A Comprehensive Review of Lab-Scale Studies on Removing Hexavalent Chromium from Aqueous Solutions by Using Unmodified and Modified Waste Biomass as Adsorbents
Abstract
:1. Introduction
2. Sources and Toxicity
3. Toxicity of Cr(VI)
3.1. Toxic Effects on Human Health
3.2. Toxic Effects on Plants
3.3. Toxic Effects on Animals
3.4. Toxic Effects of Cr(VI) on Microbes
4. Remediation Strategies for Cr(VI)
4.1. Agricultural Residues
4.2. Food Waste
4.3. Industrial Waste
4.4. Forest Waste
5. Biomass-Based Adsorption Mechanisms for Cr(VI) Removal
6. Adsorption Strategies Using Waste Biomass for Cr(VI) Removal
6.1. Cr(VI) Remediation Using Unmodified Biomass Adsorbents
6.2. Cr(VI) Remediation Using Modified Biomass Adsorbents
7. Factors Influencing the Remediation of Cr(VI)
7.1. pH
7.2. Adsorbent Dosage
7.3. Temperature
7.4. Initial Cr(VI) Concentration and Co-Occurring Ions
7.5. Effect of Contact Time
7.6. Modification Methods
8. Challenges and Future Prospects
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, N.; Yin, Z.; Liu, F.; Zhang, M.; Lv, Y.; Hao, Z.; Pan, G.; Zhang, J. Environmentally persistent free radicals mediated removal of Cr (VI) from highly saline water by corn straw biochars. Bioresour. Technol. 2018, 260, 294–301. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Alharthi, S.; Al-Shaalan, N.H.; Naz, A.; Fan, H.J.S. Efficient removal of hexavalent chromium (Hexavalent chromium) from wastewater using amide-modified biochar. Molecules 2023, 28, 5146. [Google Scholar] [CrossRef] [PubMed]
- Nazir, A.; Zahra, F.; Sabri, M.U.; Ghaffar, A.; Ather, A.Q.; Khan, M.I.; Iqbal, M. Charcoal prepared from bougainvillea spectabilis leaves as low cost adsorbent: Kinetic and equilibrium studies for removal of iron from aqueous solution. Z. Für Phys. Chem. 2021, 235, 265–279. [Google Scholar] [CrossRef]
- Fulke, A.B.; Kotian, A.; Giripunje, M.D. Marine microbial response to heavy metals: Mechanism, implications and future prospect. Bull. Environ. Contam. Toxicol. 2020, 105, 182–197. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Bharagava, R.N. Toxic and genotoxic effects of Hexavalent chromium in environment and its bioremediation strategies. J. Environ. Sci. Health Part C 2016, 34, 1–32. [Google Scholar] [CrossRef]
- Fan, X.; Liu, H.; Anang, E.; Ren, D. Effects of electronegativity and hydration energy on the selective adsorption of heavy metal ions by synthetic NaX zeolite. Materials 2021, 14, 4066. [Google Scholar] [CrossRef]
- GracePavithra, K.; Jaikumar, V.; Kumar, P.S.; Sundar Rajan, P. A review on cleaner strategies for chromium industrial wastewater: Present research and future perspective. J. Clean. Prod. 2019, 228, 580–593. [Google Scholar] [CrossRef]
- Jiang, Y.; Dai, M.; Yang, F.; Ali, I.; Naz, I.; Peng, C. Remediation of chromium (VI) from groundwater by metal-based biochar under anaerobic conditions. Water 2022, 14, 894. [Google Scholar] [CrossRef]
- Garg, S.K.; Tripathi, M.; Srinath, T. Strategies for Chromium (VI) Bioremediation from Tannery Effluent. Rev. Environ. Contam. Toxicol. 2012, 217, 75–140. [Google Scholar]
- Hlihor, R.M.; Figueiredo, H.; Tavares, T.; Gavrilescu, M. Biosorption potential of dead and living Arthrobacter viscosus biomass in the removal of Hexavalent chromium: Batch and column studies. Process Saf. Environ. Prot. 2017, 108, 44–56. [Google Scholar] [CrossRef]
- Itankar, N. Development of Eco-Friendly Sorption Process for Removal and Recovery of Hexavalent Chromium from Industrial Effluents. Unpublished. Ph.D. Thesis, Symbiosis International (Deemed University), Pune, India, 2018. [Google Scholar]
- Rakhunde, R.; Deshpande, L.; Juneja, H.D. Chemical speciation of chromium in water: A review. Crit. Rev. Environ. Sci. Technol. 2012, 42, 776–810. [Google Scholar] [CrossRef]
- Chojnacka, K. Biosorption and bioaccumulation–the prospects for practical applications. Environ. Int. 2010, 36, 299–307. [Google Scholar] [CrossRef]
- Monga, A.; Fulke, A.B.; Dasgupta, D. Recent developments in essentiality of trivalent chromium and toxicity of hexavalent chromium: Implications on human health and remediation strategies. J. Hazard. Mat. Adv. 2022, 7, 100113. [Google Scholar] [CrossRef]
- Ray, A.; Jankar, J.S. A Comparative Study of Chromium: Therapeutic Uses and Toxicological Effects on Human Health. J. Pharmacol. Pharmacother. 2022, 13, 239–245. [Google Scholar] [CrossRef]
- Prasad, A. Role of chromium compounds in diabetes. Indian, J. Pharm. Pharmacol. 2016, 3, 17–23. [Google Scholar] [CrossRef]
- Krishna, K.R.; Philip, L. Bioremediation of Hexavalent chromium in contaminated soils. J. Hazard. Mater. 2005, 121, 109. [Google Scholar] [CrossRef]
- Bala, S.; Garg, D.; Thirumalesh, B.V.; Sharma, M.; Sridhar, K.; Inbaraj, B.S.; Tripathi, M. Recent Strategies for Bioremediation of Emerging Pollutants: A Review for a Green and Sustainable Environment. Toxics 2022, 10, 484. [Google Scholar] [CrossRef]
- Chanda, R.K.; Jahid, T.; Hassan, M.N.; Yeasmin, T.; Biswas, B.K. Cauliflower stem-derived biochar for effective adsorption and reduction of Hexavalent chromium in synthetic wastewater: A sustainable approach. Environ Adv. 2024, 15, 100458. [Google Scholar] [CrossRef]
- Oliveira, H. Chromium as an environmental pollutant: Insights on induced plant toxicity. J. Bot. 2012, 375843, 8. [Google Scholar] [CrossRef]
- López-Bucio, J.S.; Ravelo-Ortega, G.; López-Bucio, J. Chromium in plant growth and development: Toxicity, tolerance and hormesis. Environ. Pollut. 2022, 312, 120084. [Google Scholar] [CrossRef]
- Singh, A.; Sharma, A.; Verma, R.K.; Chopade, R.L.; Pandit, P.P.; Nagar, V.; Aseri, V.; Choudhary, S.K.; Awasthi, G.; Awasthi, K.K.; et al. Heavy metal contamination of water and their toxic effect on living organisms. In The Toxicity of Environmental Pollutants; Intech Open: London, UK, 2022. [Google Scholar]
- Brusseau, M.L.; Artiola, J.F. Chemical contaminants. In Environmental and Pollution Science; Academic Press: Cambridge, MA, USA, 2019; pp. 175–190. [Google Scholar]
- Dhal, B.; Thatoi, H.N.; Das, N.N.; Pandey, B.D. Chemical and microbial remediation of Hexavalent chromium from contaminated soil and mining/ metallurgical solid waste: A review. J. Hazard. Mater. 2013, 250, 272–291. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Chromium in Drinking Water. 2020. Available online: https://iris.who.int/handle/10665/338062 (accessed on 4 November 2019).
