Organophosphate Esters and Polybrominated Diphenyl Ethers in Vehicle Dust: Concentrations, Sources, and Health Risk Assessment
Abstract
:1. Introduction
2. Methods
2.1. Data Processing
2.2. Statistical Methods
2.3. Risk Assessment
2.3.1. Exposure Assessment
2.3.2. Noncarcinogenic Risk Assessment
2.3.3. Carcinogenic Risk Assessment
2.3.4. Probabilistic Assessment and Sensitivity Analysis
2.4. Data Analysis
3. Results and Discussion
3.1. OPEs and PBDEs in Vehicle Dust
3.2. Spearman’s Correlation Between OPEs and PBDEs in Vehicle Dust
3.3. Principal Component Analysis (PCA) of OPEs and PBDEs in Vehicle Dust
3.4. Positive Matrix Factorization (PMF) of OPEs and PBDEs in Vehicle Dust
3.5. Exposure Assessment and Health Risk Evaluation
3.5.1. Exposure Assessment
3.5.2. Noncarcinogenic Exposure
3.5.3. Carcinogenic Exposure
3.5.4. Probability Assessment
3.5.5. Sensitivity Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABS | Acrylonitrile–butadiene–styrene |
ADD | The average daily dose |
AF | The dermal absorption factor |
AT | Average exposure time |
BW | Average body weight |
C | The measured dust concentration |
CF | Conversion factor |
CR | Cancer risks |
DA | The adherence to skin |
ED | Exposure duration |
EF | Exposure frequency |
ET | Exposure time |
HI | Hazard index |
HIPS | High-impact polystyrene |
HQ | Hazard quotient |
OPEs | Organophosphates |
PBDEs | Polybrominated diphenyl ethers |
PCA | Principal component analysis |
PE | Polyethylene |
PEF | Particle emission factor |
PMF | Positive matrix factorization |
PP | Polypropylene |
PUF | Polyurethane foam |
PVC | Polyvinyl chloride |
Ring | Ingestion rate |
Rinh | Inhalation rate |
RfD | Reference concentration |
SA | The exposure of skin |
SF | Slope factor |
References
- Sharkey, M.; Harrad, S.; Abou-Elwafa Abdallah, M.; Drage, D.S.; Berresheim, H. Phasing-out of Legacy Brominated Flame Retardants: The UNEP Stockholm Convention and Other Legislative Action Worldwide. Environ. Int. 2020, 144, 106041. [Google Scholar] [CrossRef] [PubMed]
- U.S. EPA. An Exposure Assessment of Polybrominated Diphenyl Ethers (PBDE) (Final Report). Available online: https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NCEA&dirEntryId=210404 (accessed on 26 October 2024).
- U.S. EPA. Polybrominated Diphenyl Ethers (PBDEs) Action Plan. Available online: https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/polybrominated-diphenyl-ethers-pbdes-action-plan (accessed on 26 October 2024).
