góralska, M. Total mercury and fatty acids in selected fish species on the Polish market: A risk to human health. Int. J. Environ. Res. Public Health 2022, 19, 10092. [Google Scholar] [CrossRef]
- Łuczyńska, J.; Paszczyk, B.; Nowosad, J.; Łuczyński, M.J. Mercury, fatty acids content and lipid quality indexes in muscles of freshwater and marine fish on the Polish market. Risk assessment of fish consumption. Int. J. Environ. Res. Public Health 2017, 14, 1120. [Google Scholar] [CrossRef]
- Belmonte, A.; Muñoz, P.; Echeandía, J.S.; Romero, D. Tissue distribution of mercury and its relationship with selenium in Atlantic Bluefin Tuna (Thunnus thynnus L.). Int. J. Environ. Res. Public Health 2021, 18, 13376. [Google Scholar] [CrossRef]
- Qin, Y.; Tao, Y. Pollution status of heavy metals and metalloids in Chinese lakes: Distribution, bioaccumulation and risk assessment. Ecotoxicol. Env. Saf. 2022, 248, 114293. [Google Scholar] [CrossRef] [PubMed]
- Stężycka, E.; Bzdęga, J.; Pawlikowska, K.; Sawicki, A. Zawartość Rtęci w Rybach z Wisły w Latach 1998–2002. Probl. Hig. Epidemiol. 2005, 86, 27–29. [Google Scholar]
- Łuczyńska, J.; Paszczyk, B. Health risk assessment of heavy metals and lipid quality indexes in freshwater fish from lakes of Warmia and Mazury region, Poland. Int. J. Environ. Res. Public Health. 2019, 16, 3780. [Google Scholar] [CrossRef] [PubMed]
- Lidwin-Kaźmierkiewicz, M.; Pokorska, K.; Protasowicki, M.; Rajkowska, M.; Wechterowicz, Z. Content of selected essential and toxic metals in meat of freshwater fish from West Pomerania, Poland. Pol. J. Food Nutr. Sci. 2009, 59, 219–224. [Google Scholar]
- Leśniewska, E.; Szynkowska, M.I.; Paryjczak, T. Główne Źródła Rtęci w Organizmach Ludzi Nienarażonych Zawodowo. Rocz. Ochr. Sr. 2009, 11, 403–415. [Google Scholar]
- Has-Schön, E.; Bogut, I.; Strelec, I. Heavy metal profile in five fish species included in human diet, domiciled in the end flow of river Neretva (Croatia). Arch. Env. Contam. Toxicol. 2006, 50, 545–551. [Google Scholar] [CrossRef]
- Vicarova, P.; Pelcova, P.; Kleckerova, A.; Mares, J.; Kopp, R.; Postulkova, E.; Docekalova, H. Distribution of mercury in tissues of the common carp (Cyprinus carpio L.). MendelNet 2015, 500–505. [Google Scholar]
- Kenšová, R.; Kružíková, K.; Havránek, J.; Haruštiaková, D.; Svobodova, Z. Distribution of mercury in rainbow trout tissues at embryo-larval and juvenile stages. Sci. World J. 2012, 652496. [Google Scholar] [CrossRef]
- Barszcz, A.A.; Siemianowska, E.; Polak-Juszczak, L.; Skibniewska, K.A.; Szarek, J. Inżynieria Akwakultury. In Proceedings of the Koncentracja Rtęci w Tkance Mięśniowej Pstrąga Tęczowego Pochodzącego z Technologii Chowu Stosowanego w Polsce, Olsztyn, Poland, 2–4 December 2021; p. 34. [Google Scholar]
- Ćwieląg-Drabek, M.; Rogala, D.; Hajok, I.; Dziubanek, G. Ryby jako źródło narażenia człowieka na rtęć. Przemysł Spożywczy 2017, 71, 38–41. [Google Scholar] [CrossRef]