- Agrawal, A.; Kumar, V.; Pandey, B.D. Remediation options for the treatment of electroplating and leather tanning effluent containing chromium: A review. Miner. Process. Extr. Metall. Rev. 2006, 27, 99–130. [Google Scholar] [CrossRef]
- Bibi, I.; Niazi, N.K.; Choppala, G.; Burton, E.D. Chromium (VI) removal by siderite (FeCO3) in anoxic aqueous solutions: An X-ray absorption spectroscopy investigation. Sci. Total Environ. 2018, 640, 1424–1431. [Google Scholar] [CrossRef]
- Satyam, S.; Patra, S. Innovations and challenges in adsorption-based wastewater remediation: A comprehensive review. Heliyon 2024, 10, e29573. [Google Scholar] [CrossRef] [PubMed]
- Shahrokhi- Shahraki, R.; Benally, C.; El-Din, M.G.; Park, J. High efficiency removal of heavy metals using tire-derived activated carbon vs commercial activated carbon: Insights into the adsorption mechanisms. Chemosphere 2021, 264, 128455. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wang, T.; Wang, J.; Zhang, Y.; Pan, W.-P. A novel modified method for the efficient removal of Pb and Cd from wastewater by biochar: Enhanced the ion exchange and precipitation capacity. Sci. Total Environ. 2021, 754, 142150. [Google Scholar] [CrossRef] [PubMed]
- Maharana, M.; Manna, M.; Sardar, M.; Sen, S. Heavy Metal Removal by Low-Cost Adsorbents. In Green Adsorbents to Remove Metals, Dyes and Boron from Polluted Water; Springer: Berlin/Heidelberg, Germany, 2021; pp. 245–272. [Google Scholar]
- Mzinyane, N.N.; Mnqiwu, K.M.; Moukangoe, K.M. Adsorption of Hexavalent Chromium Ions Using Pine Sawdust Cellulose Fibres. Appl. Sci. 2023, 13, 9798. [Google Scholar] [CrossRef]
- Yazid, H.; Bouzid, T.; El mouchtari, E.m.; Bahsis, L.; El Himri, M.; Rafqah, S.; El haddad, M. Insights into the Adsorption of Cr(VI) on Activated Carbon Prepared from Walnut Shells: Combining Response Surface Methodology with Computational Calculation. Clean Technol. 2024, 6, 199–220. [Google Scholar] [CrossRef]
- Yang, W.; Lei, G.; Quan, S.; Zhang, L.; Wang, B.; Hu, H.; Li, L.; Ma, H.; Yin, C.; Feng, F.; et al. The Removal of Cr(VI) from Aqueous Solutions with Corn Stalk Biochar. Int. J. Environ. Res. Public Health 2022, 19, 14188. [Google Scholar] [CrossRef]
- Lu, Y.C.; Kooh, M.R.R.; Lim, L.B.L.; Priyantha, N. Effective and simple NaOH-modification method to remove methyl violet dye via Ipomoea aquatica roots. Adsorpt. Sci. Technol. 2021, 2021, 1–12. [Google Scholar] [CrossRef]
- Zaidi Mohamad, N.A.H.; Sallehuddin, F.N.; Lim, L.B.L.; Kooh, M.R.R. Surface modification of Artocarpus odoratissimus leaves using NaOH, SDS and EDTA to enhance adsorption of toxic crystal violet dye. J. Environ. Anal. Chem. 2023, 103, 1836–1854. [Google Scholar] [CrossRef]
- Al-Homaidan, A.A.; Al-Qahtani, H.S.; Al-Ghanayem, A.A.; Ameen, F.; Ibraheem, I.B.M. Potential Use of Green Algae as a Biosorbent for Hexavalent chromium Removal from Aqueous Solutions. Saudi J. Biol. Sci. 2018, 25, 1733–1738. [Google Scholar] [CrossRef] [PubMed]
- Amel, K.; Hassena, M.A.; Kerroum, D. Isotherm and Kinetics Study of Biosorption of Cationic Dye onto Banana Peel. Energy Procedia 2012, 19, 286–295. [Google Scholar] [CrossRef]
- Khalfaoui, A.; Meniai, A.H. Application of Chemically Modified Orange Peels for Removal of Copper (II) from Aqueous Solutions. Theor. Found. Chem. Eng. 2012, 46, 732–739. [Google Scholar] [CrossRef]
- Khalfaoui, A.; Bendjamaa, I.; Bensid, T.; Meniai, A.H.; Derbal, K. Effect of Calcination on Orange Peels Characteristics: Application of an Industrial Dye Adsorption. Chem. Eng. Trans. 2014, 38, 361–366. [Google Scholar]
- Khalil, U.; Shakoor, M.B.; Ali, S.; Ahmad, S.R.; Rizwan, M.; Alsahli, A.A.; Alyemeni, M.N. Selective removal of Hexavalent chromium from wastewater by rice husk: Kinetic, isotherm and spectroscopic investigation. Water 2021, 13, 263. [Google Scholar] [CrossRef]
- Popoola, L.T. Parameter Influence, Characterization and Adsorption Mechanism Studies of Alkaline-Hydrolyzed Garcinia kola Hull Particles for Hexavalent chromium Sequestration. Environ. Health Insights 2024, 18, 11786302231215667. [Google Scholar] [CrossRef]
- NIOSH. Criteria for a Recommended Standard Occupational Exposure to Hexavalent Chromium; DHHS (NIOSH) Publication Number 2013-128; Department of Health and Human Services, Center for Disease Control and Prevention, National Institute for Occupational Safety and Health: Cincinnati, OH, USA, 2014.
- Hessel, E.V.; Staal, Y.C.; Piersma, A.H.; den Braver-Sewradj, S.P.; Ezendam, J. Occupational exposure to Hexavalent chromium. Part I. Hazard assessment of non-cancer health effects. Regul. Toxicol. Pharmacol. 2021, 126, 105048. [Google Scholar] [CrossRef]
- Jacobs, J.A.; Testa, S.M. Chromium (VI) Handbook; Guertin, J., Jacobs, J.A., Avakian, C.P., Eds.; CRC Press: New York, NY, USA, 2004; p. 1. [Google Scholar]
- Saha, R.; Nandi, R.; Saha, B. Sources and toxicity of Hexavalent chromium. J. Coord. Chem. 2011, 64, 1782–1806. [Google Scholar] [CrossRef]
- Roberts, B.A.; Proctor, J. (Eds.) The Ecology of Areas with Serpentinized Rocks; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1992. [Google Scholar]
- Alloway, B.J. Heavy metals in soils, trace metals and metalloids in soils and their bioavailability. In Environmental Pollution, 3rd ed.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; Volume 22. [Google Scholar]
- Nriagu, J.O.; Pacyna, J.M. Quantitative quantification of worldwide contamination of air, water and soils by trace metals. Nature 1988, 333, 134. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Disease Registry (ATSDR) 2012 Toxicological Profile for Chromium. U.S. Department of Health, and Human Services, Public Health Service. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp7.pdf (accessed on 10 July 2022).
