Does Lead Have a Connection to Autism? A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Information Sources
2.2. Search Strategy
2.3. Study Selection and Data Extraction
2.4. Quality Assessment
2.5. Statistical Analysis
2.6. Publication Bias
3. Results
3.1. Study Selection and Identification
3.2. Study Characteristics
3.3. Quality Assessment
3.4. Meta-Analysis of Pb Levels in Hair
3.5. Meta-Analysis of Pb Levels in Whole Blood
3.6. Meta-Analysis of Pb Levels in Urine
4. Discussion
4.1. Pb in Hair
4.2. Pb in Whole Blood
4.3. Pb in Liquid Blood Fractions
4.4. Pb in Urine
4.5. Pb in Teeth
5. Limitations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, L.; Shi, X.J.; Liu, H.; Mao, X.; Gui, L.N.; Wang, H.; Cheng, Y. Oxidative stress marker aberrations in children with autism spectrum disorder: A systematic review and meta-analysis of 87 studies (N = 9109). Transl. Psychiatry 2021, 11, 15. [Google Scholar] [CrossRef] [PubMed]
- Hirota, T.; King, B.H. Autism spectrum disorder: A review. JAMA 2023, 329, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Bjørklund, G.; Skalny, A.V.; Rahman, M.M.; Dadar, M.; Yassa, H.A.; Aaseth, J.; Chirumbolo, S.; Skalnaya, M.G.; Tinkov, A.A. Toxic metal(loid)-based pollutants and their possible role in autism spectrum disorder. Environ. Res. 2018, 166, 234–250. [Google Scholar] [CrossRef] [PubMed]
- Błażewicz, A.; Grabrucker, A.M. Metal profiles in autism spectrum disorders: A crosstalk between toxic and essential metals. Int. J. Mol. Sci. 2022, 24, 308. [Google Scholar] [CrossRef]
- WHO. World Health Organization. 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/autism-spectrum-disorders#:~:text=About%201%20in%20100%20children,and%20can%20evolve%20over%20time (accessed on 15 May 2023).
- CDC. Centers for Disease Control and Prevention. 2023. Available online: https://www.cdc.gov/ncbddd/autism/data.html (accessed on 9 May 2023).
- Arora, M.; Reichenberg, A.; Willfors, C.; Austin, C.; Gennings, C.; Berggren, S.; Lichtenstein, P.; Anckarsäter, H.; Tammimies, K.; Bölte, S. Fetal and postnatal metal dysregulation in autism. Nat. Commun. 2017, 8, 15493. [Google Scholar] [CrossRef] [PubMed]
- Salari, N.; Rasoulpoor, S.; Rasoulpoor, S.; Shohaimi, S.; Jafarpour, S.; Abdoli, N.; Khaledi-Paveh, B.; Mohammadi, M. The global prevalence of autism spectrum disorder: A comprehensive systematic review and meta-analysis. Ital. J. Pediatr. 2022, 48, 112. [Google Scholar] [CrossRef] [PubMed]
- Behl, S.; Mehta, S.; Pandey, M.K. Abnormal levels of metal micronutrients and autism spectrum disorder: A perspective review. Front. Mol. Neurosci. 2020, 13, 586209. [Google Scholar] [CrossRef]
- Maenner, M.J.; Warren, Z.; Williams, A.R.; Amoakohene, E.; Bakian, A.V.; Bilder, D.A.; Durkin, M.S.; Fitzgerald, R.T.; Furnier, S.M.; Hughes, M.M.; et al. Prevalence and characteristics of autism spectrum disorder among children aged 8 years—Autism and developmental disabilities monitoring network, 11 sites, United States. MMWR Surveill. Summ. 2020, 72, 1–14. [Google Scholar] [CrossRef]
- Sauer, A.K.; Stanton, J.E.; Hans, S.; Grabrucker, A.M. Autism spectrum disorders: Etiology and pathology. In Autism Spectrum Disorders [Internet]; Grabrucker, A.M., Ed.; Chapter 1; Exon Publications: Brisbane, Australia, 2021. [Google Scholar] [CrossRef]
- Dickerson, A.S.; Rotem, R.S.; Christian, M.A.; Nguyen, V.T.; Specht, A.J. Potential sex differences relative to autism spectrum disorder and metals. Curr. Environ. Health Rep. 2017, 4, 405–414. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Shen, L.; Khan, N.U.; Zhang, X.; Chen, L.; Zhao, H.; Luo, P. Trace elements in children with autism spectrum disorder: A meta-analysis based on case-control studies. J. Trace Elem. Med. Biol. 2021, 67, 126782. [Google Scholar] [CrossRef]
- Bocca, B.; Ruggieri, F.; Pino, A.; Rovira, J.; Calamandrei, G.; Martínez, M.Á.; Domingo, J.L.; Alimonti, A.; Schuhmacher, M. Human biomonitoring to evaluate exposure to toxic and essential trace elements during pregnancy. Part A. concentrations in maternal blood, urine and cord blood. Environ. Res. 2019, 177, 108599. [Google Scholar] [CrossRef]
- Henríquez-Hernández, L.A.; Romero, D.; González-Antuña, A.; Gonzalez-Alzaga, B.; Zumbado, M.; Boada, L.D.; Hernández, A.F.; López-Flores, I.; Luzardo, O.P.; Lacasaña, M. Biomonitoring of 45 inorganic elements measured in plasma from Spanish subjects: A cross-sectional study in Andalusian population. Sci. Total Environ. 2020, 706, 135750. [Google Scholar] [CrossRef]
