Element Levels in Feathers of Atlantic Puffins (Fratercula arctica) in Iceland: Establishing Background Levels in an Arctic Migratory Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Collecting Methods
2.3. Chemical Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Methodological Issues
4.2. Temporal Differences in Metal Concentrations in Feathers from Vestmannaeyjar Island
4.3. Differences in Element Concentrations Among Colony Sites in Iceland
4.4. Geographical Comparisons of Element Concentrations
4.5. Potential Effects of Hg
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fairbrother, A. Federal environmental legislation in the US for protection of wildlife and regulation of environmental contaminants. Ecotoxicology 2009, 18, 784–790. [Google Scholar] [CrossRef] [PubMed]
- Rolfhus, K.R.; Hall, B.D.; Monson, B.A.; Paterson, M.J.; Jeremiason, J.D. Assessment of mercury bioaccumulation within the pelagic food web of lakes in the western Great Lakes region. Ecotoxicology 2011, 20, 1520–1529. [Google Scholar] [CrossRef] [PubMed]
- Burger, J. Trust and consequences: Role of community science, perceptions, values, and environmental justice in risk communication. Risk Anal. 2022, 42, 2362–2375. [Google Scholar] [CrossRef] [PubMed]
- Hammerschmidt, C.R.; Fitzgerald, W.F. Bioaccumulation and trophic transfer of methylmercury in Long Island Sound. Arch. Environ. Contam. Toxicol. 2006, 51, 416–424. [Google Scholar] [CrossRef]
- Houghton, J.T.; Callander, B.S.; Varney, S.K. Climate Change; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Choudhary, S.; Nayak, G.; Khare, N. Source, mobility, and bioavailability of metals in fjord sediments of Krossfjord-Kongsfjord system, Arctic, Svalbard. Environ. Sci. Pollut. Res. 2020, 27, 15130–15148. [Google Scholar] [CrossRef]
- Fowler, S.W. Critical review of selected heavy metal and chlorinated hydrocarbon concentrations in the marine environment. Mar. Environ. Res. 1990, 29, 1–64. [Google Scholar] [CrossRef]
- Sutton, C.C.; O’Herron, J.C.; Zappalorti, R.T. The Scientific Characterization of the Delaware Estuary; Delaware Estuary Program: Philadelphia, PA, USA, 1996. [Google Scholar]
- Hopkins, W.A.; Roe, J.H.; Snodgrass, J.W.; Jackson, B.P.; Kling, D.E.; Rowe, C.L. Non-destructive indices of trace element exposure in squamate reptiles. Environ. Pollut. 2002, 115, 107. [Google Scholar]
- Burger, J.; Gochfeld, M. Habitat, Population Dynamics, and Metal Concentrations in Colonial Waterbirds; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Mallory, M.; Petersen, A.; Thorstensen, S.; Spooner, I.; O’Driscoll, N.; Baak, J.; McIntyre, J. Mercury in Soils of Seabird Nesting Islands in West Iceland. ARCTIC 2023, 76, 48–59. [Google Scholar] [CrossRef]
- Eisler, R. A review of arsenic hazards to plants and animals, with emphasis on fish and wildlife. In As in the Environment; Nriagu, J.O., Ed.; Wiley: New York, NY, USA, 1991; pp. 374–393. [Google Scholar]
- Frederick, P.; Jayasena, N. Altered pairing behavior and reproductive success in White Ibises exposed to environmentally relevant concentrations of methylmercury. Proc. R. Soc. B 2010, 278, 1851–1857. [Google Scholar] [CrossRef]
- Burger, J.; Gochfeld, M. Effects of lead on birds (Laridae): A review of laboratory and field studies. J. Toxicol. Environ. Health B 2010, 3, 59–78. [Google Scholar]