- World Health Organization. Chromium (Environmental Health Criteria 61); International Programme on Chemical Safety: Geneva, Switzerland, 1990. [Google Scholar]
- Klein, L.A.; Lang, M.; Nash, N.; Kirscher, S.L. Sources of metals in New York City wastewater. J. Water Pollut. Control Fed. 1974, 46, 2653–2662. [Google Scholar]
- Suruchi, S.; Khanna, P.K. Assessment of heavy metal contamination in different vegetables grown in and around urban areas. Res. J. Environ. Toxicol. 2011, 5, 162–179. [Google Scholar]
- Fagliano, J.A.; Savrin, J.; Udasin, I.; Gochfeld, M. Community exposure and medical screening near chromium waste sites in New Jersey. Reg. Toxicol. Pharmacol. 1997, 26 Pt 2, S13–S22. [Google Scholar] [CrossRef] [PubMed]
- DesMarais, T.L.; Costa, M. Mechanisms of chromium-induced toxicity. Curr. Opin. Toxicol. 2019, 14, 1–7. [Google Scholar] [CrossRef]
- Singh, D.; Sharma, N.L.; Singh, C.K.; Sarkar, S.K.; Singh, I.; Dotaniya, M.L. Effect of chromium (VI) toxicity on morpho-physiological characteristics, yield, and yield components of two chickpea (Cicer arietinum L.) varieties. PLoS ONE 2020, 15, e0243032. [Google Scholar] [CrossRef]
- Venitt, S.; Levy, L.S. Mutagenicity of chromates in bacteria and its relevance to chromate carcinogenesis. Nature 1974, 250, 493–495. [Google Scholar] [CrossRef]
- Nishioka, H. Mutagenic activities of metal compounds in bacteria. Mut. Res. 1975, 31, 185–189. [Google Scholar] [CrossRef]
- Pellerin, C.; Booker, S.M. Reflections on Hexavalent chromium: Health hazards of an industrial heavy weight. Environ. Health 2000, 108, A402–A407. [Google Scholar]
- Shekhawat, K.; Chatterjee, S.; Joshi, B. Chromium toxicity and its health hazards. Int. J. Adv. Res. 2015, 3, 167–172. [Google Scholar]
- Yang, W.; Song, W.; Li, J.; Zhang, X. Bioleaching of heavy metals from wastewater sludge with the aim of land application. Chemosphere 2020, 249, 126134. [Google Scholar] [CrossRef]
- Nigam, H.; Das, M.; Chauhan, S.; Pandey, P.; Swati, P.; Yadav, M.; Tiwari, A. Effect of chromium generated by solid waste of tannery and microbial degradation of chromium to reduce its toxicity: A review. Adv. Appl. Sci. Res. 2015, 6, 129–136. [Google Scholar]
- Vendruscolo, F.; da Rocha Ferreira, G.L.; Antoniosi Filho, N.R. Biosorption of Hexavalent chromium by microorganisms. Int. Biodeterior. Biodegrad. 2017, 119, 87–95. [Google Scholar] [CrossRef]
- Sharma, P.; Singh, S.P.; Parakh, S.K.; Tong, Y.W. Health hazards of hexavalent chromium (Cr(VI)) and its microbial reduction. Bioengineered 2022, 13, 4923–4938. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, M.; Tian, T.; Lin, S.; Xu, P.; Zhou, L.; Dai, C.; Hao, Q.; Wu, Y.; Zhai, Z.; et al. The effect of Hexavalent chromium on the incidence and mortality of human cancers: A meta-analysis based on published epidemiological cohort studies. Front. Oncol. 2019, 9, 24. [Google Scholar] [CrossRef] [PubMed]
- Zhitkovich, A. Chromium in drinking water: Sources, metabolism, and cancer risks. Chem. Res. Toxicol. 2011, 24, 1617–1629. [Google Scholar] [CrossRef] [PubMed]
- Straif, K.; Benbrahim-Tallaa, L.; Baan, R.; Grosse, Y.; Secretan, B.; El Ghissassi, F.; Cogliano, V. A review of human carcinogens—Part C: Metals, arsenic, dusts, and fibres. Lancet Oncol. 2009, 10, 453–454. [Google Scholar] [CrossRef]
- Loomis, D.; Guha, N.; Hall, A.L.; Straif, K. Identifying occupational carcinogens: An update from the IARC Monographs. Occup. Environ. Med. 2018, 75, 593–603. [Google Scholar] [CrossRef] [PubMed]
- Welling, R.; Beaumont, J.J.; Petersen, S.J.; Alexeeff, G.V.; Steinmaus, C. Chromium VI and stomach cancer: A meta-analysis of the current epidemiological evidence. Occup. Environ. Med. 2015, 72, 151–159. [Google Scholar] [CrossRef]
- Hara, T.; Hoshuyama, T.; Takahashi, K.; Delgermaa, V.; Sorahan, T. Cancer risk among Japanese chromium platers, 1976–2003. Scand. J. Work. Environ. Health 2010, 36, 216–221. [Google Scholar] [CrossRef]
- Li, W.J.; Yang, C.L.; Chow, K.C.; Kuo, T.W. Hexavalent chromium induces expression of mesenchymal and stem cell markers in renal epithelial cells. Mol. Carcinog. 2016, 55, 182–192. [Google Scholar] [CrossRef]
- Shmitova, L.A. The course of pregnancy in women engaged in the production of chromium and its compounds. Sverdlovsk 1978, 19, 108–111. [Google Scholar]
- Shmitova, L.A. Content of hexavalent chromium in the biological substrates of pregnant women and puerperae engaged in the manufacture of chromium compounds. Gigienatrudaiprofessional’nyezabolevaniia 1980, 2, 33–35. [Google Scholar]
- Chandra, P.; Kulshreshtha, K. Chromium accumulation and toxicity in aquatic vascular plants. Bot. Rev. 2004, 70, 313–327. [Google Scholar] [CrossRef]
- Shanker, A.K.; Cervantes, C.; Loza-Tavera, H.; Avudainayagam, S. Chromium toxicity in plants. Environ. Int. 2005, 31, 739–753. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Bharwana, S.A.; Rizwan, M.; Farid, M.; Kanwal, S.; Ali, Q.; Khan, M.D. Fulvic acid mediates chromium (Cr) tolerance in wheat (Triticum aestivum L.) through lowering of Cr uptake and improved antioxidant defense system. Environ. Sci. Pol. Res. 2015, 22, 10601–10609. [Google Scholar] [CrossRef]
- López-Luna, J.; González-Chávez, M.C.; Esparza-Garcia, F.J.; Rodríguez-Vázquez, R. Toxicity assessment of soil amended with tannery sludge, trivalent chromium and Hexavalent chromium, using wheat, oat and sorghum plants. J. Hazard. Mater. 2009, 163, 829–834. [Google Scholar] [CrossRef]
- Stambulska, U.Y.; Bayliak, M.M.; Lushchak, V.I. Chromium (VI) toxicity in legume plants: Modulation effects of rhizobial symbiosis. BioMed Res. Int. 2018, 2018, 8031212. [Google Scholar] [CrossRef]
- Guo, S.; Xiao, C.; Zhou, N.; Chi, R. Speciation, toxicity, microbial remediation and phytoremediation of soil chromium contamination. Environ. Chem. Let. 2021, 19, 1413–1431. [Google Scholar] [CrossRef]
- Mohanty, S.; Benya, A.; Hota, S.; Kumar, M.S.; Singh, S. Eco-toxicity of Hexavalent chromium and its adverse impact on environment and human health in Sukinda Valley of India: A review on pollution and prevention strategies. Environ. Chem. Ecotoxicol. 2023, 5, 46–54. [Google Scholar] [CrossRef]
- Chen, P.; Zhu, Y.; Wan, H.; Wang, Y.; Hao, P.; Cheng, Z.; Liu, J. Effects of the oral administration of K2Cr2O7 and Na2SeO3 on Ca, mg, Mn, Fe, cu, and Zn contents in the heart, liver, spleen, and kidney of chickens. Biol. Trace Elem. Res. 2017, 180, 285–296. [Google Scholar] [CrossRef]
- Wan, H.; Zhu, Y.; Chen, P.; Wang, Y.; Hao, P.; Cheng, Z.; Liu, J. Effect of various selenium doses on chromium (IV)-induced nephrotoxicity in a male chicken model. Chemosphere 2017, 174, 306–314. [Google Scholar] [CrossRef]