- Poma, G.; Glynn, A.; Malarvannan, G.; Covaci, A.; Darnerud, P.O. Dietary Intake of Phosphorus Flame Retardants (PFRs) Using Swedish Food Market Basket Estimations. Food Chem. Toxicol. 2017, 100, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Li, X.; Fan, J.; Bai, Y.; Zhang, Y.; Lu, H.; Guo, C.; Xu, J. Distribution Characteristics, Source Attribution, and Health Risk Assessment of Organophosphate Esters in Indoor and Outdoor Dust from Various Microenvironments in Beijing. Ecotox. Environ. Saf. 2023, 268, 115713. [Google Scholar] [CrossRef] [PubMed]
- Tokumura, M.; Hatayama, R.; Tatsu, K.; Naito, T.; Takeda, T.; Raknuzzaman, M.; -Al-Mamun, M.H.; Masunaga, S. Organophosphate Flame Retardants in the Indoor Air and Dust in Cars in Japan. Environ. Monit. Assess. 2017, 189, 48. [Google Scholar] [CrossRef] [PubMed]
- Brommer, S.; Harrad, S.; Van den Eede, N.; Covaci, A. Concentrations of Organophosphate Esters and Brominated Flame Retardants in German Indoor Dust Samples. J. Environ. Monit. 2012, 14, 2482–2487. [Google Scholar] [CrossRef]
- Khairy, M.A.; Lohmann, R. Organophosphate Flame Retardants in the Indoor and Outdoor Dust and Gas-Phase of Alexandria, Egypt. Chemosphere 2019, 220, 275–285. [Google Scholar] [CrossRef]
- Ali, N.; Dirtu, A.C.; Van den Eede, N.; Goosey, E.; Harrad, S.; Neels, H.; ’t Mannetje, A.; Coakley, J.; Douwes, J.; Covaci, A. Occurrence of Alternative Flame Retardants in Indoor Dust from New Zealand: Indoor Sources and Human Exposure Assessment. Chemosphere 2012, 88, 1276–1282. [Google Scholar] [CrossRef]
- Brommer, S.; Harrad, S. Sources and Human Exposure Implications of Concentrations of Organophosphate Flame Retardants in Dust from UK Cars, Classrooms, Living Rooms, and Offices. Environ. Int. 2015, 83, 202–207. [Google Scholar] [CrossRef]
- Pirjola, L.; Lähde, T.; Niemi, J.V.; Kousa, A.; Rönkkö, T.; Karjalainen, P.; Keskinen, J.; Frey, A.; Hillamo, R. Spatial and Temporal Characterization of Traffic Emissions in Urban Microenvironments with a Mobile Laboratory. Atmos. Environ. 2012, 63, 156–167. [Google Scholar] [CrossRef]
- Lagalante, A.F.; Oswald, T.D.; Calvosa, F.C. Polybrominated Diphenyl Ether (PBDE) Levels in Dust from Previously Owned Automobiles at United States Dealerships. Environ. Int. 2009, 35, 539–544. [Google Scholar] [CrossRef]
- European Union. Commission Regulation (EU) 2019/2021 of 1 October 2019; Laying down Ecodesign Requirements for Electronic Displays Pursuant to Directive 2009/125/EC of the European Parliament and of the Council, Amending Commission Regulation (EC) No 1275/2008 and Repealing Commission Regulation (EC) No 642/2009. Available online: http://data.europa.eu/eli/reg/2019/2021/2021-03-01/eng (accessed on 24 October 2024).
- ECHA. Candidate List of Substances of Very High Concern for Authorisation. Available online: https://echa.europa.eu/candidate-list-table (accessed on 24 October 2024).
- Kim, U.-J.; Wang, Y.; Li, W.; Kannan, K. Occurrence of and Human Exposure to Organophosphate Flame Retardants/Plasticizers in Indoor Air and Dust from Various Microenvironments in the United States. Environ. Int. 2019, 125, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Eskenazi, B.; Chevrier, J.; Rauch, S.A.; Kogut, K.; Harley, K.G.; Johnson, C.; Trujillo, C.; Sjödin, A.; Bradman, A. In Utero and Childhood Polybrominated Diphenyl Ether (PBDE) Exposures and Neurodevelopment in the CHAMACOS Study. Environ. Health Perspect. 2013, 121, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, D.; Singh, V.K.; Singh, S.K. Maternal BDE-209 Exposure during Lactation Perturbs Steroidogenesis, Germ Cell Kinetics and THRα1 Expression in Testes of Prepubertal Mice Offspring. Food Chem. Toxicol. 2018, 122, 104–119. [Google Scholar] [CrossRef] [PubMed]
- Toft, G.; Lenters, V.; Vermeulen, R.; Heederik, D.; Thomsen, C.; Becher, G.; Giwercman, A.; Bizzaro, D.; Manicardi, G.C.; Spanò, M.; et al. Exposure to Polybrominated Diphenyl Ethers and Male Reproductive Function in Greenland, Poland and Ukraine. Reprod. Toxicol. 2014, 43, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Li, Y.; Ru, H.; Xie, H.; Yao, F.; Ni, Z.; Zhong, L. Parental Exposure to 2, 2′, 4, 4′5–Pentain Polybrominated Diphenyl Ethers (BDE-99) Causes Thyroid Disruption and Developmental Toxicity in Zebrafish. Toxicol. Appl. Pharmacol. 2019, 372, 11–18. [Google Scholar] [CrossRef]
