Bacterial Diversity in Old Hydrocarbon Polluted Sediments of Ecuadorian Amazon River Basins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection
2.3. Identification and Quantification of Total Petroleum Hydrocarbon and Polycyclic Aromatic Hydrocarbons
2.4. Microbial Biodiversity and Composition
3. Results
Physico-Chemical Sediment Characterization
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goldman, R.; Biton, E.; Brokovich, E.; Kark, S.; Levin, N. Oil Spill Contamination Probability in the Southeastern Levantine Basin. Mar. Pollut. Bull. 2015, 91, 347–356. [Google Scholar] [CrossRef]
- Espinosa, C.I.; Reyes-Bueno, F.; Ramírez, M.I.; Arévalo, A.P.; Bailon-Moscoso, N.; Duncan, D.H. Vulnerability of Human Populations to Contamination from Petroleum Exploitation in the Napo River Basin: An Approach for Spatially Explicit Risk Assessment. Sustainability 2021, 13, 9230. [Google Scholar] [CrossRef]
- Ramírez, M.I.; Arévalo-Jaramillo, A.P.; Espinosa, C.I.; Bailon-Moscoso, N. Is the Anemia in Men an Effect of the Risk of Crude Oil Contamination? Toxicol. Rep. 2022, 9, 480–486. [Google Scholar] [CrossRef]
- Cram, S.; Siebe, C.; Ortíz-Salinas, R.; Herre, A. Mobility and Persistence of Petroleum Hydrocarbons in Peat Soils of Southeastern Mexico. Soil Sediment Contam. Int. J. 2004, 13, 341–360. [Google Scholar] [CrossRef]
- Stroud, J.L.; Paton, G.I.; Semple, K.T. Microbe-aliphatic Hydrocarbon Interactions in Soil: Implications for Biodegradation and Bioremediation. J. Appl. Microbiol. 2007, 102, 1239–1253. [Google Scholar] [CrossRef]
- Jeanneau, L.; Faure, P.; Montarges-Pelletier, E.; Ramelli, M. Impact of a Highly Contaminated River on a More Important Hydrologic System: Changes in Organic Markers. Sci. Total Environ. 2006, 372, 183–192. [Google Scholar] [CrossRef]
- Ossai, I.C.; Ahmed, A.; Hassan, A.; Hamid, F.S. Remediation of Soil and Water Contaminated with Petroleum Hydrocarbon: A Review. Environ. Technol. Innov. 2020, 17, 100526. [Google Scholar] [CrossRef]
- Fingas, M.F. Studies on the Evaporation of Crude Oil and Petroleum Products: I. the Relationship between Evaporation Rate and Time. J. Hazard. Mater. 1997, 56, 227–236. [Google Scholar] [CrossRef]
- Johnston, E.L.; Roberts, D.A. Contaminants Reduce the Richness and Evenness of Marine Communities: A Review and Meta-Analysis. Environ. Pollut. 2009, 157, 1745–1752. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yang, C.; Yang, Z.; Brown, C.E.; Hollebone, B.P.; Stout, S.A. 4—Petroleum Biomarker Fingerprinting for Oil Spill Characterization and Source Identification. In Standard Handbook Oil Spill Environmental Forensics, 2nd ed.; Stout, S.A., Wang, Z., Eds.; Academic Press: Boston, MA, USA, 2016; pp. 131–254. ISBN 978-0-12-803832-1. [Google Scholar]
- Arnot, J.A.; Gobas, F.A.P.C. A Food Web Bioaccumulation Model for Organic Chemicals in Aquatic Ecosystems. Environ. Toxicol. Chem. 2004, 23, 2343–2355. [Google Scholar] [CrossRef]
- Falkowski, P.G.; Fenchel, T.; Delong, E.F. The Microbial Engines That Drive Earth’s Biogeochemical Cycles. Science 2008, 320, 1034–1039. [Google Scholar] [CrossRef]
- Labud, V.; Garcia, C.; Hernandez, T. Effect of Hydrocarbon Pollution on the Microbial Properties of a Sandy and a Clay Soil. Chemosphere 2007, 66, 1863–1871. [Google Scholar] [CrossRef]
- Benedek, T.; Vajna, B.; Táncsics, A.; Márialigeti, K.; Lányi, S.; Máthé, I. Remarkable Impact of PAHs and TPHs on the Richness and Diversity of Bacterial Species in Surface Soils Exposed to Long-Term Hydrocarbon Pollution. World J. Microbiol. Biotechnol. 2013, 29, 1989–2002. [Google Scholar] [CrossRef]