- Zhang, Z.; Cao, H.; Song, N.; Zhang, L.; Cao, Y.; Tai, J. Long-term Hexavalent chromium exposure facilitates colorectal cancer in mice associated with changes in gut microbiota composition. Food Chem. Toxicol. 2020, 138, 111237. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Ding, J.; Shen, T.; Han, Z.; Zhang, J.; Abadeen, Z.U.; Li, K. Environmental Hexavalent chromium exposure induces gut microbial dysbiosis in chickens. Ecotoxicol. Environ. Saf. 2021, 227, 112871. [Google Scholar] [CrossRef]
- Yu, Z.; Xu, S.F.; Zhao, J.L.; Zhao, L.; Zhang, A.Z.; Li, M.Y. Toxic effects of Hexavalent chromium (Cr6+) on bioaccumulation, apoptosis, oxidative damage and inflammatory response in Channa asiatica. Environ. Toxicol. Pharmacol. 2021, 87, 103725. [Google Scholar] [CrossRef] [PubMed]
- Suljević, D.; Sulejmanović, J.; Fočak, M.; Halilović, E.; Pupalović, D.; Hasić, A.; Alijagic, A. Assessing Hexavalent chromium tissue-specific accumulation patterns and induced physiological responses to probe chromium toxicity in Coturnix japonica quail. Chemosphere 2021, 266, 129005. [Google Scholar] [CrossRef] [PubMed]
- Sheik, C.S.; Mitchell, T.W.; Rizvi, F.Z.; Rehman, Y.; Faisal, M.; Hasnain, S.; Krumholz, L.R. Exposure of soil microbial communities to chromium and arsenic alters their diversity and structure. PLoS ONE 2012, 7, e40059. [Google Scholar] [CrossRef] [PubMed]
- Yan, G.; Gao, Y.; Xue, K.; Qi, Y.; Fan, Y.; Tian, X.; Liu, J. Toxicity mechanisms and remediation strategies for chromium exposure in the environment. Front. Environ. Sci. 2013, 11, 1131204. [Google Scholar] [CrossRef]
- Sun, Y.; Jin, J.; Li, W.; Zhang, S.; Wang, F. Hexavalent chromium removal by a resistant strain Bacillus cereus ZY-2009. Environ. Technol. 2023, 44, 1926–1935. [Google Scholar] [CrossRef]
- Ye, Y.; Hao, R.; Shan, B.; Zhang, J.; Li, J.; Lu, A. Mechanism of Cr(VI) removal by efficient Cr(VI)-resistant Bacillus mobilis CR3. World J. Microbiol. Biotechnol. 2024, 40, 21. [Google Scholar] [CrossRef]
- Wyszkowska, J.; Borowik, A.; Zaborowska, M.; Kucharski, J. Sensitivity of Zea mays and Soil Microorganisms to the Toxic Effect of Chromium (VI). Int. J. Mol. Sci. 2023, 24, 178. [Google Scholar] [CrossRef]
- Kang, C.; Wu, P.; Li, Y.; Ruan, B.; Zhu, N.; Dang, Z. Estimates of heavy metal tolerance and chromium(VI) reducing ability of Pseudomonas aeruginosa CCTCC AB93066: Chromium(VI) toxicity and environmental parameters optimization. World J. Microbiol. Biotechnol. 2014, 30, 2733–2746. [Google Scholar] [CrossRef] [PubMed]
- Pakade, V.E.; Tavengwa, N.T.; Madikizela, L.M. Recent advances in Hexavalent chromium removal from aqueous solutions by adsorptive methods. RSC Adv. 2019, 9, 26142–26164. [Google Scholar] [CrossRef] [PubMed]
- Rzig, B.; Guesmi, F.; Sillanpää, M.; Hamrouni, B. Modelling and optimization of Hexavalent chromium removal from aqueous solution by adsorption on low-cost agricultural waste biomass using response surface methodological approach. Water Sci. Technol. 2021, 84, 552–575. [Google Scholar] [CrossRef] [PubMed]
- Padam, B.S.; Tin, H.S.; Chye, F.Y.; Abdullah, M.I. Banana by-products: An under-utilized renewable food biomass with great potential. J. Food Sci. Technol. 2014, 51, 3527–3545. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, A.; Kumar, P.S.; Yaashikaa, P.R.; Karishma, S.; Jeevanantham, S.; Swetha, S. Mixed biosorbent of agro waste and bacterial biomass for the separation of Pb (II) ions from water system. Chemosphere 2021, 277, 130236. [Google Scholar] [CrossRef]
- Ferronato, N.; Torretta, V. Waste mismanagement in developing countries: A review of global issues. Int. J. Environ. Res. Public Health 2012, 16, 1060. [Google Scholar] [CrossRef]
- Isikgor, F.H.; Becer, C.R. Lignocellulosic biomass: A sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem. 2015, 6, 4497–4559. [Google Scholar] [CrossRef]
- Othmani, A.; Magdouli, S.; Kumar, P.S.; Kapoor, A.; Chellam, P.V.; Gökkuş, Ö. Agricultural waste materials for adsorptive removal of phenols, chromium (VI) and cadmium (II) from wastewater: A review. Environ. Res. 2022, 204, 111916. [Google Scholar] [CrossRef]
- Itankar, N.; Patil, Y. Employing waste to manage waste: Utilizing waste biomaterials for the elimination of hazardous contaminant [Hexavalent chromium] from aqueous matrices. J. Contam. Hydrol. 2021, 239, 103775. [Google Scholar] [CrossRef]
- Adelagun, R.O.A.; Etim, E.E.; Ushie, O.A.; Kamba, A.E.; Aikhoje, E.F. Biosorptive removal of hexavalent chromium by rice husk ash and silica from aqueous solution. Chem. Mate. Res. 2021, 13, 11–18. [Google Scholar]
- Ogata, F.; Nagai, N.; Itami, R.; Nakamura, T.; Kawasaki, N. Potential of virgin and calcined wheat bran biomass for the removal of chromium (VI) ion from a synthetic aqueous solution. J. Environ. Chem. Eng. 2020, 8, 103710. [Google Scholar] [CrossRef]
- Yadav, A.K.; Singh, S.; Sen, R.; Jha, P.; Tungare, K.; Bhori, M.; Jobby, R. Biosorption and bioreduction of Hexavalent chromium by rice husk and toxicity analysis on zebrafish embryos. Int. J. Environ. Sci. Technol. 2022, 20, 1–14. [Google Scholar]
- Kumar, H.; Bhardwaj, K.; Sharma, R.; Nepovimova, E.; Kuča, K.; Dhanjal, D.S.; Kumar, D. Fruit and vegetable peels: Utilization of high value horticultural waste in novel industrial applications. Molecules 2020, 25, 2812. [Google Scholar] [CrossRef]
- Tie, J.; Zhang, M.; Shen, C.; Liu, H.; Du, C. Preparation of Ce/ferroferric oxide/food waste-derived biochar for aqueous Hexavalent chromium adsorption. J. Chem. Technol. Biotechnol. 2023, 98, 168–178. [Google Scholar] [CrossRef]
- Wang, Q.; Zhou, C.; Kuang, Y.J.; Jiang, Z.H.; Yang, M. Removal of Hexavalent chromium in aquatic solutions by pomelo peel. Water Sci. Eng. 2020, 13, 65–73. [Google Scholar] [CrossRef]
- Sahlabji, T.; El-Nemr, M.A.; Nemr, A.E.; Ragab, S.; Alghamdi, M.M.; El-Zahhar, A.A.; Said, T.O. High surface area microporous activated carbon from Pisum sativum peels for Hexavalent chromium removal from aquatic environment. Toxin Rev. 2022, 41, 639–649. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, J.; Abbas, A. Enhanced Chromium (VI) Adsorption onto Waste Pomegranate-Peel-Derived Biochar for Wastewater Treatment: Performance and Mechanism. Toxics 2023, 11, 440. [Google Scholar] [CrossRef]
- Ahmaruzzaman, M. Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals. Adv. Colloid Interface Sci. 2021, 166, 36–59. [Google Scholar] [CrossRef] [PubMed]
- Zafu, B.G. Magnetically Recyclable Activated Carbon Prepared from Brewer’s Spent Grain for Hexavalent Chromium Remediation. Doctoral Dissertation, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia, 2020. [Google Scholar]
- Geremias, R.; Pelissari, C.; Libardi, N.; Carpiné, D.; Ribani, R.H. Chromium adsorption studies using brewer’s spent grain biochar: Kinetics, isotherm and thermodynamics. Ciência Rural 2023, 53, e20210914. [Google Scholar] [CrossRef]
