Association Between Prenatal Exposure to Organochlorine Pesticides and Telomere Length in Neonatal Cord Blood
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Collection of Umbilical Cord Blood Samples
2.3. Determination of OCPs in Umbilical Cord Blood
2.4. Detection of Telomere Length in Umbilical Cord Blood Leukocytes
2.5. Information Collection, Classification, and Definition of Covariates
2.6. Statistical Methods
3. Results
3.1. General Characteristics of the Study Subjects
3.2. Association of OCP Concentrations and Telomere Length in Neonatal Cord Blood
3.3. Stratified Analysis of the Association of OCPs and Telomere Length in Neonatal Cord Blood
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hao, S.; Li, W.L.; Liu, L.Y.; Zhang, Z.F.; Ma, W.L.; Li, Y.F. Spatial distribution and temporal trend of organochlorine pesticides in Chinese surface soil. Environ. Sci. Pollut. Res. Int. 2023, 30, 82152–82161. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhao, W.; Yang, C.; Li, Y.; Liu, M.; Meng, X.Z.; Cai, M. Assessment of currently used organochlorine pesticides in surface water and sediments in Xiangjiang river, a drinking water source in China: Occurrence and distribution characteristics under flood events. Environ. Pollut. 2022, 304, 119133. [Google Scholar] [CrossRef] [PubMed]
- Veludo, A.F.; Martins Figueiredo, D.; Degrendele, C.; Masinyana, L.; Curchod, L.; Kohoutek, J.; Kukučka, P.; Martiník, J.; Přibylová, P.; Klánová, J.; et al. Seasonal variations in air concentrations of 27 organochlorine pesticides (OCPs) and 25 current-use pesticides (CUPs) across three agricultural areas of South Africa. Chemosphere 2022, 289, 133162. [Google Scholar] [CrossRef]
- Kou, J.; Li, X.; Zhang, M.; Wang, L.; Hu, L.; Liu, X.; Mei, S.; Xu, G. Accumulative levels, temporal and spatial distribution of common chemical pollutants in the blood of Chinese adults. Environ. Pollut. 2022, 311, 119980. [Google Scholar] [CrossRef]
- Bräuner, E.V.; Raaschou-Nielsen, O.; Gaudreau, E.; Leblanc, A.; Tjønneland, A.; Overvad, K.; Sørensen, M. Predictors of adipose tissue concentrations of organochlorine pesticides in a general Danish population. J. Expo. Sci. Environ. Epidemiol. 2012, 22, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Galbán-Velázquez, S.; Esteban, J.; Çakmak, G.; Artacho-Cordón, F.; León, J.; Barril, J.; Vela-Soria, F.; Martin-Olmedo, P.; Fernandez, M.F.; Pellín, M.C.; et al. Associations of persistent organic pollutants in human adipose tissue with retinoid levels and their relevance to the redox microenvironment. Environ. Res. 2021, 195, 110764. [Google Scholar] [CrossRef]
- He, Y.; Peng, L.; Huang, Y.; Peng, X.; Zheng, S.; Liu, C.; Wu, K. Association of breast adipose tissue levels of polychlorinated biphenyls and breast cancer development in women from Chaoshan, China. Environ. Sci. Pollut. Res. Int. 2017, 24, 4778–4790. [Google Scholar] [CrossRef]
