A Cross-Sectional Analysis Investigating Pregnant Women’s Renal Function and Its Association with Lead and Cadmium Exposures—The DSAN Birth Cohort Study in Recôncavo Baiano, Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Design
2.2. Sociodemographic Data
2.3. Metal Exposure Assessment
2.4. Kidney Function Assessment
- CKD-EPI [32]
- CKiD
2.5. Data Analysis
3. Results
3.1. Sociodemographic Data, Lifestyle, and General Exposures to Toxic Metals
3.2. General Exposures to Pb and Cd
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheung, K.; Lafayette, R.A. Renal physiology of pregnancy. Adv. Chronic Kidney Dis. 2013, 20, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Kovesdy, C.P. Epidemiology of chronic kidney disease: An update 2022. Kidney Int. Suppl. 2022, 12, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Luyckx, V.A.; Tonelli, M.; Stanifer, J.W. The global burden of kidney disease and the sustainable development goals. Bull. World Health Organ. 2018, 96, 414–422C. [Google Scholar] [CrossRef] [PubMed]
- Lentini, P.; Zanoli, L.; Granata, A.; Signorelli, S.S.; Castellino, P.; Dell'Aquila, R. Kidney and heavy metals—The role of environmental exposure. Mol. Med. Rep. 2017, 15, 3413–3419. [Google Scholar] [CrossRef] [PubMed]
- Matović, V.; Buha, A.; Ðukić-Ćosić, D.; Bulat, Z. Insight into the oxidative stress induced by lead and/or cadmium in blood, liver and kidneys. Food Chem. Toxicol. 2015, 78, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Satarug, S.; Vesey, D.A.; Nishijo, M.; Ruangyuttikarn, W.; Gobe, G.C. The inverse association of glomerular function and urinary β2-MG excretion and its implications for cadmium health risk assessment. Environ. Res. 2019, 173, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef]
- Bernard, A. Cadmium & its adverse effects on human health. Indian J. Med. Res. 2008, 128, 557–564. [Google Scholar]
- Harari, F.; Sallsten, G.; Christensson, A.; Petkovic, M.; Hedblad, B.; Forsgard, N.; Melander, O.; Nilsson, P.M.; Borné, Y.; Engström, G.; et al. Blood Lead Levels and Decreased Kidney Function in a Population-Based Cohort. Am. J. Kidney Dis. 2018, 72, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Agampodi, S.B.; Agampodi, T.C.; Amarasinghe, G.S.; Warnasekara, J.N.; Hettiarachchi, A.U.; Jayasinghe, I.U.; Koralegedara, I.S.; Abeyrathna, P.; Srimantha, S.; de Silva, F.N.; et al. Serum creatinine and estimated glomerular filtration rate (eGFR) in early pregnancy and changes during the pregnancy. PLoS Glob. Public Health 2023, 3, e0000443. [Google Scholar] [CrossRef]
- van Balen, V.A.L.; Gansewinkel, T.A.G.; Haas, S.; Spaan, J.J.; Ghossein-Doha, C.; Kuijk, S.M.J.; Drongelen, J.; Cornelis, T.; Spaanderman, M.E.A. Maternal kidney function during pregnancy: Systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2018, 54, 297–307. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, K.; Han, T.; Zhang, P.; Chen, X.; Wu, W.; Feng, Y.; Yang, H.; Li, M.; Xie, B.; et al. Exposure to multiple metals and prevalence for preeclampsia in Taiyuan, China. Environ. Int. 2020, 145, 106098. [Google Scholar] [CrossRef]