- Adams, E.M.; Williams, K.A.; Olsen, B.J.; Evers, D.C. Mercury exposure in migrating songbirds: Correlations with physical condition. Ecotoxicology 2020, 29, 1240–1253. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Choi, C.-Y.; Thomas, A.; Gibson, L. Review of contaminant levels and effects in shorebirds: Knowledge gaps and conservation practices. Ecol. Environ. Saf. 2022, 242, 113868. [Google Scholar] [CrossRef] [PubMed]
- Evers, D.C.; Wiener, J.G.; Basu, N.; Bodaly, R.A.; Morrison, H.A.; Williams, K.A. Mercury in the Great Lakes region: Bioaccumulation, spatiotemporal patterns, ecological risks, and policy. Ecotoxicology 2011, 20, 1487–1499. [Google Scholar] [CrossRef]
- Egwumah, F.A.; Egwumah, P.O.; Edet, D.I. Paramount roles of wild birds as bioindicators of contamination. Int. J. Avian Wildl. Biol. 2017, 2, 194–200. [Google Scholar]
- He, C.; Su, T.; Liu, S.; Jiang, A.; Goodale, E.; Qiu, G. Arsenic and selenium concentrations in bird feathers from a region in southern China impacted by intensive mining of nonferrous metals. Environ. Toxicol. 2019, 39, 371–380. [Google Scholar] [CrossRef]
- Piersma, T.; Lok, T.; Chen, Y.; Hassell, C.J.; Yang, H.Y.; Boyle, A.; Slaymaker, M.; Chan, Y.C.; Melville, D.S.; Zhang, Z.-W.; et al. Simultaneous declines in summer survival of three shorebird species signal a flyway at risk. J. Appl. Ecol. 2016, 53, 479–490. [Google Scholar] [CrossRef]
- Rudnicka-Kepa, P.; Beldowska, M.; Zaborska, A. Enhanced heavy metal discharges to marine deposits in glacial bays of two Arctic fjords (Hornsund and Kongsfjorden). J. Mar. Syst. 2024, 241, 103915. [Google Scholar] [CrossRef]
- Rudnicka-Kepa, P.; Zaborska, A. Sources, fate, and distribution of inorganic contaminants in the Svalbard area, representative of a typical Arctic critical environment—A review. Environ. Monit. Assess. 2021, 193, 724. [Google Scholar] [CrossRef]
- Klootwijk, A.; Alve, E.; Hess, S.; Renaud, P.; Sørlie, C.; Dolven, J. Monitoring environmental impacts of fish farms: Comparing reference conditions of sediment geochemistry and benthic foraminifera with the present. Ecol. Indic. 2021, 120, 106818. [Google Scholar] [CrossRef]
- Kerfahi, D.; Newsham, K.; Dong, K.; Song, H.; Tibbett, M.; Adams, J. Enduring legacy of coal mining on the fungal community in a high Arctic soil after five decades. Pedosphere 2022, 32, 698–706. [Google Scholar] [CrossRef]
- Albert, C.; Helgason, H.; Brault-Favrou, M.; Robertson, G.; Descamps, S.; Amélineau, F.; Danielsen, J.; Dietz, R.; Elliott, K.; Erikstad, K.; et al. Seasonal variation of mercury contamination in Arctic seabirds: A pan-Arctic assessment. Sci. Total Environ. 2021, 750, 142201. [Google Scholar] [CrossRef] [PubMed]
- Chastel, O.; Fort, J.; Ackerman, J.; Albert, C.; Angelier, F.; Basu, N.; Blevin, P.; Brault-Favrou, M.; Bustnes, J.; Bustamante, P.; et al. Mercury contamination and potential health risks to Arctic seabirds and shorebirds. Sci. Total Environ. 2022, 844, 156944. [Google Scholar] [CrossRef]
- Cruz-Flores, M.; Lemaire, J.; Brault-Favrou, M.; Christensen-Dalsgaard, S.; Churlaud, C.; Descamps, S.; Elliott, K.; Erikstad, K.; Ezhov, A.; Gavrilo, M.; et al. Spatial distribution of selenium-mercury in Arctic seabirds. Environ. Pollut. 2024, 343, 123110. [Google Scholar] [CrossRef]
- Pollet, I.L.; Provencher, J.F.; McFarlane Tranquilla, L.; Burgess, N.M.; Mallory, M.L. Mercury Levels in North Atlantic Seabirds: A Synthesis. Mar. Poll. Bull. 2022, 181, 113884. [Google Scholar] [CrossRef]
