Microplastics and Endocrine Disruptors in Typical Wastewater Treatment Plants in Megacity Shanghai
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Field Sampling
2.3. Sample Preparation
2.4. Instrumental Analysis
2.5. Quality Control
2.6. Risk Assessment
3. Result and Discussion
3.1. Behavior of MPs in and through Two Typical WWTPs in Megacity
3.1.1. Contamination Patterns of MPs in the Influent and Source Analysis
3.1.2. Behavior of MPs through the WWTP
3.2. EDCs in the WWTPs
3.2.1. EDCs in the Influent and Source Diagnosis
3.2.2. The Removal Efficiencies of EDCs through Different Treatment Compartments
3.3. Relationship between EDCs and MPs
3.4. Risk Reduction by the WWTPs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rodriguez-Mozaz, S.; Lopez de Alda, M.J.; Barceló, D. Advantages and limitations of on-line solid phase extraction coupled to liquid chromatography–mass spectrometry technologies versus biosensors for monitoring of emerging contaminants in water. J. Chromatogr. A 2007, 1152, 97–115. [Google Scholar] [CrossRef]
- Al Aukidy, M.; Verlicchi, P.; Jelic, A.; Petrovic, M.; Barcelò, D. Monitoring release of pharmaceutical compounds: Occurrence and environmental risk assessment of two WWTP effluents and their receiving bodies in the Po Valley, Italy. Sci. Total Environ. 2012, 438, 15–25. [Google Scholar] [CrossRef]
- Rehman, M.U.; Nisar, B.; Mohd Yatoo, A.; Sehar, N.; Tomar, R.; Tariq, L.; Ali, S.; Ali, A.; Mudasir Rashid, S.; Bilal Ahmad, S.; et al. After effects of Pharmaceuticals and Personal Care Products (PPCPs) on the biosphere and their counteractive ways. Sep. Purif. Technol. 2024, 342, 126921. [Google Scholar] [CrossRef]
- Stasinakis, A.S.; Thomaidis, N.S.; Arvaniti, O.S.; Asimakopoulos, A.G.; Samaras, V.G.; Ajibola, A.; Mamais, D.; Lekkas, T.D. Contribution of primary and secondary treatment on the removal of benzothiazoles, benzotriazoles, endocrine disruptors, pharmaceuticals and perfluorinated compounds in a sewage treatment plant. Sci. Total Environ. 2013, 463–464, 1067–1075. [Google Scholar] [CrossRef]
- Murphy, F.; Ewins, C.; Carbonnier, F.; Quinn, B. Wastewater Treatment Works (WwTW) as a Source of Microplastics in the Aquatic Environment. Environ. Sci. Technol. 2016, 50, 5800–5808. [Google Scholar] [CrossRef]
- Talvitie, J.; Mikola, A.; Koistinen, A.; Setälä, O. Solutions to microplastic pollution—Removal of microplastics from wastewater effluent with advanced wastewater treatment technologies. Water Res. 2017, 123, 401–407. [Google Scholar] [CrossRef]
- Ren, S.-Y.; Sun, Q.; Xia, S.-Y.; Tong, D.; Ni, H.-G. Microplastics in wastewater treatment plants and their contributions to surface water and farmland pollution in China. Chemosphere 2023, 343, 140239. [Google Scholar] [CrossRef]
- Ziajahromi, S.; Neale, P.A.; Leusch, F.D.L. Wastewater treatment plant effluent as a source of microplastics: Review of the fate, chemical interactions and potential risks to aquatic organisms. Water Sci. Technol. 2016, 74, 2253–2269. [Google Scholar] [CrossRef]
- Sol, D.; Laca, A.; Laca, A.; Díaz, M. Approaching the environmental problem of microplastics: Importance of WWTP treatments. Sci. Total Environ. 2020, 740, 140016. [Google Scholar] [CrossRef]
- Mato, Y.; Isobe, T.; Takada, H.; Kanehiro, H.; Ohtake, C.; Kaminuma, T. Plastic Resin Pellets as a Transport Medium for Toxic Chemicals in the Marine Environment. Environ. Sci. Technol. 2001, 35, 318–324. [Google Scholar] [CrossRef]