- Siddique, S.; Chaudhry, M.N.; Ahmad, S.R.; Nazir, R.; Zhao, Z.; Javed, R.; Alghamdi, H.A.; Mahmood, A. Ecological and human health hazards; integrated risk assessment of organochlorine pesticides (OCPs) from the Chenab River, Pakistan. Sci. Total Environ. 2023, 882, 163504. [Google Scholar] [CrossRef]
- Luo, D.; Pu, Y.; Tian, H.; Wu, W.; Sun, X.; Zhou, T.; Tao, Y.; Yuan, J.; Shen, X.; Feng, Y.; et al. Association of in utero exposure to organochlorine pesticides with thyroid hormone levels in cord blood of newborns. Environ. Pollut. 2017, 231, 78–86. [Google Scholar] [CrossRef]
- Vardavas, C.I.; Hohmann, C.; Patelarou, E.; Martinez, D.; Henderson, A.J.; Granell, R.; Sunyer, J.; Torrent, M.; Fantini, M.P.; Gori, D.; et al. The independent role of prenatal and postnatal exposure to active and passive smoking on the development of early wheeze in children. Eur. Respir. J. 2016, 48, 115–124. [Google Scholar] [CrossRef]
- Blackburn, E.H. Structure and function of telomeres. Nature 1991, 350, 569–573. [Google Scholar] [CrossRef] [PubMed]
- Benetos, A.; Okuda, K.; Lajemi, M.; Kimura, M.; Thomas, F.; Skurnick, J.; Labat, C.; Bean, K.; Aviv, A. Telomere length as an indicator of biological aging: The gender effect and relation with pulse pressure and pulse wave velocity. Hypertension 2001, 37, 381–385. [Google Scholar] [CrossRef] [PubMed]
- Mwasongwe, S.; Gao, Y.; Griswold, M.; Wilson, J.G.; Aviv, A.; Reiner, A.P.; Raffield, L.M. Leukocyte telomere length and cardiovascular disease in African Americans: The Jackson Heart Study. Atherosclerosis 2017, 266, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Huang, J.; Xia, S.; Yang, Y.; Dong, K. Association of leukocyte telomere length with metabolic syndrome in type 2 diabetes mellitus. J. Res. Med. Sci. 2021, 26, 43. [Google Scholar] [CrossRef]
- Adam, R.; Díez-González, L.; Ocaña, A.; Šeruga, B.; Amir, E.; Templeton, A.J. Prognostic role of telomere length in malignancies: A meta-analysis and meta-regression. Exp. Mol. Pathol. 2017, 102, 455–474. [Google Scholar] [CrossRef]
- Capparelli, M.V.; Ponce-Vélez, G.; Dzul-Caamal, R.; Rodriguez-Cab, E.M.; Cabrera, M.; Lucas-Solis, O.; Moulatlet, G.M. Multi-level responses of oysters Crassostrea virginica for assessing organochlorine pesticides in a Ramsar coastal lagoon in southern Mexico. Chemosphere 2023, 320, 138064. [Google Scholar] [CrossRef]
- Houben, J.M.; Moonen, H.J.; van Schooten, F.J.; Hageman, G.J. Telomere length assessment: Biomarker of chronic oxidative stress? Free Radic. Biol. Med. 2008, 44, 235–246. [Google Scholar] [CrossRef]
- Kawanishi, S.; Oikawa, S. Mechanism of telomere shortening by oxidative stress. Ann. NY Acad. Sci. 2004, 1019, 278–284. [Google Scholar] [CrossRef]
- Aoulad Fares, D.; Schalekamp-Timmermans, S.; Nawrot, T.S.; Steegers-Theunissen, R.P.M. Preconception telomere length as a novel maternal biomarker to assess the risk of spina bifida in the offspring. Birth Defects Res. 2020, 112, 645–651. [Google Scholar] [CrossRef]