- Malmborg, J.; Kooistra, K.; Kraus, U.R.; Kienhuis, P. Evaluation of Light Petroleum Biomarkers for the 3rd Edition of the European Committee for Standardization Methodology for Oil Spill Identification (EN15522-2). Environ. Forensics 2021, 22, 325–339. [Google Scholar] [CrossRef]
- Albaigés, J.; Jimenez, N.; Arcos, A.; Dominguez, C.; Bayona, J.M. The Use of Long-Chain Alkylbenzenes and Alkyltoluenes for Fingerprinting Marine Oil Wastes. Chemosphere 2013, 91, 336–343. [Google Scholar] [CrossRef]
- Bidja Abena, M.T.; Chen, G.; Chen, Z.; Zheng, X.; Li, S.; Li, T.; Zhong, W. Microbial Diversity Changes and Enrichment of Potential Petroleum Hydrocarbon Degraders in Crude Oil-, Diesel-, and Gasoline-Contaminated Soil. 3 Biotech 2020, 10, 42. [Google Scholar] [CrossRef] [PubMed]
- Kato, H.; Mori, H.; Maruyama, F.; Toyoda, A.; Oshima, K.; Endo, R.; Fuchu, G.; Miyakoshi, M.; Dozono, A.; Ohtsubo, Y.; et al. Time-Series Metagenomic Analysis Reveals Robustness of Soil Microbiome against Chemical Disturbance. DNA Res. 2015, 22, 413–424. [Google Scholar] [CrossRef] [PubMed]
- Laczi, K.; Erdeiné Kis, Á.; Szilágyi, Á.; Bounedjoum, N.; Bodor, A.; Vincze, G.E.; Kovács, T.; Rákhely, G.; Perei, K. New Frontiers of Anaerobic Hydrocarbon Biodegradation in the Multi-Omics Era. Front. Microbiol. 2020, 11, 590049. [Google Scholar] [CrossRef] [PubMed]
- Abatenh, E.; Gizaw, B.; Tsegaye, Z.; Wassie, M. The Role of Microorganisms in Bioremediation—A Review. Open J. Environ. Biol. 2017, 2, 038–046. [Google Scholar] [CrossRef]
- Larrea, C.; Murmis, M.R.; Peters, S.; Escobar, A.; Larrea-Alcazar, D.M.; Mantilla, L.M.; Pichilingue, E.; Terán-Mantovani, E.; Van Den Bergh, M. Chapter 18: Globalization, Extractivism, and Social Exclusion: Country-Specific Manifestations. In Amazon Assessment Report 2021; Nobre, C., Encalada, A., Anderson, E., Roca Alcazar, F.H., Bustamante, M., Mena, C., Peña-Claros, M., Poveda, G., Rodriguez, J.P., Saleska, S., et al., Eds.; UN Sustainable Development Solutions Network (SDSN): New York, NY, USA, 2021; ISBN 978-1-73480-800-1. [Google Scholar]
- Cuesta, F.; Peralvo, M.; Merino-Viteri, A.; Bustamante, M.; Baquero, F.; Freile, J.F.; Muriel, P.; Torres-Carvajal, O. Priority Areas for Biodiversity Conservation in Mainland Ecuador. Neotrop. Biodivers. 2017, 3, 93–106. [Google Scholar] [CrossRef]
- Rivera-Parra, J.L.; Vizcarra, C.; Mora, K.; Mayorga, H.; Dueñas, J.C. Spatial Distribution of Oil Spills in the North Eastern Ecuadorian Amazon: A Comprehensive Review of Possible Threats. Biol. Conserv. 2020, 252, 108820. [Google Scholar] [CrossRef]
- Etchart, L. Indigenous Peoples and International Law in the Ecuadorian Amazon. Laws 2022, 11, 55. [Google Scholar] [CrossRef]
- Pumalema, J.L.; García, A.C. Reserva Biológica Limoncocha: Historia, turismo y biodiversidad. Green World J. 2020, 3, 6. [Google Scholar]
- San Sebastián, M.; Hurtig, A.-K. Oil Exploitation in the Amazon Basin of Ecuador: A Public Health Emergency. Rev. Panam. Salud Pública 2004, 15, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Kimerling, J. Oil, Contact, and Conservation in the Amazon: Indigenous Huaorani, Chevron, and Yasuni. Colo. J. Int. Environ. Law Policy 2013, 24, 75. [Google Scholar]
- Coronel Vargas, G.; Au, W.W.; Izzotti, A. Public Health Issues from Crude-Oil Production in the Ecuadorian Amazon Territories. Sci. Total Environ. 2020, 719, 134647. [Google Scholar] [CrossRef]
- Fernández, W. Las Cifras del Pueblo Indígena: Una Mirada Desde el Censo de Población y Vivienda 2010; INEC Instituto Nacional de Estadística y Censos: Quito, Ecuador, 2012. [Google Scholar]