- Li, X.; Yu, T.; Zhai, M.; Wu, Y.; Zhao, B.; Duan, C.; Cheng, H.; Li, H.; Wei, Z.; Yang, Y.; et al. Maternal cadmium exposure impairs placental angiogenesis in preeclampsia through disturbing thyroid hormone receptor signaling. Ecotoxicol. Environ. Saf. 2022, 244, 114055. [Google Scholar] [CrossRef]
- Kim, N.H.; Hyun, Y.Y.; Lee, K.-B.; Chang, Y.; Rhu, S.; Oh, K.-H.; Ahn, C. Environmental Heavy Metal Exposure and Chronic Kidney Disease in the General Population. J. Korean Med. Sci. 2015, 30, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Politis, M.D.; Yao, M.; Gennings, C.; Tamayo-Ortiz, M.; Valvi, D.; Kim-Schulze, S.; Qi, J.; Amarasiriwardena, C.; Pantic, I.; Tolentino, M.C.; et al. Prenatal Metal Exposures and Associations with Kidney Injury Biomarkers in Children. Toxics 2022, 10, 692. [Google Scholar] [CrossRef] [PubMed]
- Kort, S.A.R.; Wickliffe, J.; Shankar, A.; Shafer, M.; Hindori-Mohangoo, A.D.; Covert, H.H.; Lichtveld, M.; Zijlmans, W. The Association between Mercury and Lead Exposure and Liver and Kidney Function in Pregnant Surinamese Women Enrolled in the Caribbean Consortium for Research in Environmental and Occupational Health (CCREOH) Environmental Epidemiologic Cohort Study. Toxics 2022, 10, 584. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.-I.; Cardenas, A.; Rifas-Shiman, S.L.; Zota, A.R.; Hivert, M.-F.; Aris, I.M.; Sanders, A.P. Non-essential and essential trace element mixtures and kidney function in early pregnancy—A cross-sectional analysis in project viva. Environ. Res. 2023, 216, 114846. [Google Scholar] [CrossRef] [PubMed]
- Wibowo, A.; Rahaju, F.A.; Firdaus, R.T.; Suhartono, E. The Role of Urinary Cadmium and Lead Level on Pregnant Women Renal Function. J. Med. Bioeng. 2014, 3, 55–58. [Google Scholar] [CrossRef]
- Ekong, E.; Jaar, B.; Weaver, V. Lead-related nephrotoxicity: A review of the epidemiologic evidence. Kidney Int. 2006, 70, 2074–2084. [Google Scholar] [CrossRef] [PubMed]
- Bulka, C.M.; Bommarito, P.A.; Fry, R.C. Predictors of toxic metal exposures among US women of reproductive age. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 597–612. [Google Scholar] [CrossRef]
- Pirkle, J.L. The decline in blood lead levels in the United States. The National Health and Nutrition Examination Surveys (NHANES). JAMA 1994, 272, 284–291. [Google Scholar] [CrossRef]
- Tsaih, S.-W.; Korrick, S.; Schwartz, J.; Amarasiriwardena, C.; Aro, A.; Sparrow, D.; Hu, H. Lead, Diabetes, Hypertension, and Renal Function: The Normative Aging Study. Environ. Health Perspect. 2004, 112, 1178–1182. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.C.; Urbano, M.R.; Lopes, A.C.B.A.; Carvalho, M.d.F.H.; Buzzo, M.L.; Docea, A.O.; Mesas, A.E.; Aschner, M.; Silva, A.M.R.; Silbergeld, E.K.; et al. Blood cadmium levels and sources of exposure in an adult urban population in southern Brazil. Environ. Res. 2020, 187, 109618. [Google Scholar] [CrossRef] [PubMed]