- Pyz-Łukasik, R.; Chałabis-Mazurek, A. Content of Hg, Pb and Cd in the muscles of grass carp, bighead carp, Siberian sturgeon and wels catfish from eastern Poland. J. Elem. 2019, 24, 61–69. [Google Scholar] [CrossRef]
- Svecevičius, G.; Kazlauskienė, N.; Kesminas, V.; Staponkus, R.; Taujanskis, E.; Sauliutė, G. Heavy metal accumulation in fishes of different ecological groups from Kairiai landfill regional aquatic ecosystem. In Proceedings of the 9th International Conference “Environmental engineering”, Vilnius, Lithuania, 22−23 May 2014. [Google Scholar] [CrossRef]
- Squadrone, S.; Prearo, M.; Brizio, P.; Gavinelli, S.; Pellegrino, M.; Scanzio, T.; Guarise, S.; Benedetto, A.; Abete, M.C. Heavy metals distribution in muscle, liver, kidney and gill of European catfish (Silurus glanis) from Italian Rivers. Chemosphere 2013, 90, 358–365. [Google Scholar] [CrossRef]
- Kenšová, R.; Čelechovská, O.; Doubravová, J.; Svobodová, Z. Concentrations of metals in tissues of fish from the Věstonice reservoir. Acta Vet. Brno 2010, 79, 335–345. [Google Scholar] [CrossRef]
- Milanovđ, R.; Krstićp, M.; Markovićv, R.; Jovanovića, D.; Baltićm, B.; Ivanovićs, J.; Jovetić, M.; Baltićž, M. Analysis of heavy metals concentration in tissues of three different fish species Included in human diet from Danube river, in the Belgrade region, arsenic. Serbia. Acta Vet. Beogr. 2016, 66, 89–102. [Google Scholar] [CrossRef]
- Andreji, J.; Stránai, I.; Massányi, P.; Valent, M. Accumulation of some metals in muscles of five fish species from lower Nitra River. J. Env. Sci. Health 2006, 41, 2607–2622. [Google Scholar] [CrossRef] [PubMed]
- Pouilly, M.; Rejas, D.; Pérez, T.; Duprey, J.L.; Molina, C.I.; Hubas, C.; Guimarães, J.R.D. Trophic structure and mercury biomagnification in tropical fish assemblages, Iténez River, Bolivia. PLoS ONE 2013, 8, e65054. [Google Scholar] [CrossRef] [PubMed]
- Ouédraogo, O.; Chételat, J.; Amyot, M. Bioaccumulation and trophic transfer of mercury and selenium in African Sub-Tropical Fluvial Reservoirs Food Web (Burkina Faso). PLoS ONE 2015, 10, e0123048. [Google Scholar] [CrossRef]
- Yu, H.; Li, J.; Luan, Y. Meta-analysis of soil mercury accumulation by vegetables. Sci. Rep. 2018, 8, 1261. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Niu, C.; Li, X.; Wang, F.; Jiang, S.; Li, K.; Yao, Z. Heavy metal levels in milk and dairy products and health risk assessment: A systematic review of studies in China. Sci. Total Environ. 2022, 851, 158161. [Google Scholar] [CrossRef]
- Jarosz, M.; Rychlik, E.; Stoś, K.; Charzewska, J. Normy Żywienia Dla Populacji Polski I Ich Zastosowanie; Narodowy Instytut Zdrowia Publicznego–Państwowy Zakład Higieny, Polska, 2020, Nutritional standards for the population of Poland and their application; National Institute of Public Health-National Institute of Hygiene: Warszawa, Ponad, 2020. [Google Scholar]
Fish | Species | Latin Name | Number of Fish | Origin/FAO Catch Area | Origin—Supplementary Information |