- Sun, P.; Liu, X.; Zhang, M.; Li, Z.; Cao, C.; Shi, H.; Yang, Y.; Zhao, Y. Sorption and leaching behaviors between aged MPs and BPA in water: The role of BPA binding modes within plastic matrix. Water Res. 2021, 195, 116956. [Google Scholar] [CrossRef]
- Wee, S.Y.; Aris, A.Z. Endocrine disrupting compounds in drinking water supply system and human health risk implication. Environ. Int. 2017, 106, 207–233. [Google Scholar] [CrossRef]
- Kumar, P.; Shimali; Chamoli, S.; Khondakar, K.R. Advances in optical and electrochemical sensing of bisphenol a (BPA) utilizing microfluidic Technology: A mini perspective. Methods 2023, 220, 69–78. [Google Scholar] [CrossRef]
- Devi, T.; Saleh, N.M.; Kamarudin, N.H.N.; Roslan, N.J.; Jalil, R.; Hamid, H.A. Efficient adsorption of organic pollutants phthalates and bisphenol A (BPA) utilizing magnetite functionalized covalent organic frameworks (MCOFs): A promising future material for industrial applications. Ecotoxicol. Environ. Saf. 2023, 268, 115706. [Google Scholar] [CrossRef]
- Shi, W.-J.; Jiang, Y.-X.; Huang, G.-Y.; Zhao, J.-L.; Zhang, J.-N.; Liu, Y.-S.; Xie, L.-T.; Ying, G.-G. Dydrogesterone Causes Male Bias and Accelerates Sperm Maturation in Zebrafish (Danio rerio). Environ. Sci. Technol. 2018, 52, 8903–8911. [Google Scholar] [CrossRef]
- Xu, E.G.B.; Liu, S.; Ying, G.-G.; Zheng, G.J.S.; Lee, J.H.W.; Leung, K.M.Y. The occurrence and ecological risks of endocrine disrupting chemicals in sewage effluents from three different sewage treatment plants, and in natural seawater from a marine reserve of Hong Kong. Mar. Pollut. Bull. 2014, 85, 352–362. [Google Scholar] [CrossRef]
- Stasinakis, A.S.; Gatidou, G.; Mamais, D.; Thomaidis, N.S.; Lekkas, T.D. Occurrence and fate of endocrine disrupters in Greek sewage treatment plants. Water Res. 2008, 42, 1796–1804. [Google Scholar] [CrossRef]
- Su, L.; Xue, Y.; Li, L.; Yang, D.; Kolandhasamy, P.; Li, D.; Shi, H. Microplastics in Taihu Lake, China. Environ. Pollut. 2016, 216, 711–719. [Google Scholar] [CrossRef]
- Su, L.; Nan, B.; Craig, N.J.; Pettigrove, V. Temporal and spatial variations of microplastics in roadside dust from rural and urban Victoria, Australia: Implications for diffuse pollution. Chemosphere 2020, 252, 126567. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control.a sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Peng, G.; Xu, P.; Zhu, B.; Bai, M.; Li, D. Microplastics in freshwater river sediments in Shanghai, China: A case study of risk assessment in mega-cities. Environ. Pollut. 2018, 234, 448–456. [Google Scholar] [CrossRef]
- Everaert, G.; Van Cauwenberghe, L.; De Rijcke, M.; Koelmans, A.A.; Mees, J.; Vandegehuchte, M.; Janssen, C.R. Risk assessment of microplastics in the ocean: Modelling approach and first conclusions. Environ. Pollut. 2018, 242, 1930–1938. [Google Scholar] [CrossRef]
- Lithner, D.; Larsson, Å.; Dave, G. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Sci. Total Environ. 2011, 409, 3309–3324. [Google Scholar] [CrossRef]
- Sharma, B.M.; Bečanová, J.; Scheringer, M.; Sharma, A.; Bharat, G.K.; Whitehead, P.G.; Klánová, J.; Nizzetto, L. Health and ecological risk assessment of emerging contaminants (pharmaceuticals, personal care products, and artificial sweeteners) in surface and groundwater (drinking water) in the Ganges River Basin, India. Sci. Total Environ. 2019, 646, 1459–1467. [Google Scholar] [CrossRef]