- Coloma Santos, A.; Rivadeneira Roura, C.; Rivera Rossi, J. Guía del Patrimonio de Áreas Naturales Protegidas del Ecuador; Cámara Ecuatoriana del Libro—Núcleo de Pichincha: Quito, Ecuador, 2007; ISBN 978-9978-45-945-4. [Google Scholar]
- Jørgensen, K.; Järvinen, O.; Sainio, P.; Salminen, J.; Suortti, A.-M. Quantification of Soil Contamination. In Monitoring and Assessing Soil Bioremediation; Soil Biology; Springer: Berlin/Heidelberg, Germany, 2005; Volume 5, pp. 97–119. ISBN 978-3-540-25346-4. [Google Scholar]
- Simarro, R.; González-Benítez, N.; Bautista, L.F.; Molina, M.C. Biodegradation of High-Molecular-Weight Polycyclic Aromatic Hydrocarbons by a Wood-Degrading Consortium at Low Temperatures. FEMS Microbiol. Ecol. 2013, 83, 438–449. [Google Scholar] [CrossRef]
- Rocchetti, L.; Beolchini, F.; Ciani, M.; Dell’Anno, A. Improvement of Bioremediation Performance for the Degradation of Petroleum Hydrocarbons in Contaminated Sediments. Appl. Environ. Soil Sci. 2011, 2011, e319657. [Google Scholar] [CrossRef]
- Volkman, J.K.; Holdsworth, D.G.; Neill, G.P.; Bavor, H.J. Identification of Natural, Anthropogenic and Petroleum Hydrocarbons in Aquatic Sediments. Sci. Total Environ. 1992, 112, 203–219. [Google Scholar] [CrossRef]
- Christensen, L.B.; Larsen, T.H. Method for Determining the Age of Diesel Oil Spills in the Soil. Groundw. Monit. Remediat. 1993, 13, 142–149. [Google Scholar] [CrossRef]
- Martin, M. Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads. EMBnet. J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An Ultra-Fast All-in-One FASTQ Preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Andrews, S. Babraham Bioinformatics—FastQC a Quality Control Tool for High Throughput Sequence Data. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 28 November 2023).
- Ewels, P.; Magnusson, M.; Lundin, S.; Käller, M. MultiQC: Summarize Analysis Results for Multiple Tools and Samples in a Single Report. Bioinformatics 2016, 32, 3047–3048. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. QIIME 2: Reproducible, Interactive, Scalable, and Extensible Microbiome Data Science. Nat. Biotechnol. 2018, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and Applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef] [PubMed]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- Steinhauer, M.S.; Boehm, P.D. The Composition and Distribution of Saturated and Aromatic Hydrocarbons in Nearshore Sediments, River Sediments, and Coastal Peat of the Alaskan Beaufort Sea: Implications for Detecting Anthropogenic Hydrocarbon Inputs. Mar. Environ. Res. 1992, 33, 223–253. [Google Scholar] [CrossRef]
- Peters, K.E.; Walters, C.C.; Moldowan, J.M. The Biomarker Guide: Volume 2, Biomarkers and Isotopes in Petroleum Systems and Earth History; Cambridge University Press: Cambridge, MA, USA, 2007; ISBN 978-1-107-07962-5. [Google Scholar]
- Babcock-Adams, L.; Chanton, J.P.; Joye, S.B.; Medeiros, P.M. Hydrocarbon Composition and Concentrations in the Gulf of Mexico Sediments in the 3 Years Following the Macondo Well Blowout. Environ. Pollut. 2017, 229, 329–338. [Google Scholar] [CrossRef]
- Mohialdeen, I.M.J.; Hakimi, M.H.; Al-Beyati, F.M. Biomarker Characteristics of Certain Crude Oils and the Oil-Source Rock Correlation for the Kurdistan Oilfields, Northern Iraq. Arab. J. Geosci. 2015, 8, 507–523. [Google Scholar] [CrossRef]
- Paudyn, K.; Rutter, A.; Kerry Rowe, R.; Poland, J.S. Remediation of Hydrocarbon Contaminated Soils in the Canadian Arctic by Landfarming. Cold Reg. Sci. Technol. 2008, 53, 102–114. [Google Scholar] [CrossRef]