- Krivoshiev, B.V.; Beemster, G.T.; Sprangers, K.; Blust, R.; Husson, S.J. Toxicogenomics Approach to Screen Chlorinated Flame Retardants Tris(2-Chloroethyl) Phosphate and Tris(2-Chloroisopropyl) Phosphate for Potential Health Effects. J. Appl. Toxicol. 2018, 38, 459–470. [Google Scholar] [CrossRef]
- Farhat, A.; Crump, D.; Chiu, S.; Williams, K.L.; Letcher, R.J.; Gauthier, L.T.; Kennedy, S.W. In Ovo Effects of Two Organophosphate Flame Retardants–TCPP and TDCPP–on Pipping Success, Development, mRNA Expression, and Thyroid Hormone Levels in Chicken Embryos. Toxicol. Sci. 2013, 134, 92–102. [Google Scholar] [CrossRef]
- Shi, Q.; Wang, M.; Shi, F.; Yang, L.; Guo, Y.; Feng, C.; Liu, J.; Zhou, B. Developmental Neurotoxicity of Triphenyl Phosphate in Zebrafish Larvae. Aquat. Toxicol. 2018, 203, 80–87. [Google Scholar] [CrossRef]
- Yan, S.; Wu, H.; Qin, J.; Zha, J.; Wang, Z. Halogen-Free Organophosphorus Flame Retardants Caused Oxidative Stress and Multixenobiotic Resistance in Asian Freshwater Clams (Corbicula Fluminea). Environ. Pollut. 2017, 225, 559–568. [Google Scholar] [CrossRef]
- Lin, C.; Zeng, Z.; Xu, R.; Liang, W.; Guo, Y.; Huo, X. Risk Assessment of PBDEs and PCBs in Dust from an E-Waste Recycling Area of China. Sci. Total Environ. 2022, 803, 150016. [Google Scholar] [CrossRef]
- Liu, B.; Ding, L.; Lv, L.; Yu, Y.; Dong, W. Organophosphate Esters (OPEs) and Novel Brominated Flame Retardants (NBFRs) in Indoor Dust: A Systematic Review on Concentration, Spatial Distribution, Sources, and Human Exposure. Chemosphere 2023, 345, 140560. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhang, Y.; Deng, Y.; Jian, K.; Li, J.; Ya, M.; Su, G. Traditional and Emerging Organophosphate Esters (OPEs) in Indoor Dust of Nanjing, Eastern China: Occurrence, Human Exposure, and Risk Assessment. Sci. Total Environ. 2020, 712, 136494. [Google Scholar] [CrossRef]
- Dou, M.; Wang, L. A Review on Organophosphate Esters: Physiochemical Properties, Applications, and Toxicities as Well as Occurrence and Human Exposure in Dust Environment. J. Environ. Manag. 2023, 325, 116601. [Google Scholar] [CrossRef] [PubMed]
- Ravindra, K.; Agarwal, N.; Mor, S. Assessment of Thermal Comfort Parameters in Various Car Models and Mitigation Strategies for Extreme Heat-Health Risks in the Tropical Climate. J. Environ. Manag. 2020, 267, 110655. [Google Scholar] [CrossRef]
- Besis, A.; Christia, C.; Poma, G.; Covaci, A.; Samara, C. Legacy and Novel Brominated Flame Retardants in Interior Car Dust–Implications for Human Exposure. Environ. Pollut. 2017, 230, 871–881. [Google Scholar] [CrossRef]
- Schreder, E.D.; Uding, N.; La Guardia, M.J. Inhalation a Significant Exposure Route for Chlorinated Organophosphate Flame Retardants. Chemosphere 2016, 150, 499–504. [Google Scholar] [CrossRef]
- Chen, I.-C.; Bertke, S.J.; Estill, C.F. Compare the Marginal Effects for Environmental Exposure and Biomonitoring Data with Repeated Measurements and Values below the Limit of Detection. J. Expo. Sci. Environ. Epidemiol. 2024, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; Ye, N.; Lu, Z.; Zhang, S.; Zhou, S.; He, J. Pollution Characteristics and Source Identification of PBDEs in Public Transport Microenvironments. Sci. Total Environ. 2022, 820, 153159. [Google Scholar] [CrossRef]
- Zhang, J.; Li, R.; Zhang, X.; Bai, Y.; Cao, P.; Hua, P. Vehicular Contribution of PAHs in Size Dependent Road Dust: A Source Apportionment by PCA-MLR, PMF, and Unmix Receptor Models. Sci. Total Environ. 2019, 649, 1314–1322. [Google Scholar] [CrossRef]
- U.S. EPA, National Center for Environmental Assessment. Exposure Factors Handbook 2011 Edition (Final Report). Available online: https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=236252 (accessed on 23 October 2024).