- Bah, H.A.F.; Bandeira, M.J.; Gomes-Junior, E.A.; Anjos, A.L.S.; Rodrigues, Y.J.M.; dos Santos, N.R.; Martinez, V.O.; Rocha, R.B.M.A.; Costa, R.G.; Adorno, E.V.; et al. Environmental exposure to lead and hematological parameters in Afro-Brazilian children living near artisanal glazed pottery workshops. J. Environ. Sci. Health Part A 2020, 55, 964–974. [Google Scholar] [CrossRef] [PubMed]
- Bah, H.A.F.; Martinez, V.O.; dos Santos, N.R.; Junior, E.A.G.; Costa, D.O.; Pires, E.M.; Santana, J.V.A.; Cerqueira, F.d.S.; Menezes-Filho, J.A. Determinants of Exposure to Potentially Toxic Metals in Pregnant Women of the DSAN-12M Cohort in the Recôncavo Baiano, Brazil. Int. J. Environ. Res. Public Health 2023, 20, 2949. [Google Scholar] [CrossRef] [PubMed]
- Barros-Barrios, O.; De La Guajira, U.; Doria-Argumedo, C.; Marrugo-Negrete, J.; De Córdoba, U. Metales pesados (Pb, Cd, Ni, Zn, Hg) en tejidos de Lutjanus synagris yLutjanus vivanus de la Costa de La Guajira, Norte de Colombia. Veter- y Zootec. 2016, 10, 27–41. [Google Scholar] [CrossRef]
- Navarrete-Forero, G.; Baren, L.M.; Dominguez-Granda, L.; Cevallos, J.P.; Jarrín, J.R.M. Heavy Metals Contamination in the Gulf of Guayaquil: Even Limited Data Reflects Environmental Impacts from Anthropogenic Activity. Rev. Int. De Contam. Ambient. 2019, 35, 731–755. [Google Scholar] [CrossRef]
- Bah, H.A.F.; dos Santos, N.R.; Junior, E.A.G.; Costa, D.O.; Martinez, V.O.; Pires, E.M.; Santana, J.V.A.; Cerqueira, F.d.S.; Menezes-Filho, J.A. Maternal Exposure to Potentially Toxic Metals and Birth Weight: Preliminary Results from the DSAN-12M Birth Cohort in the Recôncavo Baiano, Brazil. Int. J. Environ. Res. Public Health 2023, 20, 6211. [Google Scholar] [CrossRef] [PubMed]
- Menezes-Filho, J.A.; Viana, G.F.d.S.; Paes, C.R. Determinants of lead exposure in children on the outskirts of Salvador, Brazil. Environ. Monit. Assess. 2011, 184, 2593–2603. [Google Scholar] [CrossRef] [PubMed]
- Kummrow, F.; Silva, F.F.; Kuno, R.; Souza, A.L.; Oliveira, P.V. Biomonitoring method for the simultaneous determination of cadmium and lead in whole blood by electrothermal atomic absorption spectrometry for assessment of environmental exposure. Talanta 2008, 75, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Barreto, S.M.; Ladeira, R.M.; Duncan, B.B.; Schmidt, M.I.; Lopes, A.A.; Benseñor, I.M.; Chor, D.; Griep, R.H.; Vidigal, P.G.; Ribeiro, A.L.; et al. Chronic kidney disease among adult participants of the ELSA-Brasil cohort: Association with race and socioeconomic position. J. Epidemiol. Community Health 2015, 70, 380–389. [Google Scholar] [CrossRef]