- Heitland, P.; Köster, H.D. Human biomonitoring of 73 elements in blood, serum, erythrocytes and urine. J. Trace Elem. Med. Biol. 2021, 64, 126706. [Google Scholar] [CrossRef]
- Schmied, A.; Murawski, A.; Kolossa-Gehring, M.; Kujath, P. Determination of trace elements in urine by inductively coupled plasma-tandem mass spectrometry—Biomonitoring of adults in the German capital region. Chemosphere 2021, 285, 131425. [Google Scholar] [CrossRef]
- Santos, M.D.; Flores Soares, M.C.; Martins Baisch, P.R.; Muccillo Baisch, A.L.; Rodrigues da Silva Júnior, F.M. Biomonitoring of trace elements in urine samples of children from a coal-mining region. Chemosphere 2018, 197, 622–626. [Google Scholar] [CrossRef]
- Aljumaili, O.I.; Ewais, E.E.D.A.; El-Waseif, A.A.; AbdulJabbar Suleiman, A. Determination of hair lead, iron, and cadmium in a sample of autistic Iraqi children: Environmental risk factors of heavy metals in autism. Mater. Today Proc. 2021, 80, 2712–2715. [Google Scholar] [CrossRef]
- Chehbani, F.; Gallello, G.; Brahim, T.; Ouanes, S.; Douki, W.; Gaddour, N.; Cervera Sanz, M.L. The status of chemical elements in the blood plasma of children with autism spectrum disorder in Tunisia: A case-control study. Environ. Sci. Pollut. Res. Int. 2020, 27, 35738–35749. [Google Scholar] [CrossRef]
- Surenbaatar, U.; Lee, S.; Kwon, J.Y.; Lim, H.; Kim, J.J.; Kim, Y.H.; Hong, Y.S. Bioaccumulation of lead, cadmium, and arsenic in a mining area and its associated health effects. Toxics 2023, 11, 519. [Google Scholar] [CrossRef]
- Gauthier-Manuel, H.; Radola, D.; Choulet, F.; Buatier, M.; Vauthier, R.; Morvan, T.; Chavanne, W.; Gimbert, F. A multidisciplinary approach for the assessment of origin, fate and ecotoxicity of metal(loid)s from legacy coal mine tailings. Toxics 2021, 9, 164. [Google Scholar] [CrossRef]
- Renieri, E.A.; Alegakis, A.K.; Kiriakakis, M.; Vinceti, M.; Ozcagli, E.; Wilks, M.F.; Tsatsakis, A.M. Cd, Pb and Hg Biomonitoring in Fish of the Mediterranean Region and Risk Estimations on Fish Consumption. Toxics 2014, 2, 417–442. [Google Scholar] [CrossRef]
- Ngo, H.T.T.; Nguyen, T.D.; Nguyen, T.T.H.; Le, T.T.; Nguyen, D.Q. Adverse Effects of Toxic Metal Pollution in Rivers on the Physiological Health of Fish. Toxics 2022, 10, 528. [Google Scholar] [CrossRef]
- Harika, T.L.; Al-Ghanim, K.A.; Riaz, M.N.; Krishnappa, K.; Pandiyan, J.; Govindarajan, M. Fishing Cat Scats as a Biomonitoring Tool for Toxic Heavy Metal Contamination in Aquatic Ecosystems. Toxics 2023, 11, 173. [Google Scholar] [CrossRef]
- Wan, D.; Gao, J.; Song, R.; Song, L.; Ning, D. Uncertainties in Pollution and Risk Assessments of Heavy Metals in Lake Sediments Using Regional Background Soils in China. Toxics 2023, 11, 613. [Google Scholar] [CrossRef]
- Stojsavljević, A.; Perović, M.; Nešić, A.; Miković, Ž.; Manojlović, D. Levels of non-essential trace metals and their impact on placental health: A review. Environ. Sci. Pollut. Res. Int. 2022, 29, 43662–43674. [Google Scholar] [CrossRef]
- Collin, M.S.; Venkatraman, S.K.; Vijayakumar, N.; Kanimozhi, V.; Arbaaz, S.M.; Stacey, R.G.S.; Anusha, J.; Choudhary, R.; Lvov, V.; Tovar, G.I.; et al. Bioaccumulation of lead (Pb) and its effects on human: A review. J. Hazard. Mater. Adv. 2022, 7, 100094. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, A.; MMS, C.P.; Chaturvedi, A.K.; Shabnam, A.A.; Subrahmanyam, G.; Mondal, R.; Gupta, D.K.; Malyan, S.K.; Kumar, S.S.; et al. Lead toxicity: Health hazards, influence on food chain, and sustainable remediation approaches. Int. J. Environ. Res. Public Health 2020, 17, 2179. [Google Scholar] [CrossRef]
- Abd Wahil, M.S.; Ja’afar, M.H.; Md Isa, Z. Assessment of urinary lead (Pb) and essential trace elements in autism spectrum disorder: A case-control study among preschool children in Malaysia. Biol. Trace Elem. Res. 2022, 200, 97–121. [Google Scholar] [CrossRef]
- Hawari, I.; Eskandar, M.B.; Alzeer, S. The role of lead, manganese, and zinc in Autism Spectrum Disorders (ASDs) and Attention-Deficient Hyperactivity Disorder (ADHD): A case-control study on Syrian children affected by the Syrian crisis. Biol. Trace Elem. Res. 2020, 197, 107–114. [Google Scholar] [CrossRef]
- Filon, J.; Ustymowicz-Farbiszewska, J.; Krajewska-Kułak, E. Analysis of lead, arsenic and calcium content in the hair of children with autism spectrum disorder. BMC Public Health 2020, 20, 383. [Google Scholar] [CrossRef]