- Cao, H.; Qiao, L.; Zhang, H.; Chen, J. Exposure and Risk Assessment for Aluminium and Heavy Metals in Puerh Tea. Sci Total Environ. 2010, 408, 2777–2784. [Google Scholar] [CrossRef]
- Yang, J.; Huang, D.; Zhang, L.; Xue, W.; Wei, X.; Qin, J.; Ou, S.; Wang, J.; Peng, X.; Zhang, Z.; et al. Multiple-Life-Stage Probabilistic Risk Assessment for the Exposure of Chinese Population to PBDEs and Risk Managements. Sci. Total Environ. 2018, 643, 1178–1190. [Google Scholar] [CrossRef] [PubMed]
- Geraets, L.; Bessems, J.G.M.; Zeilmaker, M.J.; Bos, P.M.J. Human Risk Assessment of Dermal and Inhalation Exposures to Chemicals Assessed by Route-to-Route Extrapolation: The Necessity of Kinetic Data. Regul. Toxicol. Pharmacol. 2014, 70, 54–64. [Google Scholar] [CrossRef] [PubMed]
- U.S. EPA. Superfund Soil Screening Guidance. Available online: https://www.epa.gov/superfund/superfund-soil-screening-guidance (accessed on 2 April 2024).
- U.S. EPA. Positive Matrix Factorization Model for Environmental Data Analyses. Available online: https://www.epa.gov/air-research/positive-matrix-factorization-model-environmental-data-analyses (accessed on 23 October 2024).
- Tajima, S.; Araki, A.; Kawai, T.; Tsuboi, T.; Ait Bamai, Y.; Yoshioka, E.; Kanazawa, A.; Cong, S.; Kishi, R. Detection and Intake Assessment of Organophosphate Flame Retardants in House Dust in Japanese Dwellings. Sci. Total Environ. 2014, 478, 190–199. [Google Scholar] [CrossRef]
- Van den Eede, N.; Dirtu, A.C.; Neels, H.; Covaci, A. Analytical Developments and Preliminary Assessment of Human Exposure to Organophosphate Flame Retardants from Indoor Dust. Environ. Int. 2011, 37, 454–461. [Google Scholar] [CrossRef]
- Christia, C.; Poma, G.; Besis, A.; Samara, C.; Covaci, A. Legacy and Emerging Organophosphοrus Flame Retardants in Car Dust from Greece: Implications for Human Exposure. Chemosphere 2018, 196, 231–239. [Google Scholar] [CrossRef]
- Abdallah, M.A.-E.; Covaci, A. Organophosphate Flame Retardants in Indoor Dust from Egypt: Implications for Human Exposure. Environ. Sci. Technol. 2014, 48, 4782–4789. [Google Scholar] [CrossRef]
- Harrad, S.; Abdallah, M.A.-E.; Oluseyi, T. Polybrominated Diphenyl Ethers and Polychlorinated Biphenyls in Dust from Cars, Homes, and Offices in Lagos, Nigeria. Chemosphere 2016, 146, 346–353. [Google Scholar] [CrossRef]
- Jiang, Y.; Yuan, L.; Lin, Q.; Ma, S.; Yu, Y. Polybrominated Diphenyl Ethers in the Environment and Human External and Internal Exposure in China: A Review. Sci. Total Environ. 2019, 696, 133902. [Google Scholar] [CrossRef] [PubMed]
- Marklund, A.; Andersson, B.; Haglund, P. Screening of Organophosphorus Compounds and Their Distribution in Various Indoor Environments. Chemosphere 2003, 53, 1137–1146. [Google Scholar] [CrossRef]
