Ambient Air Pollution and Vision Disorder: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Quality Assessment
2.4. Data Extraction
2.5. Statistical Analysis
3. Result
3.1. Study Results
3.2. Study Characteristics
3.3. The Association between Environmental Air Pollutants Exposure and Vision Disorder
3.4. Subgroup Analyses
3.5. Sensitivity Analysis and Publication Bias
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eckert, K.A.; Carter, M.J.; Lansingh, V.C.; Wilson, D.A.; Furtado, J.M.; Frick, K.D.; Resnikoff, S. A Simple Method for Estimating the Economic Cost of Productivity Loss Due to Blindness and Moderate to Severe Visual Impairment. Ophthalmic Epidemiol. 2015, 22, 349–355. [Google Scholar] [CrossRef]
- Dale, N.; Sakkalou, E.; O’Reilly, M.; Springall, C.; De Haan, M.; Salt, A. Functional vision and cognition in infants with congenital disorders of the peripheral visual system. Dev. Med. Child Neurol. 2017, 59, 725–731. [Google Scholar] [CrossRef] [PubMed]
- Chua, S.; Khawaja, A.P.; Morgan, J.; Strouthidis, N.; Reisman, C.; Dick, A.D.; Khaw, P.T.; Patel, P.J.; Foster, P.J.; Atan, D.; et al. The Relationship Between Ambient Atmospheric Fine Particulate Matter (PM2.5) and Glaucoma in a Large Community Cohort. Investig. Ophthalmol. Vis. Sci. 2019, 60, 4915–4923. [Google Scholar] [CrossRef] [PubMed]
- Asbell, P.A.; Dualan, L.; Mindel, J.; Brocks, D.; Ahmad, M.; Epstein, S. Age-related cataract. Lancet 2005, 365, 599–609. [Google Scholar] [CrossRef]
- Chang, K.H.; Hsu, P.Y.; Lin, C.J.; Lin, C.L.; Juo, S.; Liang, C.L. Traffic-related air pollutants increase the risk for age-related macular degeneration. J. Investig. Med. 2019, 67, 1076–1081. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef]
- World Health Organization. Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Wei, C.C.; Lin, H.J.; Lim, Y.P.; Chen, C.S.; Chang, C.Y.; Lin, C.J.; Chen, J.; Tien, P.T.; Lin, C.L.; Wan, L. PM2.5 and NOx exposure promote myopia: Clinical evidence and experimental proof. Environ. Pollut. 2019, 254, 113031. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.H.; Park, S.J.; Paik, H.J.; Kim, M.K.; Wee, W.R.; Kim, D.H. Unexpected potential protective associations between outdoor air pollution and cataracts. Environ. Sci. Pollut. Res. 2018, 25, 10636–10643. [Google Scholar] [CrossRef] [PubMed]
- Nita, M.; Grzybowski, A. The Role of the Reactive Oxygen Species and Oxidative Stress in the Pathomechanism of the Age-Related Ocular Diseases and Other Pathologies of the Anterior and Posterior Eye Segments in Adults. Oxid. Med. Cell. Longev. 2016, 2016, 3164734. [Google Scholar] [CrossRef]
- Chua, S.; Warwick, A.; Peto, T.; Balaskas, K.; Moore, A.T.; Reisman, C.; Desai, P.; Lotery, A.J.; Dhillon, B.; Khaw, P.T.; et al. Association of ambient air pollution with age-related macular degeneration and retinal thickness in UK Biobank. Br. J. Ophthalmol. 2022, 106, 705–711. [Google Scholar] [CrossRef]