- Burtis, C.A.; Ashwood, E.R.; Bruns, D.E.; Tietz, N.W. Textbook of Clinical Chemistry and Molecular Diagnostics, 5th ed.; Elsevier: Amsterdam, The Netherlands, 2012; ISBN 978–1–4160–6164–9. [Google Scholar]
- Adams, J.B.; Audhya, T.; McDonough-Means, S.; Rubin, R.A.; Quig, D.; Geis, E.; Gehn, E.; Loresto, M.; Mitchell, J.; Atwood, S.; et al. Toxicological status of children with autism vs. neurotypical children and the association with autism severity. Biol. Trace Elem. Res. 2013, 151, 171–180. [Google Scholar] [CrossRef]
- Saghazadeh, A.; Rezaei, N. Systematic review and meta-analysis links autism and toxic metals and highlights the impact of country development status: Higher blood and erythrocyte levels for mercury and lead, and higher hair antimony, cadmium, lead, and mercury. Prog. Neuropsychopharmacol. Biol. Psychiatry 2017, 79, 340–368. [Google Scholar] [CrossRef]
- Nabgha-E-Amen; Eqani, S.A.M.A.S.; Khuram, F.; Alamdar, A.; Tahir, A.; Shah, S.T.A.; Nasir, A.; Javed, S.; Bibi, N.; Hussain, A.; et al. Environmental exposure pathway analysis of trace elements and autism risk in Pakistani children population. Sci. Total Environ. 2020, 712, 136471. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 21, e1000097. [Google Scholar] [CrossRef]
- Zar, J.H. Biostatistical Analysis, 4th ed.; Prentice Hall International Inc.: New Jersey, NJ, USA, 1999. [Google Scholar]
- Wells, G.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle–Ottawa Scale (NOS) for Assessing the Quality of Nonrandomized Studies in Meta-Analyses; Ottawa Hospital Research Institute: Ottawa, ON, Canada, 2009. [Google Scholar]
- Nakhaee, S.; Amirabadizadeh, A.; Farnia, V.; Ali Azadi, N.; Mansouri, B.; Radmehr, F. Association between biological lead concentrations and Autism Spectrum Disorder (ASD) in children: A systematic review and meta-analysis. Biol. Trace Elem. Res. 2023, 201, 1567–1581. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Green, S. Cochrane Handbook for Systematic Reviews of Interventions. The Cochrane Collaboration Version 5.1.0 [Updated March 2011]. 2011. Available online: http://www.cochrane.org/handbook (accessed on 12 April 2022).
- Mata, D.A.; Ramos, M.A.; Bansal, N.; Khan, R.; Guille, C.; Di Angelantonio, E.; Sen, S. Prevalence of depression and depressive symptoms among resident physicians: A systematic review and meta-analysis. JAMA 2015, 314, 2373–2383. [Google Scholar] [CrossRef]
- Peeters, W.; van den Brande, R.; Polinder, S.; Brazinova, A.; Steyerberg, E.W.; Lingsma, H.F.; Maas, A.I. Epidemiology of traumatic brain injury in Europe. Acta Neurochir. 2015, 157, 1683–1696. [Google Scholar] [CrossRef]
- Qin, Y.Y.; Jian, B.; Wu, C.; Jiang, C.Z.; Kang, Y.; Zhou, J.X.; Yang, F.; Liang, Y. A comparison of blood metal levels in autism spectrum disorder and unaffected children in Shenzhen of China and factors involved in bioaccumulation of metals. Environ. Sci. Pollut. Res. Int. 2018, 25, 17950–17956. [Google Scholar] [CrossRef]
- Egger, M.; Smith, G.D.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef]
- Begg, C.B.; Mazumdar, M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994, 50, 1088–1101. [Google Scholar] [CrossRef]
- Al-Ayadhi, L.Y. Heavy metals and trace elements in hair samples of autistic children in central Saudi Arabia. Neurosciences 2005, 10, 213–218. [Google Scholar]
- Al-Farsi, Y.M.; Waly, M.I.; Al-Sharbati, M.M.; Al-Shafaee, M.A.; Al-Farsi, O.A.; Al-Khaduri, M.M.; Gupta, I.; Ouhtit, A.; Al-Adawi, S.; Al-Said, M.F.; et al. Levels of heavy metals and essential minerals in hair samples of children with autism in Oman: A case-control study. Biol. Trace Elem. Res. 2013, 151, 181–186. [Google Scholar] [CrossRef] [PubMed]
- De Palma, G.; Catalani, S.; Franco, A.; Brighenti, M.; Apostoli, P. Lack of correlation between metallic elements analyzed in hair by ICP-MS and autism. J. Autism. Dev. Disord. 2012, 42, 342–353. [Google Scholar] [CrossRef] [PubMed]
- Mohamed Fel, B.; Zaky, E.A.; El-Sayed, A.B.; Elhossieny, R.M.; Zahra, S.S.; Salah Eldin, W.; Youssef, W.Y.; Khaled, R.A.; Youssef, A.M. Assessment of hair aluminum, lead, and mercury in a sample of autistic Egyptian children: Environmental risk factors of heavy metals in autism. Behav. Neurol. 2015, 2015, 545674. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Q.; Cen, S.; Jiang, J.; Zhao, J.; Zhang, H.; Chen, W. Disturbance of trace element and gut microbiota profiles as indicators of autism spectrum disorder: A pilot study of Chinese children. Environ. Res. 2019, 171, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Ouisselsat, M.; Maidoumi, S.; Elmaouaki, A.; Lekouch, N.; Pineau, A.; Sedki, A. Hair trace elements and mineral content in Moroccan children with autism spectrum disorder: A case-control study. Biol. Trace Elem. Res. 2023, 201, 2701–2710. [Google Scholar] [CrossRef]