---|---|---|---|---|---|
Marine | Atlantic cod | Gadus morhua | 9 | FAO 27 | Norwegian Sea |
Coal fish | Pollachius virens | 1 | FAO 27 | North Sea | |
Atlantic salmon | Salmo salar | 1 | FAO 61, FAO 67 | China | |
2 | farmed | Norway | |||
Yellowfin tuna | Thunnus albacares | 1 | FAO 51 | — | |
Atlantic bluefin tuna | Thunnus thynnus | 6 | FAO 34 | — | |
Mackerel | Scomber scombrus | 1 | FAO 27 | North Sea | |
Alasca pollock | Gadus chalcogrammus | 5 | FAO 61, FAO 67 | Pacific Ocean | |
Hake | Merluccius merluccius | 4 | FAO 41 | — | |
Atlantic halibut | Hippoglossus hippoglossus | 4 | FAO 27, FAO 21 | — | |
Turbot | Scophthalmus maximus | 1 | FAO 27 | — | |
Flounder | Platichthys flesus | 2 | FAO 27 | — | |
Wels catfish | -Silurus glanis | 1 | — | — | |
Freshwater | Nile perch | Lates niloticus | 5 | — | — |
Rainbow trout | Oncorhynchus mykiss | 1 | — | — | |
Brown trout | Salmo truta | 1 | — | — | |
Pike | Esox lucius | 3 | — | — | |
Carp | Cyprinus carpio | 8 | farmed | Poland | |
Pike perch | Sander lucioperca | 5 | — | — |
Fish | N | AM ± SD | Median | Quartile | p | |
---|---|---|---|---|---|---|
Q1 | Q3 | |||||
All | 68 | 0.084 ± 0.120 | 0.045 | 0.017 | 0.092 | |
Marine | 38 | 0.100 ± 0.146 | 0.060 | 0.028 | 0.096 | 0.097 |
Freshwater | 30 | 0.063 ± 0.073 | 0.024 | 0.013 | 0.089 |
Type | Species | C [mg/kg] | EDI [mg/kg Body Weight] | EHQ |
---|---|---|---|---|
Marine | Atlantic salmon | 0.017 | 0.000008 | 0.077 |
Yellowfin tuna | 0.265 | 0.000122 | 1.217 | |
Atlantic bluefin tuna | 0.278 | 0.000128 | 1.277 | |
Coal fish | 0.096 | 0.000044 | 0.439 | |
Atlantic cod | 0.049 | 0.000022 | 0.224 | |
Mackerel | 0.058 | 0.000027 | 0.268 | |
Alasca pollock | 0.037 | 0.000017 | 0.171 | |
Hake | 0.041 | 0.000019 | 0.187 | |
Atlantic halibut | 0.154 | 0.000071 | 0.707 | |
Turbot | 0.099 | 0.000045 | 0.454 | |
Flounder | 0.056 | 0.000026 | 0.255 | |
Wels catfish | 0.058 | 0.000026 | 0.263 | |
Freshwater | Nile perch | 0.138 | 0.000063 | 0.632 |
Rainbow trout | 0.018 | 0.000008 | 0.084 | |
Brown trout | 0.010 | 0.000004 | 0.043 | |
Pike | 0.128 | 0.000059 | 0.586 | |
Carp | 0.013 | 0.000006 | 0.061 | |
Pike perch | 0.125 | 0.000058 | 0.575 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brodziak-Dopierała, B.; Fischer, A. Analysis of the Mercury Content in Fish for Human Consumption in Poland. Toxics 2023, 11, 717. https://doi.org/10.3390/toxics11080717
Brodziak-Dopierała B, Fischer A. Analysis of the Mercury Content in Fish for Human Consumption in Poland. Toxics. 2023; 11(8):717. https://doi.org/10.3390/toxics11080717
Chicago/Turabian StyleBrodziak-Dopierała, Barbara, and Agnieszka Fischer. 2023. "Analysis of the Mercury Content in Fish for Human Consumption in Poland" Toxics 11, no. 8: 717. https://doi.org/10.3390/toxics11080717
APA StyleBrodziak-Dopierała, B., & Fischer, A. (2023). Analysis of the Mercury Content in Fish for Human Consumption in Poland. Toxics, 11(8), 717. https://doi.org/10.3390/toxics11080717