- Albert, C.; Moe, B.; Strøm, H.; Grémillet, D.; Brault-Favrou, M.; Tarroux, A.; Descamps, S.; Bråthen, V.S.; Merkel, B.; Åström, J.; et al. Seabirds Reveal Mercury Distribution across the North Atlantic. Proc. Natl. Acad. Sci. USA 2024, 121, e2315513121. [Google Scholar] [CrossRef]
- Thompson, D.R.; Furness, R.W.; Walsh, P.M. Historical changes in mercury concentrations in the marine ecosystem of the north and north-east Atlantic ocean as indicated by seabird feathers. J. Appl. Ecol. 1992, 29, 79–84. [Google Scholar] [CrossRef]
- Burger, J.; Gochfeld, M. Mercury and other metals in feathers of common eider (Somateria mollissima) and tufted puffin (Fratercula cirrhata) from the Aleutian chain of Alaska. Arch. Environ. Contam. Toxicol. 2009, 56, 596–606. [Google Scholar] [CrossRef]
- Fowler, S.W. Concentration of selected contaminants in water, sediments, and living organisms. In UNEP: Technical Annexes to the Report on the State of the Marine Environment; UNEP Regional Sea Reports and Studies No. 11412; United Nations Environmental Program: Nairobi, Kenya, 1990; pp. 209–230. [Google Scholar]
- Spahn, S.A.; Sherry, T.W. Cadmium and lead exposure associated with reduced growth rates and poorer fledging success of Little Blue Heron chicks (Egretta caerulea) in South Louisiana wetlands. Arch. Environ. Contam. Toxicol. 1999, 37, 377–384. [Google Scholar]
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Mercury; Agency for Toxic Substances and Disease Registry, US Public Health Service: Atlanta, GA, USA, 2024. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp46.pdf (accessed on 2 December 2024).
- Agency for Toxic Substances and Disease Registry (ATSDR). Addendum to the Toxicological Profile for Mercury (Alkyl and Dialkyl Compounds); Agency for Toxic Substances and Disease Registry, US Public Health Service: Atlanta, GA, USA, 2013. Available online: https://downloads.regulations.gov/EPA-HQ-OAR-2011-0797-0373/attachment_20.pdf (accessed on 6 September 2024).
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Cadmium; Agency for Toxic Substances and Disease Registry, US Public Health Service: Atlanta, GA, USA, 2012. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp5.pdf (accessed on 6 September 2024).
- Whitney, M.C.; Cristol, D.A. Mercury exposure and its effects on the reproductive success of birds. Ecotoxicology 2018, 27, 775–783. [Google Scholar]
- Neff, J.M. Ecotoxicology of arsenic in the marine environment. Environ. Toxicol. Chem. 1997, 16, 917–927. [Google Scholar] [CrossRef]
- Burke, T.; Fagliano, J.; Goldoft, M.; Hazen, R.E.; Iglewicz, R.; McKee, T. Chromite ore processing residue in Hudson County, New Jersey. Environ. Health Perspect. 1991, 92, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Eisler, R. Lead Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review; U.S. Fish and Wildlife Service, Patuxent Wildlife Research Center: Laurel, MD, USA, 1987; Volume 85. [Google Scholar]
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Lead; Agency for Toxic Substances and Disease Registry, US Public Health Service: Atlanta, GA, USA, 2020. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp13.pdf (accessed on 6 September 2024).
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Selenium; Agency for Toxic Substances and Disease Registry, US Public Health Service: Atlanta, GA, USA, 2003. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp92.pdf (accessed on 6 September 2024).