- Skalny, A.V.; Simashkova, N.V.; Klyushnik, T.P.; Grabeklis, A.R.; Bjørklund, G.; Skalnaya, M.G.; Nikonorov, A.A.; Tinkov, A.A. Hair toxic and essential trace elements in children with autism spectrum disorder. Metab. Brain Dis. 2017, 32, 195–202. [Google Scholar] [CrossRef]
- Adams, J.B.; Holloway, C.E.; George, F.; Quig, D. Analyses of toxic metals and essential minerals in the hair of Arizona children with autism and associated conditions, and their mothers. Biol. Trace Elem. Res. 2006, 110, 193–209. [Google Scholar] [CrossRef]
- Fido, A.; Al-Saad, S. Toxic trace elements in the hair of children with autism. Autism 2005, 9, 290–298. [Google Scholar] [CrossRef]
- Priya, M.D.L.; Geetha, A. Level of trace elements (copper, zinc, magnesium and selenium) and toxic elements (lead and mercury) in the hair and nail of children with autism. Biol. Trace Elem. Res. 2011, 142, 148–158. [Google Scholar] [CrossRef]
- Elsheshtawy, E.; Tobar, S.; Sherra, K.; Atallah, S.; Elkasaby, R. Study of some biomarkers in hair of children with autism. Middle East Curr. Psychiatry 2011, 18, 6–10. [Google Scholar] [CrossRef]
- Albizzati, A.; Morè, L.; Di Candia, D.; Saccani, M.; Lenti, C. Normal concentrations of heavy metals in autistic spectrum disorders. Minerva Pediatr. 2012, 64, 27–31. [Google Scholar]
- Jung, M.; Jang, H.S.; Park, E.J.; Lee, H.W.; Choi, J.H. Study on the mineral and heavy metal contents in the hair of preschool aged autistic children. J. Korean Soc. Food Sci. Nutr. 2008, 37, 1422–1426. [Google Scholar] [CrossRef]
- Kern, J.K.; Grannemann, B.D.; Trivedi, M.H.; Adams, J.B. Sulfhydryl reactive metals in autism. J. Toxicol. Environ. Health Part A Curr. Issues 2007, 70, 715–721. [Google Scholar] [CrossRef]
- Rashaid, A.H.B.; Nusair, S.D.; Alqhazo, M.T.; Adams, J.B.; Abu-Dalo, M.A.; Bashtawi, M.A. Heavy metals and trace elements in scalp hair samples of children with severe autism spectrum disorder: A case-control study on Jordanian children. J. Trace Elem. Med. Biol. 2021, 67, 126790. [Google Scholar] [CrossRef] [PubMed]
- Macedoni-Lukšič, M.; Gosar, D.; Bjørklund, G.; Oražem, J.; Kodrič, J.; Lešnik-Musek, P.; Zupančič, M.; France-Štiglic, A.; Sešek-Briški, A.; Neubauer, D.; et al. Levels of metals in the blood and specific porphyrins in the urine in children with autism spectrum disorders. Biol. Trace Elem. Res. 2015, 163, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, H.; Li, Y.; Liu, Y.; Zhao, Z. Blood mercury, arsenic, cadmium, and lead in children with autism spectrum disorder. Biol. Trace Elem. Res. 2018, 181, 31–37. [Google Scholar] [CrossRef]
- Tian, Y.; Green, P.G.; Stamova, B.; Hertz-Picciotto, I.; Pessah, I.N.; Hansen, R.; Yang, X.; Gregg, J.P.; Ashwood, P.; Jickling, G.; et al. Correlations of gene expression with blood lead levels in children with autism compared to typically developing controls. Neurotox. Res. 2011, 19, 1–13. [Google Scholar] [CrossRef]
- Rahbar, M.H.; Samms-Vaughan, M.; Dickerson, A.S.; Loveland, K.A.; Ardjomand-Hessabi, M.; Bressler, J.; Shakespeare-Pellington, S.; Grove, M.L.; Pearson, D.A.; Boerwinkle, E. Blood lead concentrations in Jamaican children with and without autism spectrum disorder. Int. J. Environ. Res. Public Health 2015, 12, 83–105. [Google Scholar] [CrossRef]
- Yassa, H.A. Autism: A form of lead and mercury toxicity. Environ. Toxicol. Pharmacol. 2014, 38, 1016–1024. [Google Scholar] [CrossRef]
- Omotosho, I.O.; Akinade, A.O.; Lagunju, I.A.; Yakubu, M.A. Oxidative stress indices in ASD children in Sub-Sahara Africa. J. Neurodev. Disord. 2021, 13, 50. [Google Scholar] [CrossRef]
- Zhao, G.; Liu, S.J.; Gan, X.Y.; Li, J.R.; Wu, X.X.; Liu, S.Y.; Jin, Y.S.; Zhang, K.R.; Wu, H.M. Analysis of whole blood and urine trace elements in children with autism spectrum disorders and autistic behaviors. Biol. Trace Elem. Res. 2023, 201, 627–635. [Google Scholar] [CrossRef] [PubMed]
- Alawad, Z.M.; Al-Jobouri, S.M.; Majid, A.Y. Lead among children with autism in Iraq. Is it a potential factor? J. Clin. Anal. Med. 2019, 10, 215–219. [Google Scholar] [CrossRef]