- Chen, L.; Wei, J.; Ma, T.; Gao, D.; Wang, X.J.; Wen, B.; Chen, M.M.; Li, Y.H.; Jiang, J.; Wu, L.J. Ambient gaseous pollutant exposure and incidence of visual impairment among children and adolescents: Findings from a longitudinal, two-center cohort study in China. Environ. Sci. Pollut. Res. 2022, 29, 73262–73270. [Google Scholar] [CrossRef]
- Nam, G.E.; Han, K.; Ha, S.G.; Han, B.D.; Kim, D.H.; Kim, Y.H.; Cho, K.H.; Park, Y.G.; Ko, B.J. Relationship between socioeconomic and lifestyle factors and cataracts in Koreans: The Korea National Health and Nutrition Examination Survey 2008–2011. Eye 2015, 29, 913–920. [Google Scholar] [CrossRef]
- Shin, J.; Han, S.H.; Choi, J. Exposure to Ambient Air Pollution and Cognitive Impairment in Community-Dwelling Older Adults: The Korean Frailty and Aging Cohort Study. Int. J. Environ. Res. Public Health 2019, 16, 3767. [Google Scholar] [CrossRef]
- Fan, S.J.; Heinrich, J.; Bloom, M.S.; Zhao, T.Y.; Shi, T.X.; Feng, W.R.; Sun, Y.; Shen, J.C.; Yang, Z.C.; Yang, B.Y.; et al. Ambient air pollution and depression: A systematic review with meta-analysis up to 2019. Sci. Total Environ. 2020, 701, 134721. [Google Scholar] [CrossRef]
- Deji, Z.M.; Liu, P.; Wang, X.; Zhang, X.; Luo, Y.H.; Huang, Z.Z. Association between maternal exposure to perfluoroalkyl and polyfluoroalkyl substances and risks of adverse pregnancy outcomes: A systematic review and meta-analysis. Sci. Total Environ. 2021, 783, 146984. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Qian, Z.; Howard, S.W.; Vaughn, M.G.; Fan, S.; Liu, K.; Dong, G. Global association between ambient air pollution and blood pressure: A systematic review and meta-analysis. Environ. Pollut. 2018, 235, 576–588. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.J.; Wang, S.S.; Fang, Y.; Zhang, X.J.; Hu, C.Y. Ambient air pollution exposure and risk of chronic kidney disease: A systematic review of the literature and meta-analysis. Environ. Res. 2021, 195, 110867. [Google Scholar] [CrossRef] [PubMed]
- Grant, A.; Leung, G.; Aubin, M.J.; Kergoat, M.J.; Li, G.; Freeman, E.E. Fine Particulate Matter and Age-Related Eye Disease: The Canadian Longitudinal Study on Aging. Investig. Ophthalmol. Vis. Sci. 2021, 62, 7. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.; Lee, H.; Kim, H. Association between Exposure to Ambient Air Pollution and Age-Related Cataract: A Nationwide Population-Based Retrospective Cohort Study. Int. J. Environ. Res. Public Health 2020, 17, 9231. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Luo, C.; Chiang, Y.; Li, K.Y.Y.; Ho, Y.; Lee, S.; Chen, W.; Chen, C.; Kuan, Y. Association Between PM2.5 Exposure Level and Primary Open-Angle Glaucoma in Taiwanese Adults: A Nested Case–control Study. Int. J. Environ. Res. Public Health 2021, 18, 1714. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.Y.; Guo, Y.M.; Zou, Z.Y.; Gui, Z.H.; Bao, W.W.; Hu, L.W.; Chen, G.B.; Jing, J.; Ma, J.; Li, S.S.; et al. Exposure to ambient air pollution and visual impairment in children: A nationwide cross-sectional study in China. J. Hazard. Mater. 2021, 407, 124750. [Google Scholar] [CrossRef]