- Vendruscolo, F.; Reis, C.L.F.D.S.E.; Silva, J.G. Brewery spent grain: A potential biosorbent for Hexavalent chromium. J. Inst. Brew. 2021, 127, 127–134. [Google Scholar] [CrossRef]
- Zhou, X.; Xu, D.; Yang, J.; Yan, Z.; Zhang, Z.; Zhong, B.; Wang, X. Treatment of distiller grain with wet-process phosphoric acid leads to biochar for the sustained release of nutrients and adsorption of Hexavalent chromium. J. Hazard. Mater. 2023, 441, 129949. [Google Scholar] [CrossRef] [PubMed]
- Volesky, B. Detoxification of metal-bearing effluents: Biosorption for the next century. Hydrometallurgy 2001, 59, 203–216. [Google Scholar] [CrossRef]
- Park, D.; Lim, S.R.; Yun, Y.S.; Park, J.M. Development of a new Hexavalent chromium-biosorbent from agricultural biowaste. Biores. Technol. 2008, 99, 8810–8818. [Google Scholar] [CrossRef]
- Vaghetti, J.C.; Lima, E.C.; Royer, B.; Brasil, J.L.; da Cunha, B.M.; Simon, N.M.; Noreña, C.P.Z. Application of Brazilian-pine fruit coat as a biosorbent to removal of Hexavalent chromium from aqueous solution—Kinetics and equilibrium study. Biochem. Eng. J. 2008, 42, 67–76. [Google Scholar] [CrossRef]
- Santos, F.A.; Idrees, M.; Silva, M.; de Lima, P.H.E.; Bueno, N.; Nome, F.; Pires, M. Cr (III) biosorption by forest wastes from Araucaria angustifolia and Pinus elliottii: Biosorbent surface characterization and chromium quantification by spectrofluorimetry in micellar medium. Desalination Water Treat. 2013, 51, 5617–5626. [Google Scholar] [CrossRef]
- Santos, F.A.; Alban, L.; Frankenberg, C.L.C.; Pires, M. Characterization and use of biosorbents prepared from forestry waste and their washed extracts to reduce/remove chromium. Int. J. Environ. Sci. Technol. 2016, 13, 327–338. [Google Scholar] [CrossRef]
- Barbosa, R.F.D.S.; Zanini, N.C.; Mulinari, D.R.; Rosa, D.D.S. Hexavalent chromium sorption by modified cellulose macro and nanofibers obtained from eucalyptus residues. J. Pol. Environ. 2020, 30, 3852–3864. [Google Scholar] [CrossRef]
- Yang, H.; Kim, N.; Park, D. Superior removal of toxic hexavalent chromium from wastewaters by natural pine bark. Separations 2023, 10, 430. [Google Scholar] [CrossRef]
- Baassou, Z.; Benmahdi, F.; Reffas, A.; Benhaya, A. The effect of impregnation ratio and surface modification on the characteristics and performance of activated carbon derived from Ficus carica leaves for Hexavalent chromium removal. Biomass Convers. Biorefinery 2024. [Google Scholar] [CrossRef]
- Assefa, H.; Singh, S.; Olu, F.E.; Dhanjal, D.S.; Mani, D.; Khan, N.A.; Singh, J.; Ramamurthy, P.C. Advances in Adsorption Technologies for Hexavalent Chromium Removal: Mechanisms, Materials, and Optimization Strategies. Desalination Water Treat. 2024, 319, 100576. [Google Scholar] [CrossRef]
- Njoya, O.; Zhao, S.; Kong, X.; Shen, J.; Kang, J.; Wang, B.; Chen, Z. Efficiency and Potential Mechanism of Complete Cr (VI) Removal in the Presence of Oxalate by Catalytic Reduction Coupled with Membrane Filtration. Sep. Purif. Technol. 2021, 275, 118915. [Google Scholar] [CrossRef]
- Xie, H.; Wan, Y.; Chen, H.; Xiong, G.; Wang, L.; Xu, Q.; Li, X.; Zhou, Q. Cr (VI) Adsorption from Aqueous Solution by UiO-66 Modified Corncob. Sustainability 2021, 13, 12962. [Google Scholar] [CrossRef]
- Leng, L.; Xiong, Q.; Yang, L.; Li, H.; Zhou, Y.; Zhang, W.; Jiang, S.; Li, H.; Huang, H. An Overview on Engineering the Surface Area and Porosity of Biochar. Sci. Total Environ. 2021, 763, 144204. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Pan, K. Enhanced Removal of Cr (VI) via in-Situ Synergistic Reduction and Fixation by Polypyrrole/Sugarcane Bagasse Composites. Chemosphere 2021, 272, 129606. [Google Scholar] [CrossRef]
- Reddi, M.G.; Gomathi, T.; Saranya, M.; Sudha, P.N. Adsorption and kinetic studies on the removal of chromium and copper onto Chitosan-g-maliec anhydride-g-ethylene dimethacrylate. Int. J. Biol. Macromol. 2017, 104, 1578–1585. [Google Scholar] [CrossRef]
- Bansal, M.; Garg, R.; Garg, V.K.; Garg, R.; Singh, D. Sequestration of heavy metal ions from multi-metal simulated wastewater systems using processed agricultural biomass. Chemosphere 2022, 296, 133966. [Google Scholar] [CrossRef]
- Jeyaseelan, C.; Gupta, A. Green tea leaves as a natural adsorbent for the removal of Cr(VI) from aqueous solutions. Air Soil. Water Res. 2016, 9, 13–19. [Google Scholar] [CrossRef]
- Fseha, Y.H.; Eniola, J.O.; Sizirici, B.; Stephen, S.; Yildiz, I.; Khaleel, A.; Adamson, A. Application of Natural Earth-Based Materials as Adsorbents for the Treatment of Chromium (VI)-Contaminated Tannery Wastewater: Box-Behnken and Fixed-Bed Column Optimization. Sustain. Chem. Environ. 2024, 7, 100127. [Google Scholar] [CrossRef]
- Bedia, J.; Peñas-Garzón, M.; Gómez-Avilés, A.; Rodriguez, J.J.; Belver, C. A Review on the Synthesis and Characterization of Biomass-Derived Carbons for Adsorption of Emerging Contaminants from Water. C 2018, 4, 63. [Google Scholar] [CrossRef]
- Erwa, I.Y.; Ibrahim, A.A. Removal of Chromium (VI) Ions from Aqueous Solution Using Wood Sawdust as Adsorbent. J. Nat. Med. Sci. 2016, 17, 112. [Google Scholar]
- Chung, H.K.; Kim, W.H.; Park, J.; Cho, J.; Jeong, T.Y.; Park, P.K. Application of Langmuir and Freundlich Isotherms to Predict Adsorbate Removal Efficiency or Required Amount of Adsorbent. J. Ind. Eng. Chem. 2015, 28, 241–246. [Google Scholar] [CrossRef]
- Ahmed, I.; Attar, S.J.; Parande, M.G. Removal of Hexavalent chromium (Hexavalent chromium) from Industrial Wastewater by Using Biomass Adsorbent (Rice Husk Carbone). Int. J. Adv. Eng. Stud. 2012, 1, 92–94. [Google Scholar]
- Park, D.; Yun, Y.S.; Ahn, C.K.; Park, J.M. Kinetics of the reduction of Hexavalent chromium with the brown seaweed Ecklonia biomass. Chemosphere 2007, 66, 939–946. [Google Scholar] [CrossRef] [PubMed]
- Khalil, U.; Shakoor, M.B.; Ali, S.; Rizwan, M. Tea Waste as a Potential Biowaste for Removal of Hexavalent chromium from Wastewater: Equilibrium and kinetic studies. Arab. J. Geosci. 2018, 11, 573. [Google Scholar] [CrossRef]
- Villabona-Ortíz, A.; Tejada-Tovar, C.; González-Delgado, Á.D. Statistical Modelling of Biosorptive Removal of Hexavalent chromium Using Dry Raw Biomasses of Dioscorea rotundata, Elaeisguineensis, Manihot esculenta, Theobroma cacao and Zea mays. Sustainability 2023, 15, 9156. [Google Scholar] [CrossRef]
- Verma, R.; Maji, P.K.; Sarkar, S. Comprehensive investigation of the mechanism for Hexavalent chromium removal from contaminated water using coconut husk as a biosorbent. J. Clean. Prod. 2021, 314, 128117. [Google Scholar] [CrossRef]
- Khalfaoui, A.; Benalia, A.; Selama, Z.; Hammoud, A.; Derbal, K.; Panico, A.; Pizzi, A. Removal of Chromium (VI) from Water Using Orange peel as the Biosorbent: Experimental, Modeling, and Kinetic Studies on Adsorption Isotherms and Chemical Structure. Water 2024, 16, 742. [Google Scholar] [CrossRef]