- Adams, J.; Howsmon, D.P.; Kruger, U.; Geis, E.; Gehn, E.; Fimbres, V.; Pollard, E.; Mitchell, J.; Ingram, J.; Hellmers, R.; et al. Significant association of urinary toxic metals and autism-related symptoms-a nonlinear statistical analysis with cross validation. PLoS ONE 2017, 12, e0169526. [Google Scholar] [CrossRef]
- Yorbik, O.; Kurt, I.; Haşimi, A.; Oztürk, O. Chromium, cadmium, and lead levels in urine of children with autism and typically developing controls. Biol. Trace Elem. Res. 2010, 135, 10–15. [Google Scholar] [CrossRef]
- Fuentes-Albero, M.; Puig-Alcaraz, C.; Cauli, O. Lead excretion in Spanish children with autism spectrum disorder. Brain Sci. 2015, 5, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Blaurock-Busch, E.; Amin, O.R.; Rabah, T. Heavy metals and trace elements in hair and urine of a sample of Arab children with autistic spectrum disorder. Maedica 2011, 6, 247–257. [Google Scholar]
- Metwally, F.M.; Abdelraoof, E.R.; Rashad, H.; Hasheesh, A.; Elsedfy, Z.B.; Gebril, O.; Meguid, N.A. Toxic effect of some heavy metals in Egyptian autistic children. Int. J. Pharm. Clin. Res. 2015, 7, 206–211. [Google Scholar]
- Ye, B.S.; Leung, A.O.W.; Wong, M.H. The association of environmental toxicants and autism spectrum disorders in children. Environ. Pollut. 2017, 227, 234–242. [Google Scholar] [CrossRef]
- Amadi, C.N.; Orish, C.N.; Frazzoli, C.; Orisakwe, O.E. Association of autism with toxic metals: A systematic review of case-control studies. Pharmacol. Biochem. Behav. 2022, 212, 173313. [Google Scholar] [CrossRef]
- Baj, J.; Flieger, W.; Flieger, M.; Forma, A.; Sitarz, E.; Skórzyńska-Dziduszko, K.; Grochowski, C.; Maciejewski, R.; Karakuła-Juchnowicz, H. Autism spectrum disorder: Trace elements imbalances and the pathogenesis and severity of autistic symptoms. Neurosci. Biobehav. Rev. 2021, 129, 117–132. [Google Scholar] [CrossRef]
- Awadh, S.M.; Yaseen, Z.M.; Al-Suwaiyan, M.S. The role of environmental trace element toxicants on autism: A medical biogeochemistry perspective. Ecotoxicol. Environ. Saf. 2023, 251, 114561. [Google Scholar] [CrossRef]
- Kaur, I.; Behl, T.; Aleya, L.; Rahman, M.H.; Kumar, A.; Arora, S.; Akter, R. Role of metallic pollutants in neurodegeneration: Effects of aluminum, lead, mercury, and arsenic in mediating brain impairment events and autism spectrum disorder. Environ. Sci. Pollut. Res. Int. 2021, 28, 8989–9001. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, M.M.; Ly, A.R.; Goldberg, W.A.; Clarke-Stewart, K.A.; Dudgeon, J.V.; Mull, C.G.; Chan, T.J.; Kent, E.E.; Mason, A.Z.; Ericson, J.E. Heavy metal in children’s tooth enamel: Related to autism and disruptive behaviors? J. Autism Dev. Disord. 2012, 42, 929–936. [Google Scholar] [CrossRef] [PubMed]
- Skogheim, T.S.; Weyde, K.V.F.; Engel, S.M.; Aase, H.; Surén, P.; Øie, M.G.; Biele, G.; Reichborn-Kjennerud, T.; Caspersen, I.H.; Hornig, M.; et al. Metal and essential element concentrations during pregnancy and associations with autism spectrum disorder and attention-deficit/hyperactivity disorder in children. Environ. Int. 2021, 152, 106468. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Hossain, F.; Sulaiman, R.; Ren, X. Exposure to inorganic arsenic and lead and autism spectrum disorder in children: A systematic review and meta-analysis. Chem. Res. Toxicol. 2019, 32, 1904–1919. [Google Scholar] [CrossRef] [PubMed]
- EPA. Environmental Protection Agency. 1989. Available online: https://hero.epa.gov/hero/index.cfm/reference/details/reference_id/1991818 (accessed on 22 May 2023).
- McDowell, M.A.; Dillon, C.F.; Osterloh, J.; Bolger, P.M.; Pellizzari, E.; Fernando, R.; Montes de Oca, R.; Schober, S.E.; Sinks, T.; Jones, R.L.; et al. Hair mercury levels in U.S. children and women of childbearing age: Reference range data from NHANES 1999–2000. Environ. Health Perspect. 2004, 112, 1165–1171. [Google Scholar] [CrossRef]
- Lin, J.; Lin, X.; Qiu, J.; You, X.; Xu, J. Association between heavy metals exposure and infertility among American women aged 20–44 years: A cross-sectional analysis from 2013 to 2018 NHANES data. Front. Public Health 2023, 11, 1122183. [Google Scholar] [CrossRef]
- Ambeskovic, M.; Laplante, D.P.; Kenney, T.; Elgbeili, G.; Beaumier, P.; Azat, N.; Simcock, G.; Kildea, S.; King, S.; Metz, G.A.S. Elemental analysis of hair provides biomarkers of maternal hardship linked to adverse behavioural outcomes in 4-year-old children: The QF2011 Queensland Flood Study. J. Trace Elem. Med. Biol. 2022, 73, 127036. [Google Scholar] [CrossRef]