- Abafe, O.A.; Martincigh, B.S. Concentrations, Sources and Human Exposure Implications of Organophosphate Esters in Indoor Dust from South Africa. Chemosphere 2019, 230, 239–247. [Google Scholar] [CrossRef]
- Stapleton, H.M.; Sharma, S.; Getzinger, G.; Ferguson, P.L.; Gabriel, M.; Webster, T.F.; Blum, A. Novel and High Volume Use Flame Retardants in US Couches Reflective of the 2005 PentaBDE Phase Out. Environ. Sci. Technol. 2012, 46, 13432–13439. [Google Scholar] [CrossRef] [PubMed]
- Su, G.; Letcher, R.J.; Yu, H.; Gooden, D.M.; Stapleton, H.M. Determination of Glucuronide Conjugates of Hydroxyl Triphenyl Phosphate (OH-TPHP) Metabolites in Human Urine and Its Use as a Biomarker of TPHP Exposure. Chemosphere 2016, 149, 314–319. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Wang, X.; Thai, P.; Baduel, C.; Gallen, C.; Banks, A.; Bainton, P.; English, K.; Mueller, J.F. Organophosphate and Brominated Flame Retardants in Australian Indoor Environments: Levels, Sources, and Preliminary Assessment of Human Exposure. Environ. Pollut. 2018, 235, 670–679. [Google Scholar] [CrossRef]
- Gao, X.; Lin, Y.; Li, J.; Xu, Y.; Qian, Z.; Lin, W. Spatial Pattern Analysis Reveals Multiple Sources of Organophosphorus Flame Retardants in Coastal Waters. J Hazard. Mater. 2021, 417, 125882. [Google Scholar] [CrossRef]
- Van der Veen, I.; de Boer, J. Phosphorus Flame Retardants: Properties, Production, Environmental Occurrence, Toxicity and Analysis. Chemosphere 2012, 88, 1119–1153. [Google Scholar] [CrossRef]
- Castorina, R.; Butt, C.; Stapleton, H.M.; Avery, D.; Harley, K.G.; Holland, N.; Eskenazi, B.; Bradman, A. Flame Retardants and Their Metabolites in the Homes and Urine of Pregnant Women Residing in California (the CHAMACOS Cohort). Chemosphere 2017, 179, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Abafe, O.A.; Martincigh, B.S. Polybrominated Diphenyl Ethers and Polychlorinated Biphenyls in Indoor Dust in Durban, South Africa. Indoor Air 2015, 25, 547–556. [Google Scholar] [CrossRef]
- Olukunle, O.I.; Okonkwo, O.J.; Sha’ato, R.; Wase, G.A. Levels of Polybrominated Diphenyl Ethers in Indoor Dust and Human Exposure Estimates from Makurdi, Nigeria. Ecotox. Environ. Safe. 2015, 120, 394–399. [Google Scholar] [CrossRef]
- Andresen, J.A.; Grundmann, A.; Bester, K. Organophosphorus Flame Retardants and Plasticisers in Surface Waters. Sci. Total Environ. 2004, 332, 155–166. [Google Scholar] [CrossRef]
- Lexén, J.; Bernander, M.; Cotgreave, I.; Andersson, P.L. Assessing Exposure of Semi-Volatile Organic Compounds (SVOCs) in Car Cabins: Current Understanding and Future Challenges in Developing a Standardized Methodology. Environ. Int. 2021, 157, 106847. [Google Scholar] [CrossRef]