- Inker, L.A.; Eneanya, N.D.; Coresh, J.; Tighiouart, H.; Wang, D.; Sang, Y.; Crews, D.C.; Doria, A.; Estrella, M.M.; Froissart, M.; et al. New Creatinine- and Cystatin C–Based Equations to Estimate GFR without Race. N. Engl. J. Med. 2021, 385, 1737–1749. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Lee, S.-J. Association of Blood Heavy Metal Levels and Renal Function in Korean Adults. Int. J. Environ. Res. Public Health 2022, 19, 6646. [Google Scholar] [CrossRef] [PubMed]
- Pollack, A.Z.; Mumford, S.L.; Mendola, P.; Perkins, N.J.; Rotman, Y.; Wactawski-Wende, J.; Schisterman, E.F. Kidney biomarkers associated with blood lead, mercury, and cadmium in premenopausal women: A prospective cohort study. J. Toxicol. Environ. Health Part A 2014, 78, 119–131. [Google Scholar] [CrossRef] [PubMed]
- Ruckart, P.Z.; Jones, R.L.; Courtney, J.G.; LeBlanc, T.T.; Jackson, W.; Karwowski, M.P.; Cheng, P.-Y.; Allwood, P.; Svendsen, E.R.; Breysse, P.N. Update of the Blood Lead Reference Value—United States, 2021. MMWR. Morb. Mortal. Wkly. Rep. 2021, 70, 1509–1512. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, S.G.; Weiss, B. A rationale for lowering the blood lead action level from 10 to 2 μg/dL. Neurotoxicology 2006, 27, 693–701. [Google Scholar] [CrossRef] [PubMed]
- Kira, C.S.; Sakuma, A.M.; De Capitani, E.M.; de Freitas, C.U.; Cardoso, M.R.A.; Gouveia, N. Associated factors for higher lead and cadmium blood levels, and reference values derived from general population of São Paulo, Brazil. Sci. Total Environ. 2016, 543, 628–635. [Google Scholar] [CrossRef] [PubMed]
- Schulz, C.; Wilhelm, M.; Heudorf, U.; Kolossa-Gehring, M. Reprint of “Update of the reference and HBM values derived by the German Human Biomonitoring Commission”. Int. J. Hyg. Environ. Health 2012, 215, 150–158. [Google Scholar] [CrossRef]
- Kuraeiad, S.; Kotepui, M. Blood Lead Level and Renal Impairment among Adults: A Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 4174. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.-Y.; Lee, S.; Surenbaatar, U.; Lim, H.-J.; Kim, B.-G.; Eom, S.-Y.; Cho, Y.M.; Kim, W.J.; Yu, B.-C.; Lee, K.; et al. Association between levels of exposure to heavy metals and renal function indicators of residents in environmentally vulnerable areas. Sci. Rep. 2023, 13, 2856. [Google Scholar] [CrossRef]
- Martinez, V.O.; Nunes, L.S.; Viana, G.S.; dos Santos, N.R.; Menezes-Filho, J.A. Biomarkers of cadmium exposure and renal function in estuarine adult villagers. Int. Arch. Occup. Environ. Health 2021, 95, 981–992. [Google Scholar] [CrossRef]
- Jain, R.B. Co-exposures to toxic metals cadmium, lead, and mercury and their impact on unhealthy kidney function. Environ. Sci. Pollut. Res. 2019, 26, 30112–30118. [Google Scholar] [CrossRef] [PubMed]
- Navas-Acien, A.; Tellez-Plaza, M.; Guallar, E.; Muntner, P.; Silbergeld, E.; Jaar, B.; Weaver, V. Blood Cadmium and Lead and Chronic Kidney Disease in US Adults: A Joint Analysis. Am. J. Epidemiol. 2009, 170, 1156–1164. [Google Scholar] [CrossRef]