- Mondal, N.K.; Basu, S.; Sen, K.; Debnath, P. Potentiality of mosambi (Citrus limetta) peel dust toward removal of Hexavalent chromium from aqueous solution: An optimization study. Appl. Water Sci. 2019, 9, 1–13. [Google Scholar] [CrossRef]
- Kant, M.; Yadav, A.; Rawat, S.; Singh, J.; Sen, M. Optimization by the full factorial method for the removal of Hexavalent chromium using maize cob husk. React. Kinet. Mech. Catal. 2024, 137, 1–20. [Google Scholar] [CrossRef]
- Gning, A.S.; Gaye, C.; Kama, A.B.; Diaw, P.A.; Thiare, D.D.; Fall, M. Hexavalent chromium Hexavalent chromium Removal from Water by Mango Kernel Powder. J. Mat. Sci. Chem. Eng. 2024, 12, 84–103. [Google Scholar]
- Kukić, D.; Ivanovska, A.; Vasić, V.; Lađarević, J.; Kostić, M.; Šćiban, M. The overlooked potential of raspberry canes: From waste to an efficient low-cost biosorbent for Hexavalent chromium ions. Biomass Convers. Biorefinery 2024, 14, 4605–4619. [Google Scholar] [CrossRef]
- Mancilla, H.B.; Cerrón, M.R.; Aroni, P.G.; Paucar, J.E.P.; Tovar, C.T.; Jindal, M.K.; Gowrisankar, G. Effective removal of Hexavalent chromium ions using low-cost biomass leaves (Sambucus nigra L.) in aqueous solution. Environ. Sci. Poll. Res. 2023, 30, 106982–106995. [Google Scholar] [CrossRef] [PubMed]
- Sangeetha, A.; Rabitha, R.; Sivasree, B.; Nivedha, B.; Stanlin, J.S.; Arun, C.; Shanmugam, K.; Balakumar, P. Adsorbent potential of the leaf powder of Artocarpus heterophyllus Lam.(jackfruit) in efficiently removing hexavalent chromium from landfill leachate. Global NEST J. 2023, 25, 88–96. [Google Scholar]
- Badessa, T.S.; Wakuma, E.; Yimer, A.M. Bio-sorption for effective removal of chromium (VI) from wastewater using Moringa stenopetala seed powder (MSSP) and banana peel powder (BPP). BMC Chem. 2020, 14, 71. [Google Scholar] [CrossRef] [PubMed]
- Rambabu, K.; Bharath, G.; Banat, F.; Show, P.L. Biosorption performance of date palm empty fruit bunch wastes for toxic Hexavalent chromium removal. Environ. Res. 2020, 187, 109694. [Google Scholar] [CrossRef]
- Mondal, N.K.; Samanta, A.; Roy, P.; Das, B. Optimization study of adsorption parameters for removal of hexavalent chromium using Magnolia leaf biomass by response surface methodology. Sust. Water Res. Manag. 2019, 5, 1627–1639. [Google Scholar]
- Hariharan, A.; Harini, V.; Sandhya, S.; Rangabhashiyam, S. Waste Musa acuminata residue as a potential biosorbent for the removal of Hexavalent chromium from synthetic wastewater. Biomass Convers. Biorefinery 2020, 13, 1–14. [Google Scholar] [CrossRef]
- Suganya, E.; Saranya, N.; Patra, C.; Varghese, L.A.; Selvaraju, N. Biosorption potential of Gliricidia sepium leaf powder to sequester Hexavalent chromium from synthetic aqueous solution. J. Environ. Chem. Eng. 2019, 7, 103112. [Google Scholar]
- Dawodu, F.A.; Akpan, B.M.; Akpomie, K.G. Sequestered capture and desorption of Hexavalent chromium from solution and textile wastewater onto low cost Heinsia crinita seed coat biomass. Appl. Water Sci. 2020, 10, 32. [Google Scholar] [CrossRef]
- Loulidi, I.; Boukhlifi, F.; Ouchabi, M.; Amar, A.; Jabri, M.; Kali, A.; Hadey, C. Assessment of untreated coffee wastes for the removal of chromium (VI) from aqueous medium. Int. J. Chem. Eng. 2021, 2021, 11. [Google Scholar] [CrossRef]
- Diaf, R.; Bendjeffal, H.; Metidji, T.; Ali Ahmed, A.; Mamine, H.; Berredjem, Y.; Hattab, Z. A chemometric strategy based on a Box–Behnken design to optimize the removal of hexavalent chromium from water using pomegranate peels as an eco-friendly adsorbent. React. Kinet. Mech. Catal. 2023, 136, 2667–2689. [Google Scholar] [CrossRef]
- Hernández, G.M.L.; Romero, D.M.L. Removal of Hexavalent chromium in contaminated water using banana peel (Paradisiac musea) as adsorbent. Revista 2020, 8, 168–178. [Google Scholar]
- Šoštarić, T.D.; Petrović, M.S.; Pastor, F.T.; Lončarević, D.R.; Petrović, J.T.; Milojković, J.V.; Stojanović, M.D. Study of heavy metals biosorption on native and alkali-treated apricot shells and its application in wastewater treatment. J. Mol. Liq. 2018, 259, 340–349. [Google Scholar] [CrossRef]
- Lu, L.; Yu, W.; Wang, Y.; Zhang, K.; Zhu, X.; Zhang, Y.; Chen, B. Application of biochar-based materials in environmental remediation: From multi-level structures to specific devices. Biochar 2020, 2, 1–31. [Google Scholar] [CrossRef]
- Inyang, M.I.; Gao, B.; Yao, Y.; Xue, Y.; Zimmerman, A.; Mosa, A.; Pullammanappallil, P.; Ok, Y.S.; Cao, X. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Crit. Rev. Environ. Sci. Technol. 2016, 46, 406–433. [Google Scholar] [CrossRef]
- Jacob, M.M.; Ponnuchamy, M.; Kapoor, A.; Sivaraman, P. Bagasse based biochar for the adsorptive removal of chlorpyrifos from contaminated water. J. Environ. Chem. Eng. 2010, 8, 103904. [Google Scholar] [CrossRef]
- Guo, X.; Liu, A.; Lu, J.; Niu, X.; Jiang, M.; Ma, Y.; Li, M. Adsorption mechanism of hexavalent chromium on biochar: Kinetic, thermodynamic, and characterization studies. ACS Omega 2020, 5, 27323–27331. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Jena, H.M. Adsorption of Hexavalent chromium from aqueous solution by prepared high surface area activated carbon from Fox nutshell by chemical activation with H3PO4. J.Environ. Chem. Eng. 2017, 5, 2032–2041. [Google Scholar] [CrossRef]
- Ramirez, A.; Ocampo, R.; Giraldo, S.; Padilla, E.; Flórez, E.; Acelas, N. Removal of Hexavalent chromium from an aqueous solution using an activated carbon obtained from teakwood sawdust: Kinetics, equilibrium, and density functional theory calculations. J. Environ. Chem. Eng. 2020, 8, 103702. [Google Scholar] [CrossRef]
- Zhao, J.; Yu, L.; Ma, H.; Zhou, F.; Yang, K.; Wu, G. Corn stalk-based activated carbon synthesized by a novel activation method for high-performance adsorption of hexavalent chromium in aqueous solutions. J. Colloid Interface Sci. 2020, 578, 650–659. [Google Scholar] [CrossRef]
- Chen, S.; Tang, S.; Sun, Y.; Wang, G.; Chen, H.; Yu, X.; Su, Y.; Chen, G. Preparation of a highly porous carbon material based on quinoa husk and its application for removal of dyes by adsorption. Materials 2018, 11, 1407. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Wang, K.; Wang, X.; Gu, Z.; Fan, Q.; Gibbons, W.; Hoefelmeyer, J.D.; Kharel, P.R.; Shrestha, M. Hierarchical porous activated carbon for supercapacitor derived from corn stalk core by potassium hydroxide activation. Electrochim. Acta 2016, 212, 839–847. [Google Scholar] [CrossRef]
- Gupta, V.K.; Shrivastava, A.K.; Jain, N. Biosorption of chromium (VI) from aqueous solutions by green algae Spirogyra species. Water Res. 2001, 35, 4079–4085. [Google Scholar] [CrossRef]
- Ucun, H.; Bayhan, Y.K.; Kaya, Y.; Cakici, A.; Algur, O.F. Biosorption of chromium (VI) from aqueous solution by cone biomass of Pinus sylvestris. Bioresour. Technol. 2002, 85, 155–158. [Google Scholar] [CrossRef] [PubMed]