- Luo, Q.; Gu, L.; Wu, Z.; Shan, Y.; Wang, H.; Sun, L.-N. Distribution, Source Apportionment and Ecological Risks of Organophosphate Esters in Surface Sediments from the Liao River, Northeast China. Chemosphere 2020, 250, 126297. [Google Scholar] [CrossRef] [PubMed]
- McGrath, T.J.; Ball, A.S.; Clarke, B.O. Critical Review of Soil Contamination by Polybrominated Diphenyl Ethers (PBDEs) and Novel Brominated Flame Retardants (NBFRs); Concentrations, Sources and Congener Profiles. Environ. Pollut. 2017, 230, 741–757. [Google Scholar] [CrossRef] [PubMed]
- Klinčić, D.; Tariba Lovaković, B.; Jagić, K.; Dvoršćak, M. Polybrominated Diphenyl Ethers and the Multi-Element Profile of House Dust in Croatia: Indoor Sources, Influencing Factors of Their Accumulation and Health Risk Assessment for Humans. Sci. Total Environ. 2021, 800, 149430. [Google Scholar] [CrossRef] [PubMed]
- Vyzinkarova, D.; Brunner, P.H. Substance Flow Analysis of Wastes Containing Polybrominated Diphenyl Ethers. J. Ind. Ecol. 2013, 17, 900–911. [Google Scholar] [CrossRef]
- Ali, N.; Ali, L.; Mehdi, T.; Dirtu, A.C.; Al-Shammari, F.; Neels, H.; Covaci, A. Levels and Profiles of Organochlorines and Flame Retardants in Car and House Dust from Kuwait and Pakistan: Implication for Human Exposure via Dust Ingestion. Environ. Int. 2013, 55, 62–70. [Google Scholar] [CrossRef]
- Cristale, J.; Aragão Belé, T.G.; Lacorte, S.; Rodrigues de Marchi, M.R. Occurrence and Human Exposure to Brominated and Organophosphorus Flame Retardants via Indoor Dust in a Brazilian City. Environ. Pollut. 2018, 237, 695–703. [Google Scholar] [CrossRef]
- McGrath, T.J.; Morrison, P.D.; Ball, A.S.; Clarke, B.O. Concentrations of Legacy and Novel Brominated Flame Retardants in Indoor Dust in Melbourne, Australia: An Assessment of Human Exposure. Environ. Int. 2018, 113, 191–201. [Google Scholar] [CrossRef]
- Khairy, M.A.; Lohmann, R. Selected Organohalogenated Flame Retardants in Egyptian Indoor and Outdoor Environments: Levels, Sources and Implications for Human Exposure. Sci. Total Environ. 2018, 633, 1536–1548. [Google Scholar] [CrossRef]
- Larsson, K.; de Wit, C.A.; Sellström, U.; Sahlström, L.; Lindh, C.H.; Berglund, M. Brominated Flame Retardants and Organophosphate Esters in Preschool Dust and Children’s Hand Wipes. Environ. Sci. Technol. 2018, 52, 4878–4888. [Google Scholar] [CrossRef]
- Petromelidou, S.; Margaritis, D.; Nannou, C.; Keramydas, C.; Lambropoulou, D.A. HRMS Screening of Organophosphate Flame Retardants and Poly-/Perfluorinated Substances in Dust from Cars and Trucks: Occurrence and Human Exposure Implications. Sci. Total Environ. 2022, 848, 157696. [Google Scholar] [CrossRef]
- U.S. EPA. Reference Dose (RfD): Description and Use in Health Risk Assessments. Available online: https://www.epa.gov/iris/reference-dose-rfd-description-and-use-health-risk-assessments (accessed on 23 April 2024).