- Chen, X.; Zhu, G.; Wang, Z.; Zhou, H.; He, P.; Liu, Y.; Jin, T. The association between lead and cadmium co-exposure and renal dysfunction. Ecotoxicol. Environ. Saf. 2019, 173, 429–435. [Google Scholar] [CrossRef]
- Tsai, T.-L.; Kuo, C.-C.; Pan, W.-H.; Chung, Y.-T.; Chen, C.-Y.; Wu, T.-N.; Wang, S.-L. The decline in kidney function with chromium exposure is exacerbated with co-exposure to lead and cadmium. Kidney Int. 2017, 92, 710–720. [Google Scholar] [CrossRef]
- Lee, Y.-J.; Cho, S.; Kim, S.R. Effect of alcohol consumption on kidney function: Population-based cohort study. Sci. Rep. 2021, 11, 2381. [Google Scholar] [CrossRef] [PubMed]
- de Sousa, L.C.M.; Silva, N.R.; Azeredo, C.M.; Rinaldi, A.E.M.; da Silva, L.S. Health-related patterns and chronic kidney disease in the Brazilian population: National Health Survey, 2019. Front. Public Health 2023, 11, 1090196. [Google Scholar] [CrossRef] [PubMed]
- Epstein, M. Alcohol’s impact on kidney function. Alcohol Health Res. World 1997, 21, 84–92. [Google Scholar]
- Farias, M.R.; Leite, S.N.; Tavares, N.U.L.; Oliveira, M.A.; Arrais, P.S.D.; Bertoldi, A.D.; Pizzol, T.D.S.D.; Luiza, V.L.; Ramos, L.R.; Mengue, S.S. Use of and access to oral and injectable contraceptives in Brazil. Rev. Saude Publica 2016, 50 (Suppl. 2), 14s. [Google Scholar] [CrossRef]
- Atthobari, J.; Gansevoort, R.T.; Visser, S.T.; De Jong, P.E.; Berg, L.T.W.D.J.D.; The PREVEND Study Group. The impact of hormonal contraceptives on blood pressure, urinary albumin excretion and glomerular filtration rate. Br. J. Clin. Pharmacol. 2006, 63, 224–231. [Google Scholar] [CrossRef]
- Ahmed, S.B.; Culleton, B.F.; Tonelli, M.; Klarenbach, S.W.; MacRae, J.M.; Zhang, J.; Hemmelgarn, B.R. Oral estrogen therapy in postmenopausal women is associated with loss of kidney function. Kidney Int. 2008, 74, 370–376. [Google Scholar] [CrossRef]
Characteristics | Overall, n = 136 1 | eGFR ≥ 120, n = 78 1 | 90 ≤ eGFR < 120, n = 38 1 | eGFR < 90, n = 20 1 | p-Value 2 |
---|---|---|---|---|---|
Ethnicity | 0.9 | ||||
Black/Mixed race | 128/136 (94%) | 74/78 (95%) | 35/38 (92%) | 19/20 (95%) | |
White/Other | 8/136 (5.9%) | 4/78 (5.1%) | 3/38 (7.9%) | 1/20 (5.0%) | |
Municipality | 0.8 | ||||
Arauípe | 56/136 (41%) | 34/78 (44%) | 15/38 (39%) | 7/20 (35%) | |
Nazaré | 80/136 (59%) | 44/78 (56%) | 23/38 (61%) | 13/20 (65%) | |
Marital Status | 0.046 * | ||||
Married/Stable Union | 72/132 (55%) | 37/74 (50%) | 19/38 (50%) | 16/20 (80%) | |
Single | 60/132 (45%) | 37/74 (50%) | 19/38 (50%) | 4/20 (20%) | |
Socioeconomic Status | 0.4 | ||||
Class A–B–C | 60/124 (48%) | 34/68 (50%) | 19/36 (53%) | 7/20 (35%) | |
Class D–E | 64/124 (52%) | 34/68 (50%) | 17/36 (47%) | 13/20 (65%) | |
Household Income | 0.12 | ||||
>1 salary | 11/113 (9.7%) | 5/64 (7.8%) | 6/33 (18%) | 0/16 (0%) | |
≤1 salary | 102/113 (90%) | 59/64 (92%) | 27/33 (82%) | 16/16 (100%) | |