- Yang, X.; Yang, Z.; Liu, Y.; Chen, X.; Yao, B.; Liang, F.; Shan, A.; Liu, F.; Chen, S.; Yan, X. The association between long-term exposure to ambient fine particulate matter and glaucoma: A nation-wide epidemiological study among Chinese adults. Int. J. Hyg. Environ. Health 2021, 238, 113858. [Google Scholar] [CrossRef]
- Ju, M.J.; Kim, J.; Park, S.K.; Kim, D.H.; Choi, Y. Long-term exposure to ambient air pollutants and age-related macular degeneration in middle-aged and older adults. Environ. Res. 2022, 204, 111953. [Google Scholar] [CrossRef]
- Li, L.; Zhu, Y.; Han, B.; Chen, R.; Man, X.; Sun, X.; Kan, H.; Lei, Y. Acute exposure to air pollutants increase the risk of acute glaucoma. BMC Public Health 2022, 22, 1782. [Google Scholar] [CrossRef]
- Sterne, J.; Gavaghan, D.; Egger, M. Publication and related bias in meta-analysis: Power of statistical tests and prevalence in the literature. J. Clin. Epidemiol. 2000, 53, 1119–1129. [Google Scholar] [CrossRef]
- Grant, A.; Leung, G.; Freeman, E.E. Ambient Air Pollution and Age-Related Eye Disease: A Systematic Review and Meta-Analysis. Investig. Ophthalmol. Vis. Sci. 2022, 63, 17. [Google Scholar] [CrossRef]
- Cui, Y.H.; Hu, Z.X.; Gao, Z.X.; Song, X.L.; Feng, Q.Y.; Yang, G.; Li, Z.J.; Pan, H.W. Airborne particulate matter impairs corneal epithelial cells migration via disturbing FAK/RhoA signaling pathway and cytoskeleton organization. Nanotoxicology 2018, 12, 312–324. [Google Scholar] [CrossRef] [PubMed]
- West, S.K.; Bates, M.N.; Lee, J.S.; Schaumberg, D.A.; Lee, D.J.; Adair-Rohani, H.; Chen, D.F.; Araj, H. Is Household Air Pollution a Risk Factor for Eye Disease? Int. J. Environ. Res. Public Health 2013, 10, 5378–5398. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.H.; Choi, Y.H.; Paik, H.J.; Wee, W.R.; Kim, M.K.; Kim, D.H. Potential Importance of Ozone in the Association Between Outdoor Air Pollution and Dry Eye Disease in South Korea. JAMA Ophthalmol. 2016, 134, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Phaniendra, A.; Jestadi, D.B.; Periyasamy, L. Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Indian J. Clin. Biochem. 2015, 30, 11–26. [Google Scholar] [CrossRef]
- Khreis, H.; Bredell, C.; Wai Fung, K.; Hong, L.; Szybka, M.; Phillips, V.; Abbas, A.; Lim, Y.; Jovanovic Andersen, Z.; Woodcock, J.; et al. Impact of long-term air pollution exposure on incidence of neurodegenerative diseases: A protocol for a systematic review and exposure-response meta-analysis. Environ. Int. 2022, 170, 107596. [Google Scholar] [CrossRef]
- Okamoto, Y.; Akagi, T.; Suda, K.; Kameda, T.; Miyake, M.; Ikeda, H.O.; Nakano, E.; Uji, A.; Tsujikawa, A. Longitudinal changes in superficial microvasculature in glaucomatous retinal nerve fiber layer defects after disc hemorrhage. Sci. Rep. 2020, 10, 22058. [Google Scholar] [CrossRef]
- Deflorio-Barker, S.; Zelasky, S.; Park, K.; Lobdell, D.T.; Stone, S.L.; Rappazzo, K.M. Are the adverse health effects of air pollution modified among active children and adolescents? A review of the literature. Prev. Med. 2022, 164, 107306. [Google Scholar] [CrossRef]