- Heinz, G.H. Selenium in birds. In Environmental Contaminants in Wildlife: Interpreting Tissue Concentrations; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Eisler, R. Selenium. In Handbook of Chemical Risk Assessment: Health Hazards to Humans, Plants, and Animals; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Hoffman, D.J. Role of selenium toxicity and oxidative stress in aquatic birds. Aquat. Toxicol. 2002, 57, 11–26. [Google Scholar] [CrossRef] [PubMed]
- Bottini, C.L.J.; MacDougall-Shackleton, S.A.; Branfireun, B.A.; Hobson, K.A. Feathers accurately reflect blood mercury at time of feather growth in a songbird. Sci. Total Environ. 2021, 775, 145778. [Google Scholar] [CrossRef]
- Ma, Y.; Hobson, K.A.; Kardynal, K.J.; Guglielmo, C.G.; Branfireun, B.A. Inferring spatial patterns of mercury exposure in migratory boreal songbirds: Combining feather mercury and stable isotope measurements. Sci. Total Environ. 2021, 762, 143109. [Google Scholar] [CrossRef]
- Ma, Y.; Perez, C.R.; Branfireun, B.A.; Guglielmo, C.G. Dietary exposure to methylmercury affects flight endurance in a migratory songbird. Environ. Pollut. 2018, 234, 894–901. [Google Scholar] [CrossRef]
- Hansen, E.S.; Garðarsson, A. The Atlantic puffin population size of Vestmannaeyjar. Bliki 2011, 31, 15–24. [Google Scholar]
- Lowther, P.E.; Diamond, A.W.; Kress, S.W.; Robertson, G.J.; Russell, K.; Nettleship, D.N.; Kirwan, G.M.; Christie, D.A.; Sharpe, C.J.; Garcia, E.; et al. Atlantic Puffin (Fratercula arctica). Version 1.0.; In Birds of the World; Billerman, S.M., Ed.; Cornell: Ithaca, NY, USA, 2020. [Google Scholar]
- Lilliendahl, K.; Hansen, E.S.; Bogason, V.; Sigursteinsson, M.; Magnúsdóttir, M.; Jonsson, P.; Helgason, H.; Óskarsson, G.; Óskar, P.; Sigurðsson, J. Viðkomubrestur lunda og sandsílis við Vestmannaeyjar. Náttúrufræðingurinn 2013, 81, 65–79. [Google Scholar]
- Hansen, E.S.; Sandvik, H.; Erikstad, K.E.; Yoccoz, N.G.; Anker-Nilssen, T.; Bader, J.; Descamps, S.; Hodges, K.; Mesquita, M.d.S.; Reiertsen, T.K.; et al. Centennial Relationships between Ocean Temperature and Atlantic Puffin Production Reveal Shifting Decennial Trends. Glob. Change Biol. 2021, 27, 3753–3764. [Google Scholar] [CrossRef]
- Petersen, A. Size Variables in Puffins Fratercula arctica from Iceland, and Bill Features as Criteria of Age. Ornis Scand. 1976, 7, 185–192. [Google Scholar] [CrossRef]
- Hansen, B.; Østerhus, S. North Atlantic-Nordic Seas exchanges. Prog. Oceanogr. 2000, 45, 109–208. [Google Scholar] [CrossRef]
- Wolfe, M.; Schwarzbach, S.; Sulaiman, R.S. Effects of mercury on wildlife: A comprehensive review. Environ. Toxicol. Chem. 1998, 17, 146–160. [Google Scholar] [CrossRef]