Receive Financial Assistance from the Government | 0.7 | ||||
70/116 (60%) | 37/65 (57%) | 22/34 (65%) | 11/17 (65%) | ||
Education | 0.8 | ||||
≤Elementary school | 73/136 (54%) | 41/78 (53%) | 20/38 (53%) | 12/20 (60%) | |
≥Secondary school | 63/136 (46%) | 37/78 (47%) | 18/38 (47%) | 8/20 (40%) | |
Occupation | 0.8 | ||||
Self-employed/other | 87/132 (66%) | 49/74 (66%) | 26/38 (68%) | 12/20 (60%) | |
Housewife | 45/132 (34%) | 25/74 (34%) | 12/38 (32%) | 8/20 (40%) | |
Feel supported socially | 90/116 (78%) | 48/65 (74%) | 29/34 (85%) | 13/17 (76%) | 0.4 |
Used oral contraceptives | 54/127 (43%) | 26/70 (37%) | 11/37 (30%) | 17/20 (85%) | <0.001 * |
Number of children including current pregnancy | 0.044 * | ||||
First parity | 20/62 (32%) | 15/33 (45%) | 2/18 (11%) | 3/11 (27%) | |
More than one parity | 42/62 (68%) | 18/33 (55%) | 16/18 (89%) | 8/11 (73%) | |
Age (years) | 26.0 (22.0, 31.0) | 25.0 (22.0, 29.0) | 30.5 (24.6, 35.0) | 26.8 (21.2, 31.9) | 0.009 * |
BMI pre-gestational (kg/m2) | 25.1 (4.3) | 25.1 (4.9) | 24.9 (3.6) | 25.3 (4.0) | >0.9 |
Characteristics | Overall, n = 136 1 | eGFR ≥ 120, n = 78 1 | 90 ≤ eGFR < 120, n = 38 1 | eGFR < 90, n = 20 1 | p-Value 2 |
---|---|---|---|---|---|
Active smoker | 2/79 (2.5%) | 1/51 (2.0%) | 0/22 (0%) | 1/6 (17%) | 0.2 |
Passive smoker | 32/124 (26%) | 18/69 (26%) | 8/36 (22%) | 6/19 (32%) | 0.8 |
Waste burning | 32/127 (25%) | 21/70 (30%) | 8/37 (22%) | 3/20 (15%) | 0.4 |
Housing renovation | 18/122 (15%) | 12/67 (18%) | 3/35 (8.6%) | 3/20 (15%) | 0.5 |
Regular menstrual cycles | 85/124 (69%) | 46/69 (67%) | 24/36 (67%) | 15/19 (79%) | 0.6 |
Contact over last 10 years: | |||||
Asbestos | 5/65 (7.7%) | 2/29 (6.9%) | 1/18 (5.6%) | 2/18 (11%) | 0.9 |
Radiation | 1/65 (1.5%) | 1/29 (3.4%) | 0/18 (0%) | 0/18 (0%) | >0.9 |
Petroleum | 23/129 (18%) | 17/72 (24%) | 4/37 (11%) | 2/20 (10%) | 0.2 |
Dust/Powder | 89/129 (69%) | 52/72 (72%) | 24/37 (65%) | 13/20 (65%) | 0.7 |
Pesticides | 25/129 (19%) | 20/72 (28%) | 3/37 (8.1%) | 2/20 (10%) | 0.032 * |
Paints | 33/129 (26%) | 23/72 (32%) | 6/37 (16%) | 4/20 (20%) | 0.2 |
Solvents | 19/129 (15%) | 15/72 (21%) | 3/37 (8.1%) | 1/20 (5.0%) | 0.11 |
Metal vapors | 4/127 (3.1%) | 2/70 (2.9%) | 1/37 (2.7%) | 1/20 (5.0%) | 0.8 |
Other toxicants | 3/81 (3.7%) | 1/51 (2.0%) | 0/23 (0%) | 2/7 (29%) | 0.019 * |
Drinking alcohol while pregnant | 62/126 (49%) | 33/70 (47%) | 16/36 (44%) | 13/20 (65%) | 0.3 |
Diabetes while pregnant | 1/127 (0.8%) | 0/71 (0%) | 1/36 (2.8%) | 0/20 (0%) | 0.4 |
Heart disease while pregnant | 1/127 (0.8%) | 1/71 (1.4%) | 0/36 (0%) | 0/20 (0%) | >0.9 |
Hypertension while pregnant | 15/127 (12%) | 9/71 (13%) | 3/36 (8.3%) | 3/20 (15%) | 0.7 |
At-home water treatment | 50/125 (40%) | 26/68 (38%) | 14/37 (38%) | 10/20 (50%) | 0.6 |
Gestational age at sample collection (weeks) | 18.5 (5.1) | 18.3 (5.1) | 18.4 (4.8) | 19.3 (5.9) | 0.8 |