- Zou, C.; Xu, Z.; Nie, F.; Guan, K.; Li, J. Application of hydroxyapatite-modified carbonized rice husk for the adsorption of hexavalent chromium from aqueous solution. J. Mol. Liq. 2023, 371, 121137. [Google Scholar] [CrossRef]
- Kandasamy, S.; Meenachi, S.; Kr, S.K.; Thamaraikannan, V. Removal of chromium from tannery wastewater by rice husk ash nanosilica. Appl. Res. 2023, 2, e202200093. [Google Scholar]
- Huang, Z.; Campbell, R.; Mangwandi, C. Kinetics and Thermodynamics Study on Removal of Hexavalent chromium from Aqueous Solutions Using Acid-Modified Banana Peel (ABP) Adsorbents. Molecules 2024, 29, 990. [Google Scholar] [CrossRef]
- Li, H.; Cao, W.; Qian, Z.; Zhou, Z.; Fu, M. Removal of Hexavalent chromium from Water by Using Schwertmannite-Loaded Lignocellulose Beads from Sugarcane Bagasse. Environ. Eng. Sci. 2024, 41, 140–150. [Google Scholar] [CrossRef]
- Tan, Y.; Wang, J.; Zhan, L.; Yang, H.; Gong, Y. Removal of Hexavalent chromium from aqueous solution using ball mill modified biochar: Multivariate modeling, optimization and experimental study. Sci. Rep. 2024, 14, 4853. [Google Scholar]
- El-Gawad, H.A.; Kadry, G.; Zahran, H.A.; Hussein, M.H. Chromium disarmament from veritable tanneries sewer water utilizing carbonic rice straw as a sorbent: Optimization and carbonic rice straw characteristics. Water Air Soil Pollut. 2023, 234, 659. [Google Scholar] [CrossRef]
- Ameha, B.; Nadew, T.T.; Tedla, T.S.; Getye, B.; Mengie, D.A.; Ayalneh, S. The use of banana peel as a low-cost adsorption material for removing hexavalent chromium from tannery wastewater: Optimization, kinetic and isotherm study, and regeneration aspects. RSC Adv. 2024, 14, 3675–3690. [Google Scholar] [CrossRef] [PubMed]
- Areti, H.A.; Jabesa, A.; Daba, B.J.; Jibril, D. Response surface method based parametric optimization of hexavalent chromium removal from tannery wastewater using a mixed banana peel and corn cob activated carbon: Kinetic and isotherm modeling studies. J. Water Process Eng. 2024, 59, 104977. [Google Scholar] [CrossRef]
- Acharya, C.; Mohapatra, R.K.; Sasmal, A.; Panda, C.R.; Thatoi, H. Effective remediation of Hexavalent chromium using coconut coir-derived porous biochar: Application of kinetics and isotherm approaches. Int. J. Environ. Sci. Technol. 2024, 21, 7249–7268. [Google Scholar] [CrossRef]
- Garg, R.; Garg, R.; Sillanpää, M.; Alimuddin; Khan, M.A.; Mubarak, N.M.; Tan, Y.H. Rapid adsorptive removal of chromium from wastewater using walnut-derived biosorbents. Sci. Rep. 2023, 13, 6859. [Google Scholar] [CrossRef] [PubMed]
- Homagai, P.L.; Bardewa, M.; Subedee, A.; Oli, H.B.; Shrestha, R.L.; Bhattarai, D.P. Biosorption of hexavalent chromium (Hexavalent chromium) from contaminated water using charred tea waste. Bibechana 2023, 20, 76–85. [Google Scholar] [CrossRef]
- Bista, D.; Joshi, P.; Chand, P. Adsorptive removal of Hexavalent chromium onto Xanthated tea waste from aqueous solution. Sci. Rep. Life Sci. 2023, 4, 44–68. [Google Scholar]
- Senthil Rajan, M.; Ramesh Kumar, G.; Vivek, S.; Gokulan, R.; Balaji, G. Biosorption of chromium (VI+) using tamarind fruit shells in continuously mixed batch reactor. Global NEST J. 2023, 25, 180–186. [Google Scholar] [CrossRef]
- Ghorbani, F.; Kamari, S.; Zamani, S.; Akbari, S.; Salehi, M. Optimization and modeling of aqueous hexavalent chromium adsorption onto activated carbon prepared from sugar beet bagasse agricultural waste by application of response surface methodology. Surf. Interfaces 2020, 18, 100444. [Google Scholar] [CrossRef]
- Gamboa, V.S.; Benvenutti, E.V.; Kinast, É.J.; Pires, M.; Gasparin, F.P.; Ries, L.A.D.S. Efficient removal of chromium (VI) from dilute aqueous solutions using agro-industrial residue based on parboiled-rice husk ash. Chem. Eng. Commu. 2022, 209, 1096–1110. [Google Scholar] [CrossRef]
- Thangagiri, B.; Sakthivel, A.; Jeyasubramanian, K.; Seenivasan, S.; Raja, J.D.; Yun, K. Removal of hexavalent chromium by biochar derived from Azadirachta indica leaves: Batch and column studies. Chemosphere 2022, 286, 131598. [Google Scholar] [CrossRef]
- Sahmoune, M.N.; Louhab, K.; Boukhiar, A. Advanced biosorbents materials for removal of chromium from water and wastewaters. Environ. Prog. Sustain. Energy 2011, 30, 284–293. [Google Scholar] [CrossRef]
- Aoyama, M. Removal of Hexavalent chromium from aqueous solution by London plane leaves. J. Chem. Technol. Biotech Int. Res. Process Environ. Clean Technol. 2003, 78, 601–604. [Google Scholar]
- Khan, I.; Ali, A.; Naz, A.; Baig, Z.T.; Shah, W.; Rahman, Z.U.; Shah, T.A.; Attia, K.A.; Mohammed, A.A.; Hafez, Y.M. Removal of Cr (VI) from wastewater using acrylonitrile grafted cellulose extracted from sugarcane bagasse. Molecules 2024, 29, 2207. [Google Scholar] [CrossRef] [PubMed]
- Sallau, A.B.; Aliyu, S.; Ukuwa, S. Biosorption of chromium (VI) from aqueous solution by corn cob powder. Int. J. Environ. Bioenergy 2012, 4, 131–140. [Google Scholar]
- Fontecha-Cámara, M.A.; López-Ramón, M.V.; Álvarez-Merino, M.A.; Moreno-Castilla, C. About the endothermic nature of the adsorption of the herbicide diuron from aqueous solutions on activated carbon fiber. Carbon 2006, 44, 2335–2338. [Google Scholar] [CrossRef]
- Niam, A.C.; Fenelon, E.; Ningsih, E.; Mirzayanti, Y.W.; Kristanti, E. High-efficiency adsorption of Hexavalent chromium from aqueous solution by Samanea saman activated carbon. Adsorpt. Sci. Technol. 2022, 2022, 8960379. [Google Scholar] [CrossRef]
- Srividya, K.; Mohanty, K. Biosorption of Hexavalent chromium from aqueous solutions by Catla catla scales: Equilibrium and kinetics studies. Chem. Eng. J. 2009, 155, 666–673. [Google Scholar] [CrossRef]
- Pant, B.D.; Neupane, D.; Paudel, D.R.; Lohani, P.C.; Gautam, S.K.; Pokhrel, M.R.; Poudel, B.R. Efficient biosorption of hexavalent chromium from water by modified arecanut leaf sheath. Heliyon 2002, 8, e09283. [Google Scholar] [CrossRef]
- Kabir, M.M.; Akter, M.M.; Khandaker, S.; Gilroyed, B.H.; Didar-ul-Alam, M.; Hakim, M.; Awual, M.R. Highly effective agro-waste based functional green adsorbents for toxic chromium (vi) ion removal from wastewater. J. Mol. Liq. 2022, 347, 118327. [Google Scholar] [CrossRef]
- Irshad, M.A.; Sattar, S.; Nawaz, R.; Al-Hussain, S.A.; Rizwan, M.; Bukhari, A.; Waseem, M.; Irfan, A.; Inam, A.; Zaki, M.E.A. Enhancing chromium removal and recovery from industrial wastewater using sustainable and efficient nanomaterial: A review. Ecotoxicol. Environ. Saf. 2023, 263, 115231. [Google Scholar] [CrossRef]
- Venkatraman, Y.; Arunkumar, P.; Kumar, N.S.; Osman, A.I.; Muthiah, M.; Al-Fatesh, A.S.; Koduru, J.R. Exploring modified rice straw biochar as a sustainable solution for simultaneous Cr(VI) and Pb(II) removal from wastewater: Characterization, mechanism insights, and application feasibility. ACS Omega 2023, 8, 38130–38147. [Google Scholar] [CrossRef] [PubMed]