- Egorova, D.O.; Sannikov, P.Y.; Khotyanovskaya, Y.V.; Buzmakov, S.A. Composition of Bacterial Communities in Oil-Contaminated Bottom Sediments of the Kamenka River. Mosc. Univ. Biol. Sci. Bull. 2023, 78, 14–20. [Google Scholar] [CrossRef]
- Zhu, N.; Wang, J.; Wang, Y.; Li, S.; Chen, J. Differences in Geological Conditions Have Reshaped the Structure and Diversity of Microbial Communities in Oily Soils. Environ. Pollut. 2022, 306, 119404. [Google Scholar] [CrossRef]
- Kuppusamy, S.; Thavamani, P.; Megharaj, M.; Venkateswarlu, K.; Lee, Y.B.; Naidu, R. Pyrosequencing Analysis of Bacterial Diversity in Soils Contaminated Long-Term with PAHs and Heavy Metals: Implications to Bioremediation. J. Hazard. Mater. 2016, 317, 169–179. [Google Scholar] [CrossRef]
- Yang, T.; Nigro, L.M.; Gutierrez, T.; D’Ambrosio, L.; Joye, S.B.; Highsmith, R.; Teske, A. Pulsed Blooms and Persistent Oil-Degrading Bacterial Populations in the Water Column during and after the Deepwater Horizon Blowout. Deep Sea Res. Part II Top. Stud. Oceanogr. 2016, 129, 282–291. [Google Scholar] [CrossRef]
- Lee, D.W.; Lee, H.; Lee, A.H.; Kwon, B.-O.; Khim, J.S.; Yim, U.H.; Kim, B.S.; Kim, J.-J. Microbial Community Composition and PAHs Removal Potential of Indigenous Bacteria in Oil Contaminated Sediment of Taean Coast, Korea. Environ. Pollut. 2018, 234, 503–512. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Feng, J.-Q.; Zhou, L.; Mbadinga, S.M.; Gu, J.-D.; Mu, B.-Z. Characterization of Bacterial Composition and Diversity in a Long-Term Petroleum Contaminated Soil and Isolation of High-Efficiency Alkane-Degrading Strains Using an Improved Medium. World J. Microbiol. Biotechnol. 2018, 34, 34. [Google Scholar] [CrossRef] [PubMed]
- Jiao, S.; Liu, Z.; Lin, Y.; Yang, J.; Chen, W.; Wei, G. Bacterial Communities in Oil Contaminated Soils: Biogeography and Co-Occurrence Patterns. Soil Biol. Biochem. 2016, 98, 64–73. [Google Scholar] [CrossRef]
- Omrani, R.; Spini, G.; Puglisi, E.; Saidane, D. Modulation of Microbial Consortia Enriched from Different Polluted Environments during Petroleum Biodegradation. Biodegradation 2018, 29, 187–209. [Google Scholar] [CrossRef]
- Salam, L.B.; Ilori, M.O.; Amund, O.O.; LiiMien, Y.; Nojiri, H. Characterization of Bacterial Community Structure in a Hydrocarbon-Contaminated Tropical African Soil. Environ. Technol. 2018, 39, 939–951. [Google Scholar] [CrossRef] [PubMed]
- Veerasamy, V.; Jagannathan, U.M.; Arakkala, S.D.; Shafee, W.A.; Kaliannan, T. Exploring the Bacterial Genetic Diversity and Community Structure of Crude Oil Contaminated Soils Using Microbiomics. Environ. Res. 2023, 236, 116779. [Google Scholar] [CrossRef]
- Chen, G.; Yuan, M.; Ma, B.; Ren, Y. Responses of Petroleum Contamination at Different Sites to Soil Physicochemical Properties and Indigenous Microbial Communities. Water Air Soil Pollut. 2023, 234, 494. [Google Scholar] [CrossRef]
- Sydow, M.; Owsianiak, M.; Szczepaniak, Z.; Framski, G.; Smets, B.F.; Ławniczak, Ł.; Lisiecki, P.; Szulc, A.; Cyplik, P.; Chrzanowski, Ł. Evaluating Robustness of a Diesel-Degrading Bacterial Consortium Isolated from Contaminated Soil. New Biotechnol. 2016, 33, 852–859. [Google Scholar] [CrossRef] [PubMed]
- Bell, T.H.; Yergeau, E.; Martineau, C.; Juck, D.; Whyte, L.G.; Greer, C.W. Identification of Nitrogen-Incorporating Bacteria in Petroleum-Contaminated Arctic Soils by Using [15N]DNA-Based Stable Isotope Probing and Pyrosequencing. Appl. Environ. Microbiol. 2011, 77, 4163–4171. [Google Scholar] [CrossRef] [PubMed]