18.0 (15.0, 22.20) | 18.0 (14.3, 22.0) | 18.0 (16.0, 22.0) | 18.5 (16.0, 24.0) | 0.8 | |
CdB (µg/L) | 0.55 (0.08, 0.91) | 0.59 (0.11, 0.99) | 0.48 (0.05, 0.74) | 0.72 (0.28, 1.55) | 0.083 + |
PbB (µg/dL) | 0.85 (0.45, 1.75) | 0.65 (0.40, 1.35) | 0.95 (0.43, 1.95) | 2.00 (0.83, 3.10) | 0.009 * |
Age | Gestation (Weeks) | Log10CdB | Log10PbB | BMI (kg/m2) | |
---|---|---|---|---|---|
Age | |||||
Rho | |||||
p-value | |||||
N | |||||
Gestation (weeks) | |||||
Rho | 0.00 | ||||
p-value | 0.99 | ||||
N | 134 | ||||
Log10CdB | |||||
Rho | 0.03 | −0.11 | |||
p-value | 0.75 | 0.21 | |||
N | 123 | 124 | |||
Log10PbB | |||||
Rho | 0.2 | 0.04 | 0.13 | ||
p-value | 0.03 * | 0.67 | 0.18 | ||
N | 114 | 115 | 115 | ||
BMI (kg/m2) | |||||
Rho | 0.33 | −0.05 | −0.06 | −0.04 | |
p-value | 0.0005 ** | 0.60 | 0.52 | 0.70 | |
N | 108 | 108 | 103 | 96 | |
eGFR | |||||
Rho | −0.29 | 0.02 | 0.05 | −0.33 | −0.04 |
p-value | 0.0006 * | 0.81 | 0.60 | 0.0003 ** | 0.65 |
N | 134 | 134 | 123 | 114 | 108 |
Biomarker Reference Values | Overall, n = 136 | eGFR ≥ 120, n = 78 | 90 ≤ eGFR < 120, n = 38 | eGFR < 90, n = 20 | p-Value |
---|---|---|---|---|---|
PbB: CDC | 0.6 | ||||
≥5 µg/dL | 3/115 (2.6%) | 2/65 (3.1%) | 0/31 (0%) | 1/19 (5.3%) | |
<5 µg/dL | 112/115 (97%) | 63/65 (97%) | 31/31 (100%) | 18/19 (95%) | |
PbB: Ruckart (2021) | 0.2 | ||||
≥3.5 µg/dL | 6/115 (5.2%) | 4/65 (6.2%) | 0/31 (0%) | 2/19 (11%) | |
<3.5 µg/dL | 109/115 (95%) | 61/65 (94%) | 31/31 (100%) | 17/19 (89%) | |
PbB: Gilbert (2006) | <0.001 * | ||||
≥2 µg/dL | 23/115 (20%) | 5/65 (7.7%) | 8/31 (26%) | 10/19 (53%) | |
<2 µg/dL | 92/115 (80%) | 60/65 (92%) | 23/31 (74%) | 9/19 (47%) | |
PbB: Sample median | 0.041 * | ||||
≥0.85 µg/dL | 58/115 (50%) | 27/65 (42%) | 17/31 (55%) | 14/19 (74%) | |
<0.85 µg/dL | 57/115 (50%) | 38/65 (58%) | 14/31 (45%) | 5/19 (26%) | |
CdB: CDC | 0.3 | ||||
≥0.4 µg/L | 76/124 (61%) | 45/70 (64%) | 18/35 (51%) | 13/19 (68%) | |
<0.4 µg/L | 48/124 (39%) | 25/70 (36%) | 17/35 (49%) | 6/19 (32%) | |
CdB: Kira (2016) | 0.2 | ||||
≥0.6 µg/L | 58/124 (47%) | 35/70 (50%) | 12/35 (34%) | 11/19 (58%) | |
<0.6 µg/L | 66/124 (53%) | 35/70 (50%) | 23/35 (66%) | 8/19 (42%) | |
CdB: Schulz (2011) | 0.004 * | ||||
≥1.0 µg/L | 27/124 (22%) | 17/70 (24%) | 2/35 (5.7%) | 8/19 (42%) | |
<1.0 µg/L | 97/124 (78%) | 53/70 (76%) | 33/35 (94%) | 11/19 (58%) | |
CdB: Sample median | 0.2 | ||||
≥0.55 µg/L | 62/124 (50%) | 38/70 (54%) | 13/35 (37%) | 11/19 (58%) | |
<0.55 µg/L | 62/124 (50%) | 32/70 (46%) | 22/35 (63%) | 8/19 (42%) |
eGFR mL/min/1.73 m2 | Alcohol Use during Pregnancy | Did not Use Alcohol while Pregnant | History of Oral Contraceptive Use | No History of Oral Contraceptive Use | Highest CdB Tertile | Lower CdB Tertiles | |
---|---|---|---|---|---|---|---|
Intercept | 114.49 ** [110.59, 118.39] | 110.74 ** [104.06, 117.43] | 115.49 ** [109.23, 121.74] | 107.52 ** [99.90, 115.14] | 118.98 ** [115.31, 122.64] | 112.51 ** [105.73, 119.29] | 115.52 ** [111.02, 120.02] |