- Hernando, M.D.; Mezcua, M.; Fernández-Alba, A.R.; Barceló, D. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta 2006, 69, 334–342. [Google Scholar] [CrossRef]
- Parashar, N.; Hait, S. Abundance, characterization, and removal of microplastics in different technology-based sewage treatment plants discharging into the middle stretch of the Ganga River, India. Sci. Total Environ. 2023, 905, 167099. [Google Scholar] [CrossRef]
- Bayo, J.; Olmos, S.; López-Castellanos, J. Microplastics in an urban wastewater treatment plant: The influence of physicochemical parameters and environmental factors. Chemosphere 2020, 238, 124593. [Google Scholar] [CrossRef]
- Long, Z.; Pan, Z.; Wang, W.; Ren, J.; Yu, X.; Lin, L.; Lin, H.; Chen, H.; Jin, X. Microplastic abundance, characteristics, and removal in wastewater treatment plants in a coastal city of China. Water Res. 2019, 155, 255–265. [Google Scholar] [CrossRef]
- Bayo, J.; López-Castellanos, J. Principal factor and hierarchical cluster analyses for the performance assessment of an urban wastewater treatment plant in the Southeast of Spain. Chemosphere 2016, 155, 152–162. [Google Scholar] [CrossRef]
- Carr, S.A.; Liu, J.; Tesoro, A.G. Transport and fate of microplastic particles in wastewater treatment plants. Water Res. 2016, 91, 174–182. [Google Scholar] [CrossRef]
- Gies, E.A.; LeNoble, J.L.; Noël, M.; Etemadifar, A.; Bishay, F.; Hall, E.R.; Ross, P.S. Retention of microplastics in a major secondary wastewater treatment plant in Vancouver, Canada. Mar. Pollut. Bull. 2018, 133, 553–561. [Google Scholar] [CrossRef]
- Yang, T.; Gao, M.; Nowack, B. Formation of microplastic fibers and fibrils during abrasion of a representative set of 12 polyester textiles. Sci. Total Environ. 2023, 862, 160758. [Google Scholar] [CrossRef]
- Browne, M.A.; Crump, P.; Niven, S.J.; Teuten, E.; Tonkin, A.; Galloway, T.; Thompson, R. Accumulation of Microplastic on Shorelines Woldwide: Sources and Sinks. Environ. Sci. Technol. 2011, 45, 9175–9179. [Google Scholar] [CrossRef]
- Yin, L.; Wen, X.; Du, C.; Jiang, J.; Wu, L.; Zhang, Y.; Hu, Z.; Hu, S.; Feng, Z.; Zhou, Z.; et al. Comparison of the abundance of microplastics between rural and urban areas: A case study from East Dongting Lake. Chemosphere 2020, 244, 125486. [Google Scholar] [CrossRef]
- Lin, W.-H.; Ou, J.-H.; Yu, Y.-L.; Liu, P.-F.; Surampalli, R.Y.; Kao, C.-M. Regulatory Framework of Microconstituents. In Microconstituents in the Environment; Wiley: Hoboken, NJ, USA, 2023; pp. 513–523. [Google Scholar]
- Tavelli, R.; Callens, M.; Grootaert, C.; Abdallah, M.F.; Rajkovic, A. Foodborne pathogens in the plastisphere: Can microplastics in the food chain threaten microbial food safety? Trends Food Sci. Technol. 2022, 129, 1–10. [Google Scholar] [CrossRef]
- Wang, W.; Ndungu, A.W.; Li, Z.; Wang, J. Microplastics pollution in inland freshwaters of China: A case study in urban surface waters of Wuhan, China. Sci. Total Environ. 2017, 575, 1369–1374. [Google Scholar] [CrossRef]
- Ragi, K.B.; Ekka, B.; Mezule, L. Zero pollution protocol for the recovery of cellulose from municipal sewage sludge. Bioresour. Technol. Rep. 2022, 20, 101222. [Google Scholar] [CrossRef]
- Harley-Nyang, D.; Memon, F.A.; Jones, N.; Galloway, T. Investigation and analysis of microplastics in sewage sludge and biosolids: A case study from one wastewater treatment works in the UK. Sci. Total Environ. 2022, 823, 153735. [Google Scholar] [CrossRef]