- Wiener, J.C.; Krabbenhoft, D.P.; Heinz, G.H.; Scheuhammer, M. Ecotoxicology of mercury. In Handbook of Ecotoxicology; Hoffman, D.J., Rattner, B.A., Burton, G.A., Jr., Cairns, J., Jr., Eds.; Lewis Publications: Boca Raton, FL, USA, 2003. [Google Scholar]
- Keute, J.; Rizzo, J.; Giunta, F.; Hernout, B.V. Evaluating washing techniques to eliminate external contamination of trace elements in bat fur and bird feathers. Ecotoxicol. Environ. Saf. 2024, 283, 116819. [Google Scholar] [CrossRef] [PubMed]
- Loftus, W.F. Accumulation and Fate of Mercury in an Everglades Aquatic Food Web. Ph.D. Thesis, Florida International University, Miami, FL, USA, 2000. [Google Scholar]
- Liu, G.; Cai, Y.; Tachiev, G.; Lagos, L. Mercury mass budget estimates and cycling in the Florida Everglades. In Microbiology of the Everglades Ecosystem; CRC Press: Boca Raton, FL, USA, 2015; Volume 23, pp. 68–88. [Google Scholar]
- Burger, J.; Gochfeld, M. Effects of chemicals and pollution on seabirds. In Biology of Marine Birds; Schreiber, E.A., Burger, J., Eds.; CRC Press: Boca Raton, FL, USA, 2001; pp. 485–526. [Google Scholar]
- Burger, J.; Gochfeld, M. Cadmium and lead in Common Terns (Sterna hirundo): Relationship between levels in parents and eggs. Environ. Monit. Assess. 1991, 16, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Ralston, N.V.C.; Raymond, L.J. Mercury’s Neurotoxicity Is Characterized by Its Disruption of Selenium Biochemistry. Biochim. Et Biophys. Acta BBA—Gen. Subj. 2018, 1862, 2405–2416. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, J.T.; Eagles-Smith, C.S.; Herzog, M.P.; Hartman, C.A.; Peterson, S.H.; Evers, D.C.; Jackson, A.K.; Elliott, J.E.; Vander Pol, S.S.; Bryan, C.E. Avian mercury exposure and toxicological risk across western North America: A synthesis. Sci. Total Environ. 2016, 568, 749–769. [Google Scholar] [CrossRef]
- Vinceti, M.; Wei, E.T.; Malagoli, C.; Bergomi, M.; Vivoli, G. Adverse health effects of selenium in humans. Rev. Environ. Health 2001, 16, 233–251. [Google Scholar] [CrossRef]
- Dietz, R.; Fort, J.; Sonne, C.; Albert, C.; Bustnes, J.; Christensen, T.; Ciesielski, T.; Danielsen, J.; Dastnai, S.; Eens, M.; et al. A Risk Assessment of the Effects of Mercury on Baltic Sea, Greater North Sea and North Atlantic Wildlife, Fish and Bivalves. Environ. Int. 2021, 146, 106178. [Google Scholar] [CrossRef]
- Burger, J. Metals in avian feathers: Bioindicators of environmental pollution. Rev. Environ Toxicol. 1993, 5, 197–306. [Google Scholar]
- Baldwnn, H.R. Sea bird fowling in Scholand and Faros. Folk Life 1974, 12, 31–38. [Google Scholar] [CrossRef]
- BirdLife International. Species Factsheet: Atlantic Puffin Fratercula arctica. Bird Life International. 2024. Available online: https://datazone.birdlife.org/species/factsheet/atlantic-puffin-fratercula-arctica (accessed on 6 September 2024).