- Clougherty, J.E. A Growing Role for Gender Analysis in Air Pollution Epidemiology. Environ. Health Perspect. 2010, 118, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.Q.; Wang, S.Q.; Zhang, H.; Guo, Y.; Lou, Y.L.; Huang, S.; You, Q.Q.; Cao, S.Y. The Association Between Solid Fuel Use and Visual Impairment Among Middle-Aged and Older Chinese Adults: Nationwide Population-Based Cohort Study. JMIR Public Health Surveill. 2023, 9, e43914. [Google Scholar] [CrossRef] [PubMed]
- Ravilla, T.D.; Gupta, S.; Ravindran, R.D.; Vashist, P.; Krishnan, T.; Maraini, G.; Chakravarthy, U.; Fletcher, A.E. Use of Cooking Fuels and Cataract in a Population-Based Study: The India Eye Disease Study. Environ. Health Perspect. 2016, 124, 1857–1862. [Google Scholar] [CrossRef] [PubMed]
- Beebe, D.C.; Holekamp, N.M.; Shui, Y.B. Oxidative Damage and the Prevention of Age-Related Cataracts. Ophthalmic Res. 2010, 44, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Torricelli, A.; Novaes, P.; Matsuda, M.; Alves, M.R.; Monteiro, M. Ocular surface adverse effects of ambient levels of air pollution. Arq. Bras. Oftalmol. 2011, 74, 377–381. [Google Scholar] [CrossRef]
Study | Location | Data Period | Design | Sample Size | Age | Exposure Pollutant(s) | Statistical Model | Outcome Type | Quality |
---|---|---|---|---|---|---|---|---|---|
Choi et al., 2018 [10] | Republic of Korea | 2006–2012 | Cross-sectional study | 18,622 | 40+ | O3, NO2, SO2, PM10 | Multiple logistic regression analyses | Cataract | 17/20 |
Chua et al., 2019 [3] | United Kingdom | 2006–2010 | Cross-sectional study | 111,370 | 40–69 | PM2.5 | Multiple logistic regression analyses | Glaucoma | 18/20 |
Chang et al., 2019 [5] | China-Taiwan | 2000–2010 | Longitudinal population-based study | 39,819 | 50+ | NO2, CO | Multiple Cox proportional hazards regression | AMD | 6/9 |
Shin et al., 2020 [21] | Republic of Korea | 2002–2015 | Longitudinal population-based study | 115,728 | 50+ | PM2.5, PM10, NO2, CO, SO2, O3 | Multiple Cox proportional hazards regression | Cataract | 9/9 |
Yang et al., 2021 [23] | China | 2010–2013 | Cross-sectional study | 61,995 | 6–18 | PM1, PM2.5, PM10, NO2 | SAS PROC SURVEYLOGISTIC, SAS PROC SURVEYREG | Visual impairment | 16/20 |
Grant et al., 2021 [20] | Canada | 2011–2015 | Cross-sectional population-based study | 30,097 | 45–85 | PM2.5, O3, SO2, NO2 | Multiple logistic regression analyses | AMD, Cataract, Glaucoma, Visual impairment | 19/20 |
Sun et al., 2021 [22] | China-Taiwan | 2008–2013 | Nested case–control study | 3225 | 65+ | PM2.5 | Multiple logistic regression analyses | Glaucoma | 6/9 |
Yang et al., 2021 [24] | China | 2000–2016 | Cross-sectional study | 33,701 | 40+ | PM2.5 | Multiple logistic regression analyses | Glaucoma | 16/20 |
Chen et al., 2022 [13] | China | 2005–2018 | Longitudinal, two-center cohort study | 340,313 | SD: 11.30 (±2.64) | SO2, CO | Multiple Cox proportional hazards regression | Visual impairment | 8/9 |