- Long, Y.; Zhou, Z.; Yin, L.; Wen, X.; Xiao, R.; Du, L.; Zhu, L.; Liu, R.; Xu, Q.; Li, H.; et al. Microplastics removal and characteristics of constructed wetlands WWTPs in rural area of Changsha, China: A different situation from urban WWTPs. Sci. Total Environ. 2022, 811, 152352. [Google Scholar] [CrossRef]
- Xu, Z.; Zhai, X.; Bai, X. Amplifiers of environmental risk of microplastics in sewage sludge: Thermal drying treatment. Sci. Total Environ. 2023, 905, 167029. [Google Scholar] [CrossRef]
- San José, R.; Pérez, J.L.; Callén, M.S.; López, J.M.; Mastral, A. BaP (PAH) air quality modelling exercise over Zaragoza (Spain) using an adapted version of WRF-CMAQ model. Environ. Pollut. 2013, 183, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Tong, H.; Jiang, Q.; Hu, X.; Zhong, X. Occurrence and identification of microplastics in tap water from China. Chemosphere 2020, 252, 126493. [Google Scholar] [CrossRef] [PubMed]
- Halder, A.K.; Moura, A.S.; Cordeiro, M.N.D.S. Predicting the ecotoxicity of endocrine disruptive chemicals: Multitasking in silico approaches towards global models. Sci. Total Environ. 2023, 889, 164337. [Google Scholar] [CrossRef]
- Brachi, P.; Di Fraia, S.; Massarotti, N.; Vanoli, L. Combined heat and power production based on sewage sludge gasification: An energy-efficient solution for wastewater treatment plants. Energy Convers. Manag. X 2022, 13, 100171. [Google Scholar] [CrossRef]
- Yu, Q.; Yang, X.; Zhao, F.; Hu, X.; Guan, L.; Ren, H.; Geng, J. Spatiotemporal variation and removal of selected endocrine-disrupting chemicals in wastewater treatment plants across China: Treatment process comparison. Sci. Total Environ. 2022, 835, 155374. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Wang, J.; Zhang, R.; Wei, D.; Long, Q.; Huang, Y.; Xie, X.; Li, A. Comparison of different advanced treatment processes in removing endocrine disruption effects from municipal wastewater secondary effluent. Chemosphere 2017, 168, 1–9. [Google Scholar] [CrossRef]
- Ben, W.; Zhu, B.; Yuan, X.; Zhang, Y.; Yang, M.; Qiang, Z. Transformation and fate of natural estrogens and their conjugates in wastewater treatment plants: Influence of operational parameters and removal pathways. Water Res. 2017, 124, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Mo, Q.; Yang, X.; Wang, J.; Xu, H.; Li, W.; Fan, Q.; Gao, S.; Yang, W.; Gao, C.; Liao, D.; et al. Adsorption mechanism of two pesticides on polyethylene and polypropylene microplastics: DFT calculations and particle size effects. Environ. Pollut. 2021, 291, 118120. [Google Scholar] [CrossRef] [PubMed]
- Guart, A.; Bono-Blay, F.; Borrell, A.; Lacorte, S. Migration of plasticizersphthalates, bisphenol A and alkylphenols from plastic containers and evaluation of risk. Food Addit. Contam. Part A 2011, 28, 676–685. [Google Scholar] [CrossRef] [PubMed]
- Edo, C.; González-Pleiter, M.; Leganés, F.; Fernández-Piñas, F.; Rosal, R. Fate of microplastics in wastewater treatment plants and their environmental dispersion with effluent and sludge. Environ. Pollut. 2020, 259, 113837. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Li, S.; Ma, S.; Liu, P.; Peng, D.; Ouyang, Z.; Guo, X. Characteristics and removal efficiency of microplastics in sewage treatment plant of Xi’an City, northwest China. Sci. Total Environ. 2021, 771, 145377. [Google Scholar] [CrossRef]