- Skalny, A.V.; Simashkova, N.V.; Klyushnik, T.P.; Grabeklis, A.R.; Radysh, I.V.; Skalnaya, M.G.; Tinkov, A.A. Analysis of hair trace elements in children with autism spectrum disorders and communication disorders. Biol. Trace Elem. Res. 2017, 177, 215–223. [Google Scholar] [CrossRef]
- Fiore, M.; Barone, R.; Copat, C.; Grasso, A.; Cristaldi, A.; Rizzo, R.; Ferrante, M. Metal and essential element levels in hair and association with autism severity. J. Trace Elem. Med. Biol. 2020, 57, 126409. [Google Scholar] [CrossRef]
- Geier, D.A.; Kern, J.K.; King, P.G.; Sykes, L.K.; Geier, M.R. Hair toxic metal concentrations and autism spectrum disorder severity in young children. Int. J. Environ. Res. Public Health 2012, 9, 4486–4497. [Google Scholar] [CrossRef]
- Harchaoui, H.; Azzaoui, F.Z.; Achouri, I.; Samih, M.; Aboussaleh, Y.; Ahami, A.O.T. High concentration of toxic metals in children’s scalps is likely the cause of autism. Curr. Top. Toxicol. 2020, 16, 109–112. [Google Scholar]
- Zhou, Q.; Huang, D.; Xu, C.; Wang, J.; Jin, Y. Hair levels of heavy metals and essential elements in Chinese children with autism spectrum disorder. J. Trace Elem. Med. Biol. 2021, 66, 126748. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.Q.; Li, H.B.; Liu, Y.Y. Association between hair lead levels and autism spectrum disorder in children: A systematic review and meta-analysis. Psychiatry Res. 2019, 276, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Hessabi, M.; Rahbar, M.H.; Dobrescu, I.; Bach, M.A.; Kobylinska, L.; Bressler, J.; Grove, M.L.; Loveland, K.A.; Mihailescu, I.; Nedelcu, M.C.; et al. Concentrations of lead, mercury, arsenic, cadmium, manganese, and aluminum in blood of Romanian children suspected of having autism spectrum disorder. Int. J. Environ. Res. Public Health 2019, 16, 2303. [Google Scholar] [CrossRef]
- Rahbar, M.H.; Samms-Vaughan, M.; Lee, M.; Zhang, J.; Hessabi, M.; Bressler, J.; Bach, M.A.; Grove, M.L.; Shakespeare-Pellington, S.; Beecher, C.; et al. Interaction between a mixture of heavy metals (lead, mercury, arsenic, cadmium, manganese, aluminum) and GSTP1, GSTT1, and GSTM1 in relation to autism spectrum disorder. Res. Autism Spectr. Disord. 2020, 79, 101681. [Google Scholar] [CrossRef]
- Rahbar, M.H.; Ibrahim, S.H.; Azam, S.I.; Hessabi, M.; Karim, F.; Kim, S.; Zhang, J.; Gulzar Ali, N.; Loveland, K.A. Concentrations of lead, mercury, arsenic, cadmium, manganese, and aluminum in the blood of Pakistani children with and without autism spectrum disorder and their associated factors. Int. J. Environ. Res. Public Health. 2021, 18, 8625. [Google Scholar] [CrossRef]
- Shiani, A.; Sharafi, K.; Omer, A.K.; Kiani, A.; Karamimatin, B.; Massahi, T.; Ebrahimzadeh, G. A systematic literature review on the association between exposures to toxic elements and an autism spectrum disorder. Sci. Total Environ. 2023, 857, 159246. [Google Scholar] [CrossRef]
- El-Ansary, A.; Bjørklund, G.; Tinkov, A.A.; Skalny, A.V.; Al Dera, H. Relationship between selenium, lead, and mercury in red blood cells of Saudi autistic children. Metab. Brain Dis. 2017, 32, 1073–1080. [Google Scholar] [CrossRef]
- Khaled, E.M.; Meguid, N.A.; Bjørklund, G.; Gouda, A.; Bahary, M.H.; Hashish, A.; Sallam, N.M.; Chirumbolo, S.; El-Bana, M.A. Altered urinary porphyrins and mercury exposure as biomarkers for autism severity in Egyptian children with autism spectrum disorder. Metab. Brain Dis. 2016, 3, 1419–1426. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, J.; Zhao, X.; Yao, F.; Feng, C.; He, Z.; Cao, X.; Gao, Y.; Khan, N.U.; Chen, M.; et al. Trace element changes in the plasma of autism spectrum disorder children and the positive correlation between chromium and vanadium. Biol. Trace Elem. Res. 2022, 200, 4924–4935. [Google Scholar] [CrossRef]
- Dong, H.Y.; Feng, J.Y.; Li, H.H.; Yue, X.J.; Jia, F.Y. Non-parental caregivers, low maternal education, gastrointestinal problems and high blood lead level: Predictors related to the severity of autism spectrum disorder in Northeast China. BMC Pediatr. 2022, 22, 11. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, M.; Rezaei, A.; Esmaeili, A.; Nakhaee, S.; Azadi, N.A.; Mansouri, B. A case-control study on the relationship between urine trace element levels and autism spectrum disorder among Iranian children. Environ. Sci. Pollut. Res. Int. 2022, 29, 57287–57295. [Google Scholar] [CrossRef] [PubMed]