Li et al., 2022 [26] | China | 2015–2021 | Case-crossover study | 14,385 | SD: 56.79 (±15.33) | PM2.5, PM10, NO2, CO | Conditional logistic regression model | Glaucoma | 7/9 |
Chua et al., 2022 [12] | United Kingdom | 2006–2010 | Cross-sectional study | 115,954 | 40–69 | PM2.5, PM10, NO2 | Multiple logistic regression analyses | AMD | 17/20 |
Ju et al., 2022 [25] | Republic of Korea | 2008–2012 | Cross-sectional study | 15,115 | 40+ | NO2, CO, O3 | Survey-logistic regression models | AMD | 16/20 |
Air Pollutant | Author (Year) | Outcome Type | Incremental Scale | Original OR/HR | Transformed OR |
---|---|---|---|---|---|
PM10 | Choi et al. (2018) [10] | Cataract | 5 µg/m3 | OR: 0.91 (95% CI, 0.78–1.07) | OR: 0.83 (95% CI, 0.61–1.14) |
Shin et al. (2020) [21] | Cataract | IQR: 9.1 µg/m3 | HR: 1.069 (95% CI, 1.025–1.115) | OR: 1.076 (95% CI, 1.028–1.127) | |
Yang et al. (2021) [23] | Visual impairment | IQR: 16.11 µg/m3 | OR: 1.142 (95% CI, 1.019–1.281) | OR: 1.086 (95% CI, 1.012–1.166) | |
Li et al. (2022) [26] | Glaucoma | IQR: 35 µg/m3 | OR: 1.03 (95% CI, 1.01–1.05) | OR: 1.01 (95% CI, 1.00–1.01) | |
Chua et al. (2022) [12] | AMD | IQR: 2.67 µg/m3 | OR: 0.94 (95% CI, 0.86–1.02) | OR: 0.79 (95% CI, 0.57–1.08) | |
Ju et al. (2022) [25] | AMD | IQR: 8 µg/m3 | OR: 1.13 (95% CI, 0.99–1.34) | OR: 1.17 (95% CI, 0.99–1.44) | |
PM2.5 | Chua et al. (2019) [3] | Glaucoma | IQR: 1.12 µg/m3 | OR: 1.06 (95% CI, 1.01–1.12) | OR: 1.68 (95% CI, 1.09–2.75) |
Shin et al. (2020) [21] | Cataract | IQR: 7.0 µg/m3 | HR: 0.905 (95% CI, 0.772–1.062) | OR: 0.905 (95% CI, 0.867–1.090) | |
Yang et al. (2021) [23] | Visual impairment | 14.79 µg/m3 | OR: 1.267 (95% CI, 1.082–1.484) | OR: 1.174 (95% CI, 1.055–1.306) | |
Grant et al. (2021) [20] | Glaucoma | IQR: 2.9 µg/m3 | OR: 1.24 (95% CI, 1.05–1.46) | OR: 2.10 (95% CI, 1.18–3.69) | |
Grant et al. (2021) [20] | AMD (with visual impairment) | IQR: 2.9 µg/m3 | OR: 1.41 (95% CI, 0.96–2.08) | OR:3.27 (95% CI, 0.87–12.49) | |
Grant et al. (2021) [20] | Cataract | IQR: 2.9 µg/m3 | OR: 0.98 (95% CI, 0.90–1.07) | OR: 0.93 (95% CI, 0.70–1.26 | |
Sun et al. (2021) [22] | Glaucoma | 10 µg/m3 | OR: 1.19 (95% CI, 1.05–1.36) | OR: 1.19 (95% CI, 1.05–1.36) | |
Yang et al. (2021) [24] | Glaucoma | 10 µg/m3 | OR: 1.07 (95% CI, 1.00–1.15) | OR: 1.07 (95% CI, 1.00–1.15) | |
Li et al. (2022) [26] | Glaucoma | IQR: 26 µg/m3 | OR: 1.07 (95% CI, 1.03–1.11) | OR: 1.03(95% CI, 1.01–1.04) | |
Chua et al. (2022) [12] | AMD | IQR: 1.07 µg/m3 | OR: 1.08 (95% CI, 1.01–1.16) | OR: 2.05(95% CI, 1.10–4.00) | |
PM1 | Yang et al. (2021) [23] | Visual impairment | 10.24 µg/m3 | OR: 1.133 (95% CI, 1.035–1.240) | OR: 1.130 (95% CI, 1.034–1.234) |
Air Pollutant | Author (Year) | Outcome Type | Incremental Scale | Original OR/HR | Transformed OR |
---|---|---|---|---|---|
SO2 | Choi et al. (2018) [10] | Cataract | 0.003 ppm | OR: 0.90 (95% CI, 0.62–1.30) | OR: 0.88 (95% CI, 0.56–1.37) |
Shin et al. (2020) [21] | Cataract | IQR: 0.7 ppb | HR: 1.027 (95% CI, 0.984–1.073) | OR: 1.147 (95% CI, 0.920–1.439) | |