Compound | Mean | Range | SD | MDL 1 |
---|---|---|---|---|
TnBP | 1.91 × 102 | 2.00 × 10−1–1.40 × 104 | 3.89 × 102 | 5.00 × 10−2 |
TBOEP | 9.81 × 103 | 7.40 × 10−2–3.60 × 105 | 1.74 × 104 | 7.40 × 10−2 |
TEHP | 5.88 × 102 | 1.20 × 10−1–6.40 × 104 | 8.05 × 102 | 1.20 × 10−1 |
TCEP | 5.38 × 103 | 7.20 × 10−2–2.45 × 105 | 9.87 × 103 | 7.20 × 10−2 |
TCiPP | 9.47 × 103 | 2.00 × 10–3.70 × 105 | 1.76 × 104 | 1.00 × 10−1 |
TDCiPP | 4.34 × 104 | 5.00–7.40 × 105 | 1.04 × 105 | 6.70 × 10−2 |
TPhP | 6.06 × 103 | 2.30 × 10−1–1.70 × 105 | 1.79 × 104 | 2.30 × 10−1 |
EHDPP | 3.30 × 103 | 7.80 × 10−2–2.40 × 105 | 8.85 × 103 | 7.80 × 10−2 |
∑8OPEs | 9.78 × 103 | 2.58 × 10–2.20 × 106 | 4.42 × 104 | |
BDE-28 | 1.14 × 10 | 1.00 × 10−2–1.49 × 103 | 1.28 × 10 | 3.00 × 10−2 |
BDE-47 | 4.41 × 102 | 1.00 × 10−2–1.02 × 105 | 1.24 × 103 | 3.00 × 10−3 |
BDE-99 | 3.48 × 102 | 1.00 × 10−2–2.25 × 105 | 5.45 × 102 | 3.00 × 10−4 |
BDE-100 | 1.11 × 102 | 2.00 × 10−2–9.82 × 104 | 2.72 × 102 | 3.00 × 10−3 |
BDE-153 | 1.01 × 102 | 1.00 × 10−2–1.79 × 104 | 2.15 × 102 | 1.00 × 10−3 |
BDE-154 | 4.07 × 10 | 1.00 × 10−2–6.67 × 104 | 9.42 × 10 | 3.00 × 10−3 |
BDE-183 | 9.27 × 10 | 1.00 × 10−2–1.28 × 103 | 2.33 × 102 | 1.00 × 10−2 |
BDE-209 | 1.52 × 104 | 1.00 × 10−2–2.61 × 105 | 2.28 × 104 | 9.39 × 10−2 |
∑8PBDEs | 2.04 × 103 | 9.00 × 10−2–7.73 × 105 | 9.18 × 103 |
Occupational Populations | Nonoccupational Populations | |||||
---|---|---|---|---|---|---|
ADDing | ADDinh | ADDder | ADDing | ADDinh | ADDder | |
TnBP | 3.65 × 10−8 | 1.07 × 10−14 | 6.75 × 10−9 | 5.50 × 10−9 | 1.62 × 10−15 | 1.02 × 10−9 |
TBOEP | 1.87 × 10−6 | 5.51 × 10−13 | 3.79 × 10−7 | 2.82 × 10−7 | 8.30 × 10−14 | 5.70 × 10−8 |
TEHP | 1.12 × 10−7 | 3.30 × 10−14 | 2.27 × 10−8 | 1.69 × 10−8 | 4.98 × 10−15 | 3.42 × 10−9 |
TCEP | 1.03 × 10−6 | 3.03 × 10−13 | 2.69 × 10−7 | 1.55 × 10−7 | 4.56 × 10−14 | 4.05 × 10−8 |
TCiPP | 1.81 × 10−6 | 5.32 × 10−13 | 4.58 × 10−7 | 2.72 × 10−7 | 8.01 × 10−14 | 6.90 × 10−8 |
TDCiPP | 8.29 × 10−6 | 2.44 × 10−12 | 9.72 × 10−7 | 1.25 × 10−6 | 3.67 × 10−13 | 1.46 × 10−7 |
TPhP | 1.16 × 10−6 | 3.41 × 10−13 | 2.34 × 10−7 | 1.74 × 10−7 | 5.13 × 10−14 | 3.52 × 10−8 |