- Bacosa, H.P.; Steichen, J.; Kamalanathan, M.; Windham, R.; Lubguban, A.; Labonté, J.M.; Kaiser, K.; Hala, D.; Santschi, P.H.; Quigg, A. Polycyclic Aromatic Hydrocarbons (PAHs) and Putative PAH-Degrading Bacteria in Galveston Bay, TX (USA), Following Hurricane Harvey (2017). Environ. Sci. Pollut. Res. 2020, 27, 34987–34999. [Google Scholar] [CrossRef]
- Táncsics, A.; Szabó, I.; Baka, E.; Szoboszlay, S.; Kukolya, J.; Kriszt, B.; Márialigeti, K. Investigation of Catechol 2,3-Dioxygenase and 16S rRNA Gene Diversity in Hypoxic, Petroleum Hydrocarbon Contaminated Groundwater. Syst. Appl. Microbiol. 2010, 33, 398–406. [Google Scholar] [CrossRef] [PubMed]
- Korenblum, E.; Souza, D.B.; Penna, M.; Seldin, L. Molecular Analysis of the Bacterial Communities in Crude Oil Samples from Two Brazilian Offshore Petroleum Platforms. Int. J. Microbiol. 2012, 2012, 156537. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, J.; Kazy, S.K.; Gupta, A.; Dutta, A.; Mohapatra, B.; Roy, A.; Bera, P.; Mitra, A.; Sar, P. Biostimulation of Indigenous Microbial Community for Bioremediation of Petroleum Refinery Sludge. Front. Microbiol. 2016, 7, 1407. [Google Scholar] [CrossRef]
- Dai, X.; Chen, C.; Yan, G.; Chen, Y.; Guo, S. A Comprehensive Evaluation of Re-Circulated Bio-Filter as a Pretreatment Process for Petroleum Refinery Wastewater. J. Environ. Sci. 2016, 50, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Révész, F.; Farkas, M.; Kriszt, B.; Szoboszlay, S.; Benedek, T.; Táncsics, A. Effect of Oxygen Limitation on the Enrichment of Bacteria Degrading Either Benzene or Toluene and the Identification of Malikia Spinosa (Comamonadaceae) as Prominent Aerobic Benzene-, Toluene-, and Ethylbenzene-Degrading Bacterium: Enrichment, Isolation and Whole-Genome Analysis. Environ. Sci. Pollut. Res. 2020, 27, 31130–31142. [Google Scholar] [CrossRef]
- Shah, S.; Yadav, R. Oil Eating Microbes: A Boon for Environmental Cleaning. Environ. Sci. Biol. 2016, 5, 7. [Google Scholar]
- Waigi, M.G.; Kang, F.; Goikavi, C.; Ling, W.; Gao, Y. Phenanthrene Biodegradation by Sphingomonads and Its Application in the Contaminated Soils and Sediments: A Review. Int. Biodeterior. Biodegrad. 2015, 104, 333–349. [Google Scholar] [CrossRef]
- Kertesz, M.A.; Kawasaki, A.; Stolz, A. Aerobic Hydrocarbon-Degrading Alphaproteobacteria: Sphingomonadales. In Taxonomy, Genomics and Ecophysiology of Hydrocarbon-Degrading Microbes; McGenity, T.J., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 105–124. ISBN 978-3-030-14795-2. [Google Scholar]
- Yang, S.; Wen, X.; Zhao, L.; Shi, Y.; Jin, H. Crude Oil Treatment Leads to Shift of Bacterial Communities in Soils from the Deep Active Layer and Upper Permafrost along the China-Russia Crude Oil Pipeline Route. PLoS ONE 2014, 9, e96552. [Google Scholar] [CrossRef]
- Thomas, F.; Cébron, A. Short-Term Rhizosphere Effect on Available Carbon Sources, Phenanthrene Degradation, and Active Microbiome in an Aged-Contaminated Industrial Soil. Front. Microbiol. 2016, 7, 92. [Google Scholar] [CrossRef]
- Cahill, A.G.; Steelman, C.M.; Forde, O.; Kuloyo, O.; Emil Ruff, S.; Mayer, B.; Ulrich Mayer, K.; Strous, M.; Cathryn Ryan, M.; Cherry, J.A.; et al. Mobility and Persistence of Methane in Groundwater in a Controlled-Release Field Experiment. Nat. Geosci. 2017, 10, 289–294. [Google Scholar] [CrossRef]
- Valentine, D.L.; Mezić, I.; Maćešić, S.; Črnjarić-Žic, N.; Ivić, S.; Hogan, P.J.; Fonoberov, V.A.; Loire, S. Dynamic Autoinoculation and the Microbial Ecology of a Deep Water Hydrocarbon Irruption. Proc. Natl. Acad. Sci. USA 2012, 109, 20286–20291. [Google Scholar] [CrossRef]