S. No. | Waste Material Biomass | Additional Treatment | Experimental Conditions | Adsorption Capacity (mg/g) | Removal Efficiency (%) | References |
---|---|---|---|---|---|---|
1. | Maize cob | Maize cob powdered | Batch experiment Adsorbent dose = 5.0 mg/L | - | 99.1% | [141] |
2. | Mango kernel | Mango kernel powdered | Temperature = 298 K Contact time = 30 min | 94.8 | - | [142] |
3. | Raspberry canes | - | Initial concentration of Cr(VI) = 50 mg/L pH = 2 | - | ~95% | [143] |
4. | Sambucus nigra leaves (Agroforestry and industrial residue) | Ground and sieved | Adsorbent dosage = 3 g/L pH = 2 | - | 98.2% | [144] |
5. | Rice husk | Dried, crushed and sieved | pH = 5.2 Initial Cr(VI) concentration = 120 mg/L Time = 2 h | 379.6 | 78.6% | [41] |
6. | Artocarpus heterophyllus Lam.(Jackfruit) leaves | Dried, crushed and sieved | pH = 8, Adsorbent dose = 0.5 g/L, Time = 120 min. | 0.19 | 95% | [145] |
7. | Moringa stenopetala seed (MSSP) and banana peel (BPP) | Dried, ground and sieved | Contact time = 120 min Adsorbent dose = 20 g/L pH = 2 (by MSSP) pH = 4 (by BPP) | - | 90.9% by MSSP, 89.6% by BPP | [146] |
8. | Date palm empty fruit bunch | Dried, ground and sieved | Batch adsorption studies pH = 2 Adsorbent dose = 0.3 g Agitation speed = 100 rpm Contact time = 120 min Temperature = 30 °C | 70.4 | 58.0% | [147] |
9. | Magnolia leaf | Dried, ground, re-washed, re- dried and sieved | pH = 2 Adsorbent dose = 0.5 g Initial Cr(VI) concentration = 40 mg/L Contact time = 45 min | 3.96 | 98.8% | [148] |
10. | Musa acuminata Bract (MAB) | Dried, crushed and sieved | pH = 2 Adsorbent dose = 0.2 g/L | 36.8 | 87.6% | [149] |
11. | Gliricidia sepium leaf | Dried, powdered and sieved | pH = 2 Contact time = 120 min Biosorbent dose = 0.3 g Agitation speed = 100 rpm Initial Cr(VI) concentration = 50 mg/L | - | 99.9% | [150] |
12. | Heinsia crinite seed coat (HCSC) | Dried and powdered | pH = 2 Adsorbent dose = 0.25 g Contact time = 30 min | 231.7 | - | [151] |
13. | Raw spent coffee waste | Washed, dried, sieved | pH = 4 Contact time = 90 min Adsorbent dose = 2.5 g/L Initial Cr(VI) concentration = 100 mg/L | 42.9 | - | [152] |
14. | Pomegranate Peel | Powdered | pH = 1 Adsorbent dosage = 25.74 mg/g Temperature = 50 °C Initial Cr(VI) concentration = 100 mg/L | 25.7 | 100% | [153] |
15. | Banana Peel | Washed, dried, ground, sieved | _ | 90 | ~100% | [154] |
S. No. | Waste Material Biomass | Additional Treatment | Experimental Conditions | Adsorption Capacity (mg/g) | Removal Efficiency (%) | References |
---|---|---|---|---|---|---|
1. | Sugarcane bagasse | Schwertmannite Loaded beads of lignocellulose formed by sugarcane bagasse (~2 mm) | Batch experiment | 24.6 | - | [170] |
2. | Garcinia kola hull particles (GK-HP) | GK-HP hydrolysed by NaOH and modified | pH = 2 Temperature = 40 °C Adsorbent dosage = 8 g/L Contact time = 60 min | - | 96.2% | [42] |
3. | Cauliflower stem | Phosphoric acid activated biochar (PBC-350) of cauliflower stem | Ph = 2 Shaking time = 2 h Cr(VI) concentration = 200 mg/L | 64.1 by PBC-450 | 92% by PBC-350 | [19] |
4. | Wheat straw | Ball mill modified biochar of wheat straw | pH = 2 Temperature = 45 °C | 52.2 | 100% | [171] |
5. | Rice straw | Activated Carbon Formed from rice straw | pH = 3 | 1.48 | 98.9 % | [172] |
6. | Banana peel | Banana peel activated (in furnace) | Adsorption time = 92 min Adsorbent dose = 1.5 g/L pH = 3 Initial Cr(VI) concentration = 38 mg/L | - | 94% | [173] |
7. | Banana peel + Corn cob | ZnCl2 impregnated biochar mixture obtained from banana peel and corn cob | pH = 2.05 Time = 34.40 min Biochar dose = 0.354 g Initial Cr(VI) concentration = 23.02 mg/L | 35.8 | 98.9% | [174] |
8. | Coconut coir | Porous biochar prepared from coconut coir | Within 24 h | 40.3 | ~90% | [175] |
9. | Walnut shells | Native Walnut shell powder (NWP), Chemically modified with alkali (AWP), Citric acid walnut shell powder (CWP) used | Batch adsorption studies pH = 2 | CWP = 75.2 mg/g AWP = 69.5 mg/g NWP = 64.8 mg/g | - | [176] |
10. | Tea waste | Charred tea waste (By treatment of concentrated sulphuric acid) into tea waste | pH = 2 Time = 120 min | - | 81.4% | [177] |
11. | Tea waste | Tea waste treated with concentrated sulphuric acid give charred tea waste then NaOH, CS2 gave Xanthated tea waste | Batch adsorption studies performed pH = 2 Adsorbent dose = 100 mg/L Time = 120 min | - | 95.6% | [178] |
12. | Tamarind fruit shells (TFS) | TFS pre-treated with phosphoric acid | Experiment in continuously mixed batch reactor (CMBR) Temperature = 25 °C Initial Cr(VI) concentration = 50 mg/L Adsorbent dosage = 12 g/L pH = 2–3 | - | >95% | [179] |
13. | Sugar beet bagasse (SBB) | Activated carbon formed from sugar beet bagasse | pH = 4.05 Adsorbent dosage = 1.49 g/L Initial Cr(VI) concentration = 10.13 mg/L | - | 50.5% | [180] |
14. | Rice husk | Parboiled Rice husk ash (RHA), Parboiled rice husk ash chemically treated (RHAH+) | pH = 1 Initial Cr(VI) concentration = 5 mg/L Time = 30 min | - | 90.9% by RHA, 97.7% by RHAH+ | [181] |
15. | Rice husk | By low temperature pyrolysis of rice husk, Amide- modified biochar synthesized | pH = 2 Contact time = 60 min Adsorbent dosage = 2 g/L Initial Cr(VI) concentration = 100 mg/L | - | 97% | [2] |
16. | Azadirachta indica leaves | Neem leaves modified to biochar | pH = 2 | 58.5 mg/g | - | [182] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tripathi, M.; Pathak, S.; Singh, R.; Singh, P.; Singh, P.K.; Shukla, A.K.; Maurya, S.; Kaur, S.; Thakur, B. A Comprehensive Review of Lab-Scale Studies on Removing Hexavalent Chromium from Aqueous Solutions by Using Unmodified and Modified Waste Biomass as Adsorbents. Toxics 2024, 12, 657. https://doi.org/10.3390/toxics12090657
Tripathi M, Pathak S, Singh R, Singh P, Singh PK, Shukla AK, Maurya S, Kaur S, Thakur B. A Comprehensive Review of Lab-Scale Studies on Removing Hexavalent Chromium from Aqueous Solutions by Using Unmodified and Modified Waste Biomass as Adsorbents. Toxics. 2024; 12(9):657. https://doi.org/10.3390/toxics12090657
Chicago/Turabian StyleTripathi, Manikant, Sukriti Pathak, Ranjan Singh, Pankaj Singh, Pradeep Kumar Singh, Awadhesh Kumar Shukla, Sadanand Maurya, Sukhminderjit Kaur, and Babita Thakur. 2024. "A Comprehensive Review of Lab-Scale Studies on Removing Hexavalent Chromium from Aqueous Solutions by Using Unmodified and Modified Waste Biomass as Adsorbents" Toxics 12, no. 9: 657. https://doi.org/10.3390/toxics12090657
APA StyleTripathi, M., Pathak, S., Singh, R., Singh, P., Singh, P. K., Shukla, A. K., Maurya, S., Kaur, S., & Thakur, B. (2024). A Comprehensive Review of Lab-Scale Studies on Removing Hexavalent Chromium from Aqueous Solutions by Using Unmodified and Modified Waste Biomass as Adsorbents. Toxics, 12(9), 657. https://doi.org/10.3390/toxics12090657