Chen et al. (2022) [13] | Visual impairment | IQR: 16.16 µg/m3 | RR: 2.26 (95% CI, 2.22–2.29) | OR: 1.66 (95% CI, 1.64–1.67) | |
Ju et al. (2022) [25] | AMD | IOR: 1 ppb | OR: 0.99 (95% CI, 0.92–1.06) | OR: 0.96 (95% CI, 0.74–1.23) | |
NO2 | Choi et al. (2018) [10] | Cataract | 0.003 ppm | OR: 0.93 (95% CI, 0.85–1.02) | OR: 0.92 (95% CI, 0.82–1.02) |
Chang et al. (2019) [5] | AMD | IQR: 9825.5 ppb | HR: 1.91 (95% CI, 1.64–2.23) | OR: 1.00 (95% CI, 1.00–1.00) | |
Shin et al. (2020) [21] | Cataract | IQR: 2.1 ppb | HR: 1.080 (95% CI, 1.030–1.133) | OR: 1.205 (95% CI, 1.074–1.354) | |
Yang et al. (2021) [23] | Visual impairment | 9.78 µg/m3 | OR: 1.276 (95% CI, 1.173–1.388) | OR: 1.283 (95% CI, 1.177–1.398) | |
Li et al. (2022) [26] | Glaucoma | IQR: 27 µg/m3 | OR: 1.12 (95% CI, 1.08–1.17) | OR: 1.04 (95% CI, 1.03–1.06) | |
Chua et al. (2022) [12] | Glaucoma | 10 µg/m3 | OR: 0.99 (95% CI, 0.91–1.08) | OR: 0.99 (95% CI, 0.91–1.08) | |
Ju et al. (2022) [25] | AMD | IQR: 12 ppb | OR:1.24 (95% CI, 1.05–1.46) | OR: 1.09 (95% CI, 1.01–1.17) | |
O3 | Choi et al. (2018) [10] | Cataract | 0.003 ppm | OR: 0.80 (95% CI, 0.69–0.93) | OR: 0.71 (95% CI, 0.56–0.89) |
Shin et al. (2020) [21] | Cataract | IQR: 5.4 ppb | HR: 0.931 (95% CI, 0.888–0.977) | OR: 0.940 (95% CI, 0.902–0.980) | |
Ju et al. (2022) [25] | AMD | IQR: 5 ppb | OR: 0.80 (95% CI, 0.70–0.92) | OR: 0.81 (95% CI, 0.72–0.93) | |
CO | Chang et al. (2019) [5] | AMD | IQR: 297.1 ppm | HR: 1.84 (95% CI, 1.57–2.15) | OR: 1.00 (95% CI, 1.00–1.00) |
Shin et al. (2020) [21] | Cataract | 11 ppm | HR: 0.991 (95% CI, 0.949–1.035) | OR: 0.999 (95% CI, 0.999–1.000) | |
Chen et al. (2022) [13] | Visual impairment | 1.28 mg/m3 | RR: 2.30 (95% CI, 2.26–2.35) | OR: 1.01 (95% CI, 1.01–1.01) | |
Li et al. (2022) [26] | Glaucoma | IQR: 0.5 mg/m3 | OR: 1.04 (95% CI, 1.01–1.07) | OR: 1.00 (95% CI, 1.00–1.00) | |
Ju et al. (2022) [25] | AMD | IQR: 100 ppb | OR: 1.22 (95% CI, 1.09–1.38) | OR: 1.02 (95% CI, 1.01–1.03) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Z.; Zhao, C.; Li, Y.; Xiao, M.; Yang, Y.; Zhao, Y.; Liu, C.; Liu, J.; Li, P. Ambient Air Pollution and Vision Disorder: A Systematic Review and Meta-Analysis. Toxics 2024, 12, 209. https://doi.org/10.3390/toxics12030209
Han Z, Zhao C, Li Y, Xiao M, Yang Y, Zhao Y, Liu C, Liu J, Li P. Ambient Air Pollution and Vision Disorder: A Systematic Review and Meta-Analysis. Toxics. 2024; 12(3):209. https://doi.org/10.3390/toxics12030209
Chicago/Turabian StyleHan, Zhuo, Chao Zhao, Yuhua Li, Meng Xiao, Yuewei Yang, Yizhuo Zhao, Chunyu Liu, Juan Liu, and Penghui Li. 2024. "Ambient Air Pollution and Vision Disorder: A Systematic Review and Meta-Analysis" Toxics 12, no. 3: 209. https://doi.org/10.3390/toxics12030209
APA StyleHan, Z., Zhao, C., Li, Y., Xiao, M., Yang, Y., Zhao, Y., Liu, C., Liu, J., & Li, P. (2024). Ambient Air Pollution and Vision Disorder: A Systematic Review and Meta-Analysis. Toxics, 12(3), 209. https://doi.org/10.3390/toxics12030209