- Blanco-Enríquez, E.G.; Zavala-Díaz de la Serna, F.J.; Peralta-Pérez, M.D.R.; Ballinas-Casarrubias, L.; Salmerón, I.; Rubio-Arias, H.; Rocha-Gutiérrez, B.A. Characterization of a Microbial Consortium for the Bioremoval of Polycyclic Aromatic Hydrocarbons (PAHs) in Water. Int. J. Environ. Res. Public Health 2018, 15, 975. [Google Scholar] [CrossRef] [PubMed]
- Kamalanathan, M.; Schwehr, K.A.; Labonté, J.M.; Taylor, C.; Bergen, C.; Patterson, N.; Claflin, N.; Santschi, P.H.; Quigg, A. The Interplay of Phototrophic and Heterotrophic Microbes Under Oil Exposure: A Microcosm Study. Front. Microbiol. 2021, 12, 675328. [Google Scholar] [CrossRef] [PubMed]
- Juck, D.; Charles, T.; Whyte, L.G.; Greer, C.W. Polyphasic Microbial Community Analysis of Petroleum Hydrocarbon-Contaminated Soils from Two Northern Canadian Communities. FEMS Microbiol. Ecol. 2000, 33, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Wang, J.; Liu, Y.; Wang, X.; Zhang, B.; Zhang, W.; Chen, T.; Liu, G.; Xue, L.; Cui, X. Nocardioides: “Specialists” for Hard-to-Degrade Pollutants in the Environment. Molecules 2023, 28, 7433. [Google Scholar] [CrossRef]
- Saggu, S.K.; Nath, A.; Kumar, S. Myxobacteria: Biology and Bioactive Secondary Metabolites. Res. Microbiol. 2023, 174, 104079. [Google Scholar] [CrossRef]
- Hwang, C.; Copeland, A.; Lucas, S.; Lapidus, A.; Barry, K.; Glavina del Rio, T.; Dalin, E.; Tice, H.; Pitluck, S.; Sims, D.; et al. Complete Genome Sequence of Anaeromyxobacter sp. Fw109-5, an Anaerobic, Metal-Reducing Bacterium Isolated from a Contaminated Subsurface Environment. Genome Announc. 2015, 3, e01449-14. [Google Scholar] [CrossRef] [PubMed]
- Whitworth, D.E.; Sydney, N.; Radford, E.J. Myxobacterial Genomics and Post-Genomics: A Review of Genome Biology, Genome Sequences and Related ‘Omics Studies. Microorganisms 2021, 9, 2143. [Google Scholar] [CrossRef] [PubMed]
- Mbadinga, S.M.; Li, K.-P.; Zhou, L.; Wang, L.-Y.; Yang, S.-Z.; Liu, J.-F.; Gu, J.-D.; Mu, B.-Z. Analysis of Alkane-Dependent Methanogenic Community Derived from Production Water of a High-Temperature Petroleum Reservoir. Appl. Microbiol. Biotechnol. 2012, 96, 531–542. [Google Scholar] [CrossRef] [PubMed]
- Barragán, V.; Aveiga, I.; Trueba, G. Microbial Community Composition in Petroleum-Contaminated and Uncontaminated Soil from Francisco de Orellana, in the Northern Ecuadorian Amazon. Int. Microbiol. 2008, 11, 121–126. [Google Scholar] [CrossRef]
- Sheng, Y.; Wang, G.; Hao, C.; Xie, Q.; Zhang, Q. Microbial Community Structures in Petroleum Contaminated Soils at an Oil Field, Hebei, China. CLEAN–Soil Air Water 2016, 44, 829–839. [Google Scholar] [CrossRef]
- Borowik, A.; Wyszkowska, J. Remediation of Soil Contaminated with Diesel Oil. J. Elem. 2018, 23, 767–788. [Google Scholar]
- Zhao, X.; Fan, F.; Zhou, H.; Zhang, P.; Zhao, G. Microbial Diversity and Activity of an Aged Soil Contaminated by Polycyclic Aromatic Hydrocarbons. Bioprocess Biosyst. Eng. 2018, 41, 871–883. [Google Scholar] [CrossRef] [PubMed]
- McCready, S.; Slee, D.J.; Birch, G.F.; Taylor, S.E. The Distribution of Polycyclic Aromatic Hydrocarbons in Surficial Sediments of Sydney Harbour, Australia. Mar. Pollut. Bull. 2000, 40, 999–1006. [Google Scholar] [CrossRef]
- Killops, S.D.; Massoud, M.S.; Scott, A.C. Biomarker Characterisation of an Oil and Its Possible Source Rock from Offshore Korea Bay Basin. Appl. Geochem. 1991, 6, 143–157. [Google Scholar] [CrossRef]