Log10PbB | −4.05 * [−8.04, 0.05] | −1.63 [−8.72, 5.46] | 1.93 [−4.42, 8.27] | −7.29 [−15.05, 0.46] | 1.01 [−2.88, 4.91] | −13.90 ** [−20.83, −6.97] | 0.48 [−4.16, 5.11] |
Age | −2.78 [−6.77, 1.22] | −5.00 [−12.09, 2.09] | −3.30 [−9.65, 3.04] | −7.06 [−14.82, 0.70] | −2.29 [−6.19, 1.60] | −3.39 [−10.32, 3.53] | −2.56 [07.20, 2.07] |
N | 114 | 42 | 53 | 46 | 67 | 39 | 75 |
R2 | 0.06 | 0.07 | 0.03 | 0.15 | 0.02 | 0.34 | 0.02 |
Predictors | eGFR < 90 mL/min/1.73 m2 | Alcohol Use during Pregnancy | History of Oral Contraceptive Use | Highest CdB Tertile | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
OR | 95% CI | p | OR | 95% CI | p | OR | 95% CI | p | OR | 95% CI | p | |
Intercept | 0.23 | 0.02–2.45 | 0.226 | 0.28 | 0.01–7.29 | 0.438 | 0.09 | 0.00–1.43 | 0.096 | 0.03 | 0.00–3.82 | 0.177 |
Log10PbB | 1.82 | 1.14–3.14 | 0.019 * | 2.44 | 1.30–4.47 | 0.013 * | 1.73 | 0.97–3.48 | 0.086 | 11.22 | 2.53–103.51 | 0.009 * |
Observations | 114 | 60 | 46 | 39 | ||||||||
N | 144 | 113 | 113 | 114 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Giuseppe, E.C.; Ferréol Bah, H.A.; Gomes Júnior, E.A.; dos Santos, N.R.; Costa, D.O.; Martinez, V.O.; Macêdo Pires, E.; Araújo Santana, J.V.; da S. Cerqueira, F.; Menezes-Filho, J.A. A Cross-Sectional Analysis Investigating Pregnant Women’s Renal Function and Its Association with Lead and Cadmium Exposures—The DSAN Birth Cohort Study in Recôncavo Baiano, Brazil. Toxics 2024, 12, 261. https://doi.org/10.3390/toxics12040261
Di Giuseppe EC, Ferréol Bah HA, Gomes Júnior EA, dos Santos NR, Costa DO, Martinez VO, Macêdo Pires E, Araújo Santana JV, da S. Cerqueira F, Menezes-Filho JA. A Cross-Sectional Analysis Investigating Pregnant Women’s Renal Function and Its Association with Lead and Cadmium Exposures—The DSAN Birth Cohort Study in Recôncavo Baiano, Brazil. Toxics. 2024; 12(4):261. https://doi.org/10.3390/toxics12040261
Chicago/Turabian StyleDi Giuseppe, Eréndira C., Homègnon A. Ferréol Bah, Erival A. Gomes Júnior, Nathália R. dos Santos, Daisy O. Costa, Victor O. Martinez, Elis Macêdo Pires, João V. Araújo Santana, Filipe da S. Cerqueira, and José A. Menezes-Filho. 2024. "A Cross-Sectional Analysis Investigating Pregnant Women’s Renal Function and Its Association with Lead and Cadmium Exposures—The DSAN Birth Cohort Study in Recôncavo Baiano, Brazil" Toxics 12, no. 4: 261. https://doi.org/10.3390/toxics12040261
APA StyleDi Giuseppe, E. C., Ferréol Bah, H. A., Gomes Júnior, E. A., dos Santos, N. R., Costa, D. O., Martinez, V. O., Macêdo Pires, E., Araújo Santana, J. V., da S. Cerqueira, F., & Menezes-Filho, J. A. (2024). A Cross-Sectional Analysis Investigating Pregnant Women’s Renal Function and Its Association with Lead and Cadmium Exposures—The DSAN Birth Cohort Study in Recôncavo Baiano, Brazil. Toxics, 12(4), 261. https://doi.org/10.3390/toxics12040261