- Čelić, M.; Škrbić, B.D.; Insa, S.; Živančev, J.; Gros, M.; Petrović, M. Occurrence and assessment of environmental risks of endocrine disrupting compounds in drinking, surface and wastewaters in Serbia. Environ. Pollut. 2020, 262, 114344. [Google Scholar] [CrossRef]
- dos Santos, D.M.; Buruaem, L.; Gonçalves, R.M.; Williams, M.; Abessa, D.M.S.; Kookana, R.; de Marchi, M.R.R. Multiresidue determination and predicted risk assessment of contaminants of emerging concern in marine sediments from the vicinities of submarine sewage outfalls. Mar. Pollut. Bull. 2018, 129, 299–307. [Google Scholar] [CrossRef]
- Yazdan, M.M.S.; Kumar, R.; Leung, S.W. The Environmental and Health Impacts of Steroids and Hormones in Wastewater Effluent, as Well as Existing Removal Technologies: A Review. Ecologies 2022, 3, 206–224. [Google Scholar] [CrossRef]
- Le-Minh, N.; Khan, S.J.; Drewes, J.E.; Stuetz, R.M. Fate of antibiotics during municipal water recycling treatment processes. Water Res. 2010, 44, 4295–4323. [Google Scholar] [CrossRef]
- Almazrouei, B.; Islayem, D.; Alskafi, F.; Catacutan, M.K.; Amna, R.; Nasrat, S.; Sizirici, B.; Yildiz, I. Steroid hormones in wastewater: Sources, treatments, environmental risks, and regulations. Emerg. Contam. 2023, 9, 100210. [Google Scholar] [CrossRef]
- Fernandes, J.P.; Almeida, C.M.R.; Pereira, A.C.; Ribeiro, I.L.; Reis, I.; Carvalho, P.; Basto, M.C.P.; Mucha, A.P. Microbial community dynamics associated with veterinary antibiotics removal in constructed wetlands microcosms. Bioresour. Technol. 2015, 182, 26–33. [Google Scholar] [CrossRef]
- Song, H.-L.; Zhang, S.; Guo, J.; Yang, Y.-L.; Zhang, L.-M.; Li, H.; Yang, X.-L.; Liu, X. Vertical up-flow constructed wetlands exhibited efficient antibiotic removal but induced antibiotic resistance genes in effluent. Chemosphere 2018, 203, 434–441. [Google Scholar] [CrossRef]
- Ilyas, H.; van Hullebusch, E.D. A review on the occurrence, fate and removal of steroidal hormones during treatment with different types of constructed wetlands. J. Environ. Chem. Eng. 2020, 8, 103793. [Google Scholar] [CrossRef]
- Lee, C.-C.; Jiang, L.-Y.; Kuo, Y.-L.; Chen, C.-Y.; Hsieh, C.-Y.; Hung, C.-F.; Tien, C.-J. Characteristics of nonylphenol and bisphenol A accumulation by fish and implications for ecological and human health. Sci. Total Environ. 2015, 502, 417–425. [Google Scholar] [CrossRef]
- Wright-Walters, M.; Volz, C.; Talbott, E.; Davis, D. An updated weight of evidence approach to the aquatic hazard assessment of Bisphenol A and the derivation a new predicted no effect concentration (Pnec) using a non-parametric methodology. Sci. Total Environ. 2011, 409, 676–685. [Google Scholar] [CrossRef]
- iang, R.; Liu, J.; Huang, B.; Wang, X.; Luan, T.; Yuan, K. Assessment of the potential ecological risk of residual endocrine-disrupting chemicals from wastewater treatment plants. Sci. Total Environ. 2020, 714, 136689. [Google Scholar] [CrossRef]
- Lu, S.; Lin, C.; Lei, K.; Xin, M.; Wang, B.; Ouyang, W.; Liu, X.; He, M. Endocrine-disrupting chemicals in a typical urbanized bay of Yellow Sea, China: Distribution, risk assessment, and identification of priority pollutants. Environ. Pollut. 2021, 287, 117588. [Google Scholar] [CrossRef]