- Adams, J.B.; Romdalvik, J.; Ramanujam, V.M.; Legator, M.S. Mercury, lead, and zinc in baby teeth of children with autism versus controls. J. Toxicol. Environ. Health A 2007, 70, 1046–1051. [Google Scholar] [CrossRef] [PubMed]
Study | Country | Sample Size C/Cases | Age C/Cases | Sex (Girls/Boys) C/Cases | Analytical Technique | Pb Level (Mean ± SD) C/Cases | |
---|---|---|---|---|---|---|---|
Hair | |||||||
1. | Al-Ayadhi, 2005 [47] | Saudi Arabia | 80/65 | 7.2 ± 0.7/9 ± 0.3 | C not specified; 4/61 | AAS | 0.96 ± 1.77/3.48 ± 1.43 |
2. | Al-Farsi et al., 2013 [48] | Oman | 27/27 | 5.5/5.3 | 7/20; 2/22 | ICP-MS | 0.23 ± 0.56/0.45 ± 0.77 |
3. | Aljumaili et al., 2021 [19] | Iraq | 20/75 | 3–14/3–14 | Not specified | AAS | 1.25 ± 0.66/3.44 ± 2.93 |
4. | De Palma et al., 2012 [49] | Italy | 61/44 | 8.4 ± 3.1/9.0 ± 4.0 | 36/27; 7/37 | ICP-MS | 0.013 ± 1.57/0.029 ± 2.24 |
5. | Filon et al., 2020 [32] | Poland | 30/30 | 5.09 ± 1.21/5.25 ± 1.59 | 5/25; 5/25 | EDX | 3.41 ± 1.21/6.03 ± 0.69 |
6. | Mohamed et al., 2015 [50] | Egypt | 100/100 | 6.80 ± 3.04/6.20 ± 2.40 | 26/74; 16/84 | AAS | 2.06 ± 2.45/3.31 ± 3.92 |
7. | Zhai et al., 2019 [51] | China | 58/78 | 4.90 ± 0.97/4.96 ± 1.01 | 27/31; 22/56 | ICP-MS | 0.86 ± 1.79/2.00 ± 3.25 |
8. | Ouisselsat et al., 2023 [52] | Morrocco | 120/107 | 6.68 ± 2.39/7.14 ± 2.47 | 36/84; 25/82 | ICP-MS | 0.89 ± 0.65/0.72 ± 0.79 |
9. | Skalny et al., 2017a [53] | Russia | 74/74 | 5.11 ± 2.34/5.12 ± 2.36 | Not specified | ICP-MS | 0.59 ± 0.37/0.51 ± 0.49 |
10. | Adams et al., 2006 [54] | USA | 40/51 | 7.5 ± 3/7.1 ± 3 | 10/30; 12/39 | ICP-MS | 0.60 ± 0.52/0.89 ± 1.68 |
11. | Fido and Al-Saad, 2005 [55] | Kuwait | 40/40 | 4.3 ± 2.6/4.2 ± 2.2 | Only boys | ICP-MS | 0.08 ± 5.07/0.17 ± 4.44 |
12. | Priya and Geetha, 2011 [56] | India | 50/45 | 4–12 | Not specified; 9/36 | AAS | 1.56 ± 0.18/3.24 ± 0.38 |
13. | Elsheshtawy et al., 2011 [57] | Egypt | 32/32 | 4.0 ± 0.8/4.1 ± 0.8 | 8/24; 8/24 | AAS | 0.01 ± 0.01/0.07 ± 0.01 |
14. | Albizzati et al., 2012 [58] | Italy | 20/17 | 10.41 ± 3.05/11.52 ± 3.2 | 6/14; 2/15 | ICP-MS | 0.28 ± 0.08/0.51 ± 0.22 |
15. | Jung et al., 2008 [59] | Korea | 22/28 | 7.77 ± 1.50/7.63 ± 1.41 | 7/15; 9/19 | ICP-MS | 0.05 ± 0.04/0.04 ± 0.04 |
16. | Kern et al., 2007 [60] | USA | 45/45 | 3.0 ± 1.4/3,00 ± 1.4 | 10/35; 10/35 | ICP-MS | 0.09 ± 0.08/0.06 ± 0.06 |
17. | Rashaid et al., 2021 [61] | Jordan | 50/57 | 7.33 ± 2.37/7.60 ± 2.16 | 9/41; 11/46 | ICP-MS | 6.31 ± 3.74/19.95 ± 17.23 |
Whole blood | |||||||
1. | Adams et al., 2013 [34] | USA | 44/55 | 11.0 ± 3.1/10.0 ± 3.1 | 5/39; 6/49 | ICP-MS | 8.80 ± 6.60/10.40 ± 9.80 |
2. | Macedoni-Lukšić et al., 2015 [62] | Slovenia | 22/52 | 6.6. ± 3.7/6.2 ± 3.0 | 11/11; 6/46 | AAS | 18.60 ± 7.24/30.80 ± 34.33 |
3. | Li et al., 2018 [63] | China | 184/180 | 6.12 ± 1.69/5.06 ± 1.37 | 38/146; 30/150 | AAS | 58.83 ± 18.92/56.82 ± 24.43 |
4. | Qin et al., 2018 [44] | China | 38/34 | 4.29 ± 1.73/4.10 ± 0.81 | 17/21; 14/20 | ICP-MS | 18.90 ± 12.80/31.30 ± 4.06 |
5. | Albizzati et al., 2012 [58] | Italy | 20/17 | 10.41 ± 3.05/11.52 ± 3.20 | 6/14; 2/15 | ICP-MS | 10.10 ± 1.20/10.90 ± 1.60 |
6. | Tian et al., 2011 [64] | USA | 15/37 | 3.43 ± 0.50/3.68 ± 0.83 | 4/11; 5/32 | ICP-MS | 13.00 ± 5.80/13.00 ± 10.10 |
7. | Rahbar et al., 2015 [65] | Jamaica | 100/100 | 2–8/2–8 | Not specified | ICP-MS | 27.30 ± 18.50/22.50 ± 22.30 |
8. | Yassa, 2014 [66] | Egypt | 45/45 | 12.40 ± 2.04/11.30 ± 1.02 | 31/14; 32/13 | ICP-MS | 9.75 ± 5.80/55.24 ± 10.02 |
9. | Omotosho et al., 2021 [67] | Nigeria | 25/25 | 6.18 ± 2.26 5.26 ± 1.45 | Not specified | ICP-MS | 54.30 ± 12.00/94.90 ± 20.20 |
10. | Zhao et al., 2023 [68] | China | 30/30 | 4.2 ± 1.5/3.8 ± 1.3 | 15/15; 9/21 | ICP-MS | 11.13 ± 12.50/14.96 ± 9.63 |
11. | Chehbani et al., 2020 [20] | Tunisia | 70/89 | 7.81 ± 3.41/7.53 ± 3.02 | 29/41; 15/74 | AAS | 1.59 ± 1.69/2.24 ± 3.15 |
12. | Hawari et al., 2020 [31] | Syria | 30/31 | 6–12/6–12 | 10/20; 5/26 | AAS | 28.40 ± 7.00/41.91 ± 46.80 |
13. | Alawad et al., 2019 [69] | Iraq | 47/60 | 4.37 ± 0.25 | 11/36; 16/44 | AAS | 14.27 ± 1.57/17.38 ± 1.86 |
Urine | |||||||
1. | Adams et al., 2013 [34] | USA | 44/54 | 11.0 ± 3.1/10.0 ± 3.1 | 5/39; 6/49 | ICP-MS | 0.32 ± 0.45/0.57 ± 0.86 |
2. | Adams et al., 2017 [70] | USA | 50/67 | 12.2 ± 7.5/11.5 ± 8.5 | 9/41; 12/55 | ICP-MS | 0.35 ± 0.38/0.59 ± 0.26 |
3. | Yorbik et al., 2010 [71] | Turkey | 20/30 | 5.6 ± 0.5/6.9 ± 2.7 | 7/13; 6/24 | ICP-MS | 4.63 ± 3.83/1.19 ± 1.98 |