- Karimi, B.; Nabizadeh Nodehi, R.; Yunesian, M. Serum level of PCBs and OCPs and leukocyte telomere length among adults in Tehran, Iran. Chemosphere 2020, 248, 126092. [Google Scholar] [CrossRef]
- Hou, L.; Andreotti, G.; Baccarelli, A.A.; Savage, S.; Hoppin, J.A.; Sandler, D.P.; Barker, J.; Zhu, Z.Z.; Hoxha, M.; Dioni, L.; et al. Lifetime pesticide use and telomere shortening among male pesticide applicators in the Agricultural Health Study. Environ. Health Perspect. 2013, 121, 919–924. [Google Scholar] [CrossRef] [PubMed]
- Heidinger, B.J.; Blount, J.D.; Boner, W.; Griffiths, K.; Metcalfe, N.B.; Monaghan, P. Telomere length in early life predicts lifespan. Proc. Natl. Acad. Sci. USA 2012, 109, 1743–1748. [Google Scholar] [CrossRef] [PubMed]
- Blaze, J.; Asok, A.; Borrelli, K.; Tulbert, C.; Bollinger, J.; Ronca, A.E.; Roth, T.L. Intrauterine exposure to maternal stress alters Bdnf IV DNA methylation and telomere length in the brain of adult rat offspring. Int. J. Dev. Neurosci. 2017, 62, 56–62. [Google Scholar] [CrossRef]
- Martens, D.S.; Van Der Stukken, C.; Derom, C.; Thiery, E.; Bijnens, E.M.; Nawrot, T.S. Newborn telomere length predicts later life telomere length: Tracking telomere length from birth to child- and adulthood. EBioMedicine 2021, 63, 103164. [Google Scholar] [CrossRef]
- Martens, D.S.; Plusquin, M.; Cox, B.; Nawrot, T.S. Early Biological Aging and Fetal Exposure to High and Low Ambient Temperature: A Birth Cohort Study. Environ. Health Perspect. 2019, 127, 117001. [Google Scholar] [CrossRef]
- Lin, J.; Smith, D.L.; Esteves, K.; Drury, S. Telomere length measurement by qPCR—Summary of critical factors and recommendations for assay design. Psychoneuroendocrinology 2019, 99, 271–278. [Google Scholar] [CrossRef]
- Fang, J.; Wu, Q.; Zhao, Y.; Zhao, H.; Xu, S.; Cai, Z. Comparison of different mass spectrometric approaches coupled to gas chromatography for the analysis of organochlorine pesticides in serum samples. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017, 1040, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Liu, B.; Wu, M.; Zhang, L.; Wang, L.; Zhang, B.; Xiong, C.; Li, Y.; Cao, Z.; Wang, Y.; et al. Prenatal Exposure to Phthalates and Newborn Telomere Length: A Birth Cohort Study in Wuhan, China. Environ. Health. Perspect. 2019, 127, 87007. [Google Scholar] [CrossRef]
- Teittinen, A.; Taka, M.; Ruth, O.; Soininen, J. Variation in stream diatom communities in relation to water quality and catchment variables in a boreal, urbanized region. Sci. Total Environ. 2015, 530–531, 279–289. [Google Scholar] [CrossRef]
- Ouidir, M.; Buck Louis, G.M.; Kanner, J.; Grantz, K.L.; Zhang, C.; Sundaram, R.; Rahman, M.L.; Lee, S.; Kannan, K.; Tekola-Ayele, F.; et al. Association of Maternal Exposure to Persistent Organic Pollutants in Early Pregnancy With Fetal Growth. JAMA Pediatr. 2020, 174, 149–161. [Google Scholar] [CrossRef]