EHDPP | 6.32 × 10−7 | 1.86 × 10−13 | 1.28 × 10−7 | 9.51 × 10−8 | 2.80 × 10−14 | 1.92 × 10−8 |
∑8OPEs | 1.49 × 10−5 | 4.40 × 10−12 | 2.47 × 10−6 | 2.25 × 10−6 | 6.62 × 10−13 | 3.72 × 10−7 |
BDE-28 | 2.19 × 10−9 | 6.43 × 10−16 | 2.02 × 10−10 | 3.29 × 10−10 | 9.68 × 10−17 | 2.02 × 10−10 |
BDE-47 | 8.44 × 10−8 | 2.48 × 10−14 | 7.79 × 10−9 | 1.27 × 10−8 | 3.73 × 10−15 | 7.79 × 10−9 |
BDE-99 | 6.65 × 10−8 | 1.96 × 10−14 | 6.14 × 10−9 | 1.00 × 10−8 | 2.95 × 10−15 | 6.14 × 10−9 |
BDE-100 | 2.12 × 10−8 | 6.24 × 10−15 | 1.96 × 10−9 | 3.19 × 10−9 | 9.39 × 10−16 | 1.96 × 10−9 |
BDE-153 | 1.94 × 10−8 | 5.70 × 10−15 | 1.79 × 10−9 | 2.92 × 10−9 | 8.59 × 10−16 | 1.79 × 10−9 |
BDE-154 | 7.78 × 10−9 | 2.29 × 10−15 | 7.18 × 10−10 | 1.17 × 10−9 | 3.44 × 10−16 | 7.18 × 10−10 |
BDE-183 | 1.77 × 10−8 | 5.21 × 10−15 | 1.64 × 10−9 | 2.67 × 10−9 | 7.85 × 10−16 | 1.64 × 10−9 |
BDE-209 | 2.90 × 10−6 | 8.52 × 10−13 | 2.67 × 10−7 | 4.36 × 10−7 | 1.28 × 10−13 | 2.67 × 10−7 |
∑8PBDEs | 3.12 × 10−6 | 9.17 × 10−13 | 2.88 × 10−7 | 4.69 × 10−7 | 1.38 × 10−13 | 4.33 × 10−8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Lin, J.; Zhang, X.; Zeng, Q.; Zhu, Z.; Zhao, S.; Cao, D.; Zhu, M. Organophosphate Esters and Polybrominated Diphenyl Ethers in Vehicle Dust: Concentrations, Sources, and Health Risk Assessment. Toxics 2024, 12, 806. https://doi.org/10.3390/toxics12110806
Wang J, Lin J, Zhang X, Zeng Q, Zhu Z, Zhao S, Cao D, Zhu M. Organophosphate Esters and Polybrominated Diphenyl Ethers in Vehicle Dust: Concentrations, Sources, and Health Risk Assessment. Toxics. 2024; 12(11):806. https://doi.org/10.3390/toxics12110806
Chicago/Turabian StyleWang, Junji, Jianzai Lin, Xi Zhang, Qinghong Zeng, Zhu Zhu, Siyuan Zhao, Deyan Cao, and Meilin Zhu. 2024. "Organophosphate Esters and Polybrominated Diphenyl Ethers in Vehicle Dust: Concentrations, Sources, and Health Risk Assessment" Toxics 12, no. 11: 806. https://doi.org/10.3390/toxics12110806
APA StyleWang, J., Lin, J., Zhang, X., Zeng, Q., Zhu, Z., Zhao, S., Cao, D., & Zhu, M. (2024). Organophosphate Esters and Polybrominated Diphenyl Ethers in Vehicle Dust: Concentrations, Sources, and Health Risk Assessment. Toxics, 12(11), 806. https://doi.org/10.3390/toxics12110806