4. | Fuentes-Albero et al., 2015 [72] | Spain | 34/35 | 7.7 ± 0.9/7.4 ± 0.5 | 10/24; 10/25 | AAS | 1.32 ± 0.04/0.60 ± 0.19 |
5. | Albizzati et al., 2012 [58] | Italy | 20/17 | 10.41 ± 3.05/11.52 ± 3.2 | 6/14; 2/15 | ICP-MS | 0.73 ± 0.29/0.71 ± 0.29 |
6. | Blaurock-Bush et al., 2011 [73] | Saudi Arabia | 25/25 | 6.25 ± 2.31/5.29 ± 1.90 | 6/19; 3/22 | ICP-MS | 3.36 ± 4.11/8.45 ± 7.33 |
7. | Metwally et al., 2015 [74] | Egypt | 75/55 | 4.02 ± 4.01 | 18/57; 16/39 | ICP-MS | 3.60 ± 1.04/12.47 ± 17.46 |
8. | Nabgha-e-Amen et al., 2020 [36] | Pakistan | 76/90 | 9.8 ± 3.3 | 22/54; 20/70 | ICP-MS | 1.73 ± 1.22/3.76 ± 1.95 |
Study | Selection | Comparability | Outcome | Score | |||||
---|---|---|---|---|---|---|---|---|---|
Representativeness (1) | Size (2) | Non-Respondents (3) | Exposure Determination (4) | Design/ Analysis | Determination of Outcome | Statist. Test | For Sample Type Average | ||
Hair | |||||||||
Al-Ayadhi, 2005 [47] | a | a | b | a | a | a | a | 6 | |
Al-Farsi et al., 2013 [48] | a | a | b | a | a | a | a | 6 | |
Aljumaili et al., 2021 [19] | a | a | c | a | a | a | a | 5 | |
De Palma et al., 2012 [49] | a | a | a | a | a | a | a | 7 | |
Filon et al., 2020 [32] | a | a | a | b | a | b | a | 5 | |
Mohamed et al., 2015 [50] | a | a | a | a | a | a | a | 7 | |
Zhai et al., 2019 [51] | a | a | a | a | a | a | a | 7 | |
Ouisselsat et al., 2023 [52] | a | a | a | a | a | a | a | 7 | |
Skalny et al., 2017a [53] | a | a | b | a | a | a | a | 6 | |
Adams et al., 2006 [54] | a | a | a | a | a | a | a | 7 | |
Fido and Al-Saad, 2005 [55] | a | a | b | a | b | a | a | 5 | |
Priya and Geetha, 2011 [56] | a | a | c | a | a | a | a | 5 | |
Elsheshtawy et al., 2011 [57] | a | a | a | a | a | a | a | 7 | |
Albizzati et al., 2012 [58] | a | a | a | a | a | a | a | 7 | |
Jung et al., 2008 [59] | a | a | a | a | a | a | a | 7 | |
Kern et al., 2007 [60] | a | a | a | a | a | a | a | 7 | |
Rashaid et al., 2021 [61] | a | a | a | a | a | a | a | 7 | 6.35 |
Whole blood | |||||||||
Adams et al., 2013 [34] | a | a | a | a | a | a | a | 7 | |
Macedoni-Lukšić et al., 2015 [62] | a | a | a | a | a | a | a | 7 | |
Li et al., 2018 [63] | a | a | a | a | a | a | a | 7 | |
Qin et al., 2018 [44] | a | a | a | a | a | a | a | 7 | |
Albizzati et al., 2012 [58] | a | a | a | a | a | a | a | 7 | |
Tian et al., 2011 [64] | a | a | a | a | a | a | a | 7 | |
Rahbar et al., 2015 [65] | a | a | c | a | a | a | a | 5 | |
Yassa, 2014 [66] | a | a | a | a | a | a | a | 7 | |
Omotosho et al., 2021 [67] | a | a | b | a | a | a | a | 6 | |
Zhao et al., 2023 [68] | a | a | a | a | a | a | a | 7 | |
Chehbani et al., 2020 [20] | a | a | a | a | a | a | a | 7 | |
Hawari et al., 2020 [31] | a | a | b | a | a | a | a | 6 | |
Alawad et al., 2019 [69] | a | a | b | a | a | a | a | 6 | 6.62 |
Urine | |||||||||
Adams et al., 2013 [34] | a | a | a | a | a | a | a | 7 | |
Adams et al., 2017 [70] | a | a | a | a | a | a | a | 7 | |
Yorbik et al., 2010 [71] | a | a | a | a | a | a | a | 7 | |
Fuentes-Albero et al., 2015 [72] | a | a | a | a | a | a | a | 7 | |
Albizzati et al., 2012 [58] | a | a | a | a | a | a | a | 7 | |
Blaurock-Bush et al., 2011 [73] | a | a | a | a | a | a | a | 7 | |
Metwally et al., 2015 [74] | a | a | b | a | a | a | a | 6 | |
Nabgha-e-Amen et al., 2020 [36] | a | a | b | a | a | a | a | 6 | 6.75 |
6.57 |
Total Number of Analyzed Studies | Significantly Higher Pb Level in Cases than in Controls | Significantly Lower Pb Level in Cases than in Controls | No Statistically Significant Changes | |
---|---|---|---|---|
Hair | 17 | 9 | 2 | 6 |
Whole blood | 13 | 3 | / | 10 |
Urine | 8 | 4 | 2 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stojsavljević, A.; Lakićević, N.; Pavlović, S. Does Lead Have a Connection to Autism? A Systematic Review and Meta-Analysis. Toxics 2023, 11, 753. https://doi.org/10.3390/toxics11090753
Stojsavljević A, Lakićević N, Pavlović S. Does Lead Have a Connection to Autism? A Systematic Review and Meta-Analysis. Toxics. 2023; 11(9):753. https://doi.org/10.3390/toxics11090753
Chicago/Turabian StyleStojsavljević, Aleksandar, Novak Lakićević, and Slađan Pavlović. 2023. "Does Lead Have a Connection to Autism? A Systematic Review and Meta-Analysis" Toxics 11, no. 9: 753. https://doi.org/10.3390/toxics11090753
APA StyleStojsavljević, A., Lakićević, N., & Pavlović, S. (2023). Does Lead Have a Connection to Autism? A Systematic Review and Meta-Analysis. Toxics, 11(9), 753. https://doi.org/10.3390/toxics11090753