- Czarny, K.; Szczukocki, D.; Krawczyk, B.; Skrzypek, S.; Zieliński, M.; Gadzała-Kopciuch, R. Toxic effects of single animal hormones and their mixtures on the growth of Chlorella vulgaris and Scenedesmus armatus. Chemosphere 2019, 224, 93–102. [Google Scholar] [CrossRef]
Potential Ecological Risk Factor | Ecological Risk level |
---|---|
<10 | I |
10–100 | II |
100–1000 | III |
>1000 | IV |
Wet | Dry | ||||||||
---|---|---|---|---|---|---|---|---|---|
Primary Treatment | Secondary Treatment | Tertiary Treatment | Total Removal Rate | Primary Treatment | Secondary Treatment | Tertiary Treatment | Total Removal Rate | ||
WWTP-A | BPA | 58.25% | 77.97% | 69.90% | 97.23% | 34.17% | 96.12% | 34.40% | 98.32% |
NP | 26.26% | 91.46% | 24.10% | 95.22% | 40.29% | 87.84% | 22.26% | 94.36% | |
E1 | 21.74% | 84.41% | −3.31% | 87.39% | 27.83% | 68.44% | 24.26% | 82.75% | |
E2 | −178.99% | 78.91% | 65.90% | 79.93% | 37.33% | 91.01% | 44.88% | 96.89% | |
E3 | 15.50% | 16.47% | 13.60% | 39.02% | −4.53% | 100.00% | 100.00% | 100.00% | |
∑ EDCs | 40.91% | 80.67% | 40.62% | 93.22% | 35.30% | 92.63% | 26.92% | 96.52% | |
WWTP-B | BPA | 63.25% | 92.98% | 97.86% | 99.76% | −447.56% | 98.95% | 76.17% | 98.63% |
NP | 46.13% | 88.03% | 91.03% | 99.42% | −1513.88% | 94.80% | 99.45% | 99.54% | |
E1 | 2.67% | 96.44% | 64.68% | 98.77% | −146.65% | 81.77% | 90.55% | 95.75% | |
E2 | 20.73% | 40.23% | 100.00% | 100.00% | −115.30% | 96.64% | 100.00% | 100.00% | |
E3 | 13.33% | 18.24% | 100.00% | 100.00% | −33.71% | 77.80% | 100.00% | 100.00% | |
∑ EDCs | −23.54% | 90.57% | 96.89% | 99.64% | −585.78% | 95.71% | 96.52% | 98.98% |
WWTPs | Sampling Season | Influent RI | Risk Level of Influent | Effluent RI | Risk Level of Effluent | Risk Reduction Rate (%) |
---|---|---|---|---|---|---|
WWTP-A | Wet | 14.0 | II | 1.89 | I | 86.51% |
Dry | 8.1 | II | 1.25 | I | 84.42% | |
WWTP-B | Wet | 24.5 | II | 3.43 | I | 85.97% |
Dry | 21.1 | II | 4.28 | I | 79.68% |
Risk to Algae | ||||||
---|---|---|---|---|---|---|
WWTPs | Sampling Season | Influent RQ | Influent Risk Level | Effluent RQ | Effluent Risk Level | Risk Reduction Rate (%) |
WWTP-A | Wet | 0.547 | Intermediate | 0.024 | Low | 95.7% |
Dry | 0.428 | Intermediate | 0.0175 | Low | 95.9% | |
WWTP-B | Wet | 3.08 | High | 0.0126 | Low | 99.6% |
Dry | 0.106 | Intermediate | 0.0014 | Low | 98.7% | |
Risk to fish | ||||||
WWTP-A | Wet | 239 | High | 30.1 | high | 87.4% |
Dry | 160 | High | 25.8 | high | 83.9% | |
WWTP-B | Wet | 648 | High | 7.54 | high | 98.8% |
Dry | 87.8 | High | 3.40 | high | 96.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, Y.; Xie, M.; Xv, H.; Sun, R.; Wang, Q.; Li, J. Microplastics and Endocrine Disruptors in Typical Wastewater Treatment Plants in Megacity Shanghai. Toxics 2024, 12, 345. https://doi.org/10.3390/toxics12050345
Tong Y, Xie M, Xv H, Sun R, Wang Q, Li J. Microplastics and Endocrine Disruptors in Typical Wastewater Treatment Plants in Megacity Shanghai. Toxics. 2024; 12(5):345. https://doi.org/10.3390/toxics12050345
Chicago/Turabian StyleTong, Yuxiao, Manjun Xie, Hanwen Xv, Ruihua Sun, Qian Wang, and Juanying Li. 2024. "Microplastics and Endocrine Disruptors in Typical Wastewater Treatment Plants in Megacity Shanghai" Toxics 12, no. 5: 345. https://doi.org/10.3390/toxics12050345
APA StyleTong, Y., Xie, M., Xv, H., Sun, R., Wang, Q., & Li, J. (2024). Microplastics and Endocrine Disruptors in Typical Wastewater Treatment Plants in Megacity Shanghai. Toxics, 12(5), 345. https://doi.org/10.3390/toxics12050345