- Tan, J.; Loganath, A.; Chong, Y.S.; Obbard, J.P. Exposure to persistent organic pollutants in utero and related maternal characteristics on birth outcomes: A multivariate data analysis approach. Chemosphere 2009, 74, 428–433. [Google Scholar] [CrossRef] [PubMed]
- Gardner, M.; Bann, D.; Wiley, L.; Cooper, R.; Hardy, R.; Nitsch, D.; Martin-Ruiz, C.; Shiels, P.; Sayer, A.A.; Barbieri, M.; et al. Gender and telomere length: Systematic review and meta-analysis. Exp. Gerontol. 2014, 51, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Marasco, V.; Boner, W.; Griffiths, K.; Heidinger, B.; Monaghan, P. Intergenerational effects on offspring telomere length: Interactions among maternal age, stress exposure and offspring sex. Proc. Biol. Sci. 2019, 286, 20191845. [Google Scholar] [CrossRef]
- Guzzardi, M.A.; Iozzo, P.; Salonen, M.K.; Kajantie, E.; Eriksson, J.G. Maternal adiposity and infancy growth predict later telomere length: A longitudinal cohort study. Int. J. Obes. 2016, 40, 1063–1069. [Google Scholar] [CrossRef]
- Shin, J.Y.; Choi, Y.Y.; Jeon, H.S.; Hwang, J.H.; Kim, S.A.; Kang, J.H.; Chang, Y.S.; Jacobs, D.R., Jr.; Park, J.Y.; Lee, D.H. Low-dose persistent organic pollutants increased telomere length in peripheral leukocytes of healthy Koreans. Mutagenesis 2010, 25, 511–516. [Google Scholar] [CrossRef]
- Frenck, R.W., Jr.; Blackburn, E.H.; Shannon, K.M. The rate of telomere sequence loss in human leukocytes varies with age. Proc. Natl. Acad. Sci. USA 1998, 95, 5607–5610. [Google Scholar] [CrossRef]
- Turner, K.J.; Vasu, V.; Griffin, D.K. Telomere Biology and Human Phenotype. Cells 2019, 8, 73. [Google Scholar] [CrossRef]
- Ghosh, R.; Siddharth, M.; Singh, N.; Kare, P.K.; Banerjee, B.D.; Wadhwa, N.; Tripathi, A.K. Organochlorine Pesticide-Mediated Induction of NADPH Oxidase and Nitric-Oxide Synthase in Endothelial Cell. J. Clin. Diagn. Res. 2017, 11, Bc09-bc12. [Google Scholar] [CrossRef] [PubMed]
- Reyes, F.I.; Boroditsky, R.S.; Winter, J.S.; Faiman, C. Studies on human sexual development. II. Fetal and maternal serum gonadotropin and sex steroid concentrations. J. Clin. Endocrinol. Metab. 1974, 38, 612–617. [Google Scholar] [CrossRef]
- Calado, R.T.; Yewdell, W.T.; Wilkerson, K.L.; Regal, J.A.; Kajigaya, S.; Stratakis, C.A.; Young, N.S. Sex hormones, acting on the TERT gene, increase telomerase activity in human primary hematopoietic cells. Blood 2009, 114, 2236–2243. [Google Scholar] [CrossRef]
- Biron-Shental, T.; Sukenik-Halevy, R.; Naboani, H.; Liberman, M.; Kats, R.; Amiel, A. Telomeres are shorter in placentas from pregnancies with uncontrolled diabetes. Placenta 2015, 36, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Polettini, J.; da Silva, M.G. Telomere-Related Disorders in Fetal Membranes Associated With Birth and Adverse Pregnancy Outcomes. Front Physiol. 2020, 11, 561771. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wu, X.; Lei, B.; Jing, Y.; Jiang, Z.; Zhang, X.; Fang, X.; Yu, Y. Transplacental transfer characteristics of organochlorine pesticides in paired maternal and cord sera, and placentas and possible influencing factors. Environ. Pollut. 