- Killops, S.D.; Massoud, M.S. Polycyclic Aromatic Hydrocarbons of Pyrolytic Origin in Ancient Sediments: Evidence for Jurassic Vegetation Fires. Org. Geochem. 1992, 18, 1–7. [Google Scholar] [CrossRef]
- Qiu, Y.-W.; Zhang, G.; Liu, G.-Q.; Guo, L.-L.; Li, X.-D.; Wai, O. Polycyclic Aromatic Hydrocarbons (PAHs) in the Water Column and Sediment Core of Deep Bay, South China. Estuar. Coast. Shelf Sci. 2009, 83, 60–66. [Google Scholar] [CrossRef]
- Molina, M.C.; Bautista, L.F.; Catalá, M.; De Las Heras, M.R.; Martínez-Hidalgo, P.; San-Sebastián, J.; González-Benítez, N. From Laboratory Tests to the Ecoremedial System: The Importance of Microorganisms in the Recovery of PPCPs-Disturbed Ecosystems. Appl. Sci. 2020, 10, 3391. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, S.; Ye, C.; Ou, R.; Zeng, H.; Yu, X.; Feng, M. Sunlight-Activated Periodate Oxidation: A Novel and Versatile Strategy for Highly Efficient Water Decontamination. Chem. Eng. J. 2023, 451, 138642. [Google Scholar] [CrossRef]
- Diao, Z.-H.; Pu, S.-Y.; Qian, W.; Liang, S.; Kong, L.-J.; Xia, D.-H.; Lei, Z.-X.; Du, J.-J.; Liu, H.; Yang, J.-W. Photocatalytic Removal of Phenanthrene and Algae by a Novel Ca-Ag3PO4 Composite under Visible Light: Reactivity and Coexisting Effect. Chemosphere 2019, 221, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Johnston, J.E.; Lim, E.; Roh, H. Impact of Upstream Oil Extraction and Environmental Public Health: A Review of the Evidence. Sci. Total Environ. 2019, 657, 187–199. [Google Scholar] [CrossRef]
- Sebastián, M.S. Informe Yana Curi: Impacto de la Actividad Petrolera en la Salud de Poblaciones Rurales de la Amazonía Ecuatoriana; Icaria Editorial: Barcelona, Spain, 2000; ISBN 978-84-7426-504-0. [Google Scholar]
- Webb, J.; Coomes, O.T.; Mergler, D.; Ross, N.A. Levels of 1-Hydroxypyrene in Urine of People Living in an Oil Producing Region of the Andean Amazon (Ecuador and Peru). Int. Arch. Occup. Environ. Health 2018, 91, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Maurice, L.; López, F.; Becerra, S.; Jamhoury, H.; Le Menach, K.; Dévier, M.-H.; Budzinski, H.; Prunier, J.; Juteau-Martineau, G.; Ochoa-Herrera, V.; et al. Drinking Water Quality in Areas Impacted by Oil Activities in Ecuador: Associated Health Risks and Social Perception of Human Exposure. Sci. Total Environ. 2019, 690, 1203–1217. [Google Scholar] [CrossRef]
Sample ID | River or Location | Latitude (N) | Longitude (E) | Air T (°C) | Water T (°C) | OD (mg L−1) | Soil pH | Conductivity (µS cm−1) |
---|---|---|---|---|---|---|---|---|
1 * | Locatayacu | |||||||
2 | Locatayacu | 0.0181 | −76.9700 | 22.8 | 23.2 | 7.5 | 7.3 | 64.2 |
3 * | Anyiayacu | 0.0299 | −76.9711 | 22.7 | 23.2 | 7.4 | 7.3 | 57.7 |
4 | Itaya | −0.2903 | −76.6401 | 33.1 | 26.7 | 6.2 | 7.2 | 133.7 |
5 | Aguas Blancas | −0.0364 | −76.7920 | - | 23.6 | 6.6 | 7.1 | 36.3 |
6 | Jivino Negro | −0.2558 | −76.8599 | 31.5 | 24.8 | 6.2 | 7.4 | 111.2 |
7 * | Pisurie | 0.0107 | −76.7743 | 25.2 | 23.5 | 5.4 | 6.7 | 17.7 |
8 | Eno | −0.1224 | −76.6497 | 34.0 | 25.3 | 6.5 | 7.1 | 102.5 |
9 | Blanco Chico | −0.3500 | −76.8641 | 28.6 | 24.8 | 7.1 | 7.4 | 88.7 |
10 * | Napo | −0.4805 | −76.8725 | 27.9 | 24.2 | 5.4 | 7.0 | 37.7 |
11 * | Jivino Azul | −0.2058 | −76.8409 | 30.8 | 24.7 | 6.6 | 7.4 | 138.5 |
12 | Pucacachi | −0.6013 | −76.7784 | 28.4 | 24.3 | 6.6 | 6.6 | 15.9 |
13 * | Jandiyacu | −0.0059 | −76.8859 | 27.0 | 23.9 | 7.4 | 7.3 | 48.5 |
14 | Conambo | −0.0820 | −76.9133 | 24.6 | 6.3 | 7.2 | 96.9 | |
15 | Harbent | −0.1804 | −76.8035 | 29.7 | 24.4 | 7.5 | 7.7 | 127.4 |
16 | La Sur | −0.2416 | −76.6133 | 28.7 | 25.3 | 6.5 | 7.0 | 127.9 |
17 | Manduro | −0.5023 | −77.0263 | 26.3 | 23.6 | 5.5 | 6.3 | 15.0 |
18 | Pisuri | −0.0098 | −76.6602 | 25.7 | 22.2 | 7.9 | 7.9 | 66.8 |
19 * | Sacha | −0.2982 | −76.8271 | 33.3 | 25.2 | 6.0 | 7.1 | 92.2 |
20 | Huamayacu | −0.3496 | −76.8983 | 27.6 | 25.7 | 6.9 | 7.6 | 122.2 |
21 | Blanco | −0.2593 | −76.9728 | 28.7 | 24.8 | 4.4 | 6.9 | 49.5 |
22 | Huachito | −0.3765 | −77.0578 | 25.9 | 24.5 | 6.4 | 7.4 | 88.9 |
23 * | Indillana | −0.4916 | −76.7855 | 26.1 | 34.0 | 5.0 | 6.4 | 18.0 |
24 | Blanco Grande | −0.3530 | −76.6113 | 27.9 | 25.3 | 4.9 | 7.2 | 106.2 |
Well Aguarico 4 | Tena province | −0.0633 | −76.6375 |
Sample ID | River or Location | TPH (mg·kg−1) | PAH (mg·kg−1) | Pr/Ph (g·g−1) | Pr/C17 (g·g−1) | Ph/C18 (g·g−1) | Richness (Z) | Shannon (H) | Pollution Risk ** |
---|---|---|---|---|---|---|---|---|---|
1 * | Locatayacu | 70.57 | 31.30 | 247 | 4.69 | 0.00 | |||
2 | Locatayacu | 36.30 | 290.90 | 0.82 | 0.31 | 0.70 | 0.00 | ||
3 * | Anyiayacu | 9.40 | 72.20 | 1.58 | 0.39 | 0.42 | 237 | 4.67 | 0.00 |
4 | Itaya | 27.90 | 10.15 | 8.65 | 1.77 | 0.59 | 0.38 | ||
5 | Aguas Blancas | 188.80 | 52.53 | 0.67 | |||||
6 | Jivino Negro | 29.40 | 21.50 | 5.75 | 0.52 | 0.10 | 0.82 | ||
7 * | Pisurie | 132.30 | 124.70 | 0.17 | 0.28 | 1.36 | 233 | 4.75 | 0.61 |
8 | Eno | 20.40 | 25.70 | 0.71 | |||||
9 | Blanco Chico | 847.40 | 711.10 | 0.86 | |||||
10 * | Napo | 562.30 | 134.07 | 0.65 | 0.36 | 0.66 | 238 | 4.69 | 0.77 |
11 * | Jivino Azul | 91.00 | 202.45 | 0.52 | 0.39 | 0.93 | 216 | 4.57 | 0.55 |
12 | Pucacachi | 26.23 | 44.95 | 1.08 | 0.27 | 0.09 | 0.00 | ||
13 * | Jandiyacu | 195.73 | 223.70 | 0.46 | 0.41 | 1.22 | 281 | 4.87 | 0.00 |
14 | Conambo | 24.40 | 17.55 | 0.28 | |||||
15 | Harbent | 74.33 | 22.35 | 0.26 | |||||
16 | La Sur | 144.87 | 55.65 | 0.32 | 0.59 | 1.97 | 0.37 | ||
17 | Manduro | 70.20 | 62.65 | 0.28 | |||||
18 | Pisuri | 183.87 | 90.47 | 0.49 | 0.17 | 0.55 | 0.38 | ||
19 * | Sacha | 44.63 | 41.30 | 0.27 | 0.59 | 1.53 | 246 | 4.60 | 0.34 |
20 | Huamayacu | 100.60 | 35.80 | 0.70 | |||||
21 | Blanco | 62.13 | 30.90 | 0.43 | |||||
22 | Huachito | 32.70 | 119.10 | 0.43 | |||||
23 * | Indillana | 431.13 | 469.80 | 0.62 | 1.34 | 1.76 | 243 | 4.96 | 0.67 |
24 | Blanco Grande | 34.60 | 97.70 | 1.35 | 0.61 | 0.67 | 0.57 | ||
Well Aguarico 4 | Tena province | 0.08 | 0.01 | 0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corral-García, L.S.; Molina, M.C.; Bautista, L.F.; Simarro, R.; Espinosa, C.I.; Gorines-Cordero, G.; González-Benítez, N. Bacterial Diversity in Old Hydrocarbon Polluted Sediments of Ecuadorian Amazon River Basins. Toxics 2024, 12, 119. https://doi.org/10.3390/toxics12020119
Corral-García LS, Molina MC, Bautista LF, Simarro R, Espinosa CI, Gorines-Cordero G, González-Benítez N. Bacterial Diversity in Old Hydrocarbon Polluted Sediments of Ecuadorian Amazon River Basins. Toxics. 2024; 12(2):119. https://doi.org/10.3390/toxics12020119
Chicago/Turabian StyleCorral-García, Lara S., María Carmen Molina, Luis Fernando Bautista, Raquel Simarro, Carlos Iván Espinosa, Guillermo Gorines-Cordero, and Natalia González-Benítez. 2024. "Bacterial Diversity in Old Hydrocarbon Polluted Sediments of Ecuadorian Amazon River Basins" Toxics 12, no. 2: 119. https://doi.org/10.3390/toxics12020119
APA StyleCorral-García, L. S., Molina, M. C., Bautista, L. F., Simarro, R., Espinosa, C. I., Gorines-Cordero, G., & González-Benítez, N. (2024). Bacterial Diversity in Old Hydrocarbon Polluted Sediments of Ecuadorian Amazon River Basins. Toxics, 12(2), 119. https://doi.org/10.3390/toxics12020119