2018, 233, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Chand, S.; Mustafa, M.D.; Banerjee, B.D.; Guleria, K. CYP17A1 gene polymorphisms and environmental exposure to organochlorine pesticides contribute to the risk of small for gestational age. Eur. J. Obstet. Gynecol. Reprod. Biol. 2014, 180, 100–105. [Google Scholar] [CrossRef]
Overall | Male | Female | Telomere Length | ||
---|---|---|---|---|---|
Characteristics | N (%) or Mean ± SD | N (%) or Mean ± SD | N (%) or Mean ± SD | Mean ± SD (T/S ratio) | p-Value a |
Total | 168 (100) | 89 (53.0) | 79 (47.0) | 0.81 ± 0.40 | |
Maternal age (years) | 28.2 ± 3.27 | 28.2 ± 3.50 | 28.2 ± 3.03 | — | |
<25 | 13 (7.74) | 8 (8.99) | 5 (6.33) | 0.65 ± 0.22 | 0.49 |
25–30 | 108 (64.3) | 55 (61.8) | 53 (67.1) | 0.82 ± 0.40 | |
≥30 | 47 (28.0) | 26 (29.2) | 21 (26.6) | 0.82 ± 0.42 | |
Pre-pregnancy BMI (kg/m2) | 20.8 ± 2.74 | 20.7 ± 2.71 | 20.9 ± 2.79 | — | |
<18.5 | 31 (18.5) | 17 (19.1) | 14 (17.7) | 0.81 ±0.43 | 0.97 |
18.5–24 | 118 (70.2) | 62 (69.7) | 56 (70.9) | 0.82 ± 0.41 | |
≥24 | 19 (11.3) | 10 (11.2) | 9 (11.4) | 0.75 ± 0.25 | |
Maternal education level | — | — | — | — | |
<Junior high school (<12 years) | 11 (6.55) | 5 (5.62) | 6 (7.59) | 0.75 ± 0.20 | 0.78 |
≥High school (≥12 years) | 157 (93.5) | 84 (94.4) | 73 (92.4) | 0.81 ± 0.41 | |
Parity | — | — | — | — | |
1 | 153 (91.1) | 80 (89.9) | 73 (92.4) | 0.79 ± 0.38 | 0.10 |
≥2 | 15 (8.93) | 9 (10.1) | 6 (7.59) | 0.97 ± 0.53 | |
Annual family income (RMB) | — | — | — | — | |
<100,000 | 109 (64.9) | 61 (68.5) | 48 (60.8) | 0.81 ± 0.41 | 0.75 |
≥100,000 | 59 (35.1) | 28 (31.5) | 31 (39.2) | 0.81 ± 0.39 | |
Passive smoking during pregnancy | — | — | — | — | |
Yes | 51 (30.4) | 31 (34.8) | 20 (25.3) | 0.71 ± 0.32 | 0.03 |
No | 117 (69.6) | 58 (65.2) | 59 (74.7) | 0.85 ± 0.42 | |
Gestation age at delivery (weeks) | 39.0 ± 1.06 | 40.0 ± 1.07 | 39.1 ± 1.06 | — | |
<37 (preterm birth) | 1 (0.60) | 0 (0.00) | 1 (1.27) | 0.70 ± - | — b |
≥37 | 167 (99.4) | 89 (100) | 78 (98.7) | 0.81 ± 0.40 | |
Child’s birth weight (g) | 3357 ± 402 | 3375 ± 374 | 3338 ± 435 | — | |
<2500 (low birth weight) | 2 (1.19) | 1 (1.12) | 1 (1.27) | 0.66 ± 0.05 | — b |
≥2500 | 166 (98.8) | 88 (98.9) | 78 (98.7) | 0.81 ± 0.40 |
OCPs (ng/g Lipid) | Model A β (95% CI) | PFDR | Model B β (95% CI) | PFDR |
---|---|---|---|---|
α-HCH | 0.014 (−0.002, 0.031) | 0.23 | 0.010 (−0.006, 0.026) | 0.09 |
β-HCH | 0.022 (−0.024, 0.067) | 0.44 | 0.023 (−0.020, 0.066) | 0.30 |
γ-HCH | −0.015 (−0.033, −0.002) * | 0.01 | −0.024 (−0.041, −0.007) * | 0.001 |
p,p′-DDD | 0.008 (−0.007, 0.023) | 0.68 | 0.003 (−0.011, 0.018) | 0.11 |
p,p′-DDE | 0.028 (−0.004, 0.061) | 0.12 | 0.030 (−0.001, 0.061) | 0.08 |
p,p′-DDT | 0.017 (−0.001, 0.033) | 0.71 | 0.014 (−0.002, 0.031) | 0.08 |
OCP | Male Infant (n = 89) β (95% CI) | Female Infant (n = 79) β (95% CI) | Pinteraction |
---|---|---|---|
α-HCH | 0.006 (−0.020,0.033) | 0.018 (0.002,0.035) * | 0.44 |
β-HCH | 0.029 (−0.034,0.091) | 0.025 (−0.032,0.083) | 0.86 |
γ-HCH | −0.042 (−0.070, −0.014) * | −0.002 (−0.021,0.017) | 0.001 |
p,p′-DDD | −0.016 (−0.040,0.008) | 0.017 (0.002,0.032) * | 0.49 |
p,p′-DDE | 0.032 (−0.015,0.079) | 0.031 (−0.007,0.069) | 0.15 |
p,p′-DDT | 0.0003 (−0.029,0.029) | 0.031 (0.015, 0.047) * | 0.11 |
OCPs | Maternal Age Was <25 Years (n = 13) β (95% CI) | Maternal Age Was 25–30 Years Old (n = 108) β (95% CI) | Maternal Age Was >30 Years Old (n = 47) β (95% CI) | Pinteraction |
---|---|---|---|---|
α-HCH | −0.025 (−0.040, −0.011) * | 0.013 (−0.008, 0.033) | 0.008 (−0.022, 0.037) | 0.54 |
β-HCH | 0.187 (−0.101, 0.273) | 0.013 (−0.044, 0.069) | 0.028 (−0.038, 0.094) | 0.47 |
γ-HCH | −0.012 (−0.067, 0.044) | −0.025 (−0.047, −0.003) * | −0.014 (−0.047, 0.018) | 0.002 |
p,p′-DDD | −0.053 (−0.096, −0.010) * | −0.007 (−0.028, 0.015) | 0.02 (−0.001, 0.041) | 0.65 |
p,p′-DDE | −0.384 (−0.701, 0.067) * | 0.028 (−0.013, 0.069) | 0.027 (−0.024, 0.077) | 0.18 |
p,p′-DDT | −0.001 (−0.046, 0.044) | 0.01 (−0.012, 0.033) | 0.034 (−0.009, 0.059) | 0.14 |
OCP | Thinnish (Pre-Pregnancy BMI < 18.5 kg/m2) (n = 31) β (95% CI) | Normal (Pre-Pregnancy BMI 18.5–24 kg/m2) (n = 118) β (95% CI) | Overload (Pre-Pregnancy BMI of >24 kg/m2) (n = 19) Pinteraction β (95% CI) | |
---|---|---|---|---|
α-HCH | 0.014 (−0.002, 0.031) | 0.012 (−0.007, 0.032) | −0.010 (−0.035, 0.014) | 0.54 |
β-HCH | 0.022 (−0.024, 0.068) | 0.021 (−0.032, 0.073) | −0.111 (−0.203, −0.018) * | 0.71 |
γ-HCH | −0.015 (−0.033, 0.002) | −0.027 (−0.049, −0.006) * | −0.016 (−0.044, 0.013) | 0.004 |
p,p′-DDD | 0.008 (−0.007, 0.023) | 0.009 (−0.009, 0.027) | 0.02 (−0.001, 0.041) | 0.77 |
p,p′-DDE | −0.029 (−0.004, 0.062) | 0.029 (−0.0101, 0.067) | −0.025 (−0.52, 0.001) | 0.26 |
p,p′-DDT | 0.017 (−0.001, 0.034) | 0.029 (−0.008, 0.050) | −0.036 (−0.049, −0.023) * | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Xu, Z.; Wang, M.; Liu, H.; Li, Y.; Xu, S. Association Between Prenatal Exposure to Organochlorine Pesticides and Telomere Length in Neonatal Cord Blood. Toxics 2024, 12, 769. https://doi.org/10.3390/toxics12110769
Jiang Y, Xu Z, Wang M, Liu H, Li Y, Xu S. Association Between Prenatal Exposure to Organochlorine Pesticides and Telomere Length in Neonatal Cord Blood. Toxics. 2024; 12(11):769. https://doi.org/10.3390/toxics12110769
Chicago/Turabian StyleJiang, Ying, Ziyuan Xu, Meng Wang, Hongxiu Liu, Yuanyuan Li, and Shunqing Xu. 2024. "Association Between Prenatal Exposure to Organochlorine Pesticides and Telomere Length in Neonatal Cord Blood" Toxics 12, no. 11: 769. https://doi.org/10.3390/toxics12110769
APA StyleJiang, Y., Xu, Z., Wang, M., Liu, H., Li, Y., & Xu, S. (2024). Association Between Prenatal Exposure to Organochlorine Pesticides and Telomere Length in Neonatal Cord Blood. Toxics, 12(11), 769. https://doi.org/10.3390/toxics12110769