Location | Coordinates | Sample Size | Years Collected | Burrow Numbers |
---|---|---|---|---|
Grimsey I. | 17°59′36.8″ W, 66°32′47.8″ N | 15 | 2011 | 99,900 |
Lundey I. | 17°22′12.05″ W, 66°6′50.41″ N | 15 | 2011 | 36,500 |
Vestmannaeyjar | 20°17′00.0″ W, 63°24′00.0″ N | 15, 10 | 2009, 2011 | 1,102,000 |
Vigur I. | 22°49′46.0″ W, 66°03′22.3″ N | 15 | 2011 | 38,400 |
Year | 2009 | 2011 | X2 |
---|---|---|---|
N | 15 | 10 | |
Pb | 805 ± 202 595 | 58.4 ± 9.7 48 | 55 (0.0004) |
Cd | 78.2 ± 16.9 58.5 | 26.4 ± 10.6 17.3 | 75 (0.0062) |
Se | 4280 ± 317 4100 | 2670 ± 286 2520 | 76.5 (0.0071) |
Cr | 509 ± 111 387 | 117 ± 2.0 108 | 63 (0.0011) |
Mn | 361 ± 49.0 325 | 230 ± 40.7 204 | 89.5 (0.0357) |
As | 54.5 ± 13.3 29.4 | 41.3 ± 11.7 14.1 | 121.2 (NS) |
Hg | 3100 ± 408 2710 | 4250 ± 569 3830 | 158 (NS) |
Location | Vestmannaeyjar | Vigur | Grimsey | Lundey | X2 |
---|---|---|---|---|---|
N | 10 | 15 | 15 | 15 | |
Pb | 58.4 ± 9.7 48 | 65.3 ± 7.1 58.2 | 81.8 ± 17.2 41.0 | 71.2 ± 10.0 43.3 | 0.91 (NS) |
Cd | 26.4 ± 10.6 17.3 | 37.0 ± 2.7 35.5 | 29.3 ± 2.3 28.0 | 39.6 ± 8.0 31.1 | 12 (0.007) |
Se | 2670 ± 286 2520 | 4880 ± 335 4710 | 4420 ± 389 4070 | 4670 ± 311 4510 | 14.4 (0.002) |
Cr | 117 ± 16 108 | 133 ± 15.9 120 | 167 ± 33.4 128 | 165 ± 31.8 132 | 0.66 (NS) |
As | 41.3 ± 11.7 14.1 | 32.0 ± 9.8 3.7 | 53.1 ± 20.8 6.5 | 67.1 ± 13.9 13.5 | 3.34 (NS) |
Hg | 4250 ± 569 3830 | 3010 ± 412 2590 | 2610 ± 428 2130 | 3400 ± 326 3190 | 6.03 (NS) |
Atlantic Puffin | Tufted Puffin | X2 (p) | |
---|---|---|---|
Collection year | 2011 | 2004 | |
Sample size | 55 | 39 | |
Life cycle state | Breeding season | Breeding season | |
Elements | |||
As | 49 ± 8 | 136 ± 26 | 5.6 (0.02) |
Cd | 34 ± 3 | 80 ± 13 | 10 (0.002) |
Cr | 148 ± 14 | 1820 ± 230 | 68 (<0.0001) |
Pb | 70 ± 6 | 1260 ± 339 | 27 (<0.0001) |
Mn | 303 ± 24 | 622 ± 58 | 28 (<0.0001) |
Hg a | 3230 ± 219 | 2540 ± 195 | 2.9 (NS) |
Se | 4290 ± 198 | 6600 ± 344 | 28 (<0.0001) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burger, J.; Hansen, E.S.; Ng, K.; Gochfeld, M. Element Levels in Feathers of Atlantic Puffins (Fratercula arctica) in Iceland: Establishing Background Levels in an Arctic Migratory Species. Toxics 2025, 13, 103. https://doi.org/10.3390/toxics13020103
Burger J, Hansen ES, Ng K, Gochfeld M. Element Levels in Feathers of Atlantic Puffins (Fratercula arctica) in Iceland: Establishing Background Levels in an Arctic Migratory Species. Toxics. 2025; 13(2):103. https://doi.org/10.3390/toxics13020103
Chicago/Turabian StyleBurger, Joanna, Erpur Snær Hansen, Kelly Ng, and Michael Gochfeld. 2025. "Element Levels in Feathers of Atlantic Puffins (Fratercula arctica) in Iceland: Establishing Background Levels in an Arctic Migratory Species" Toxics 13, no. 2: 103. https://doi.org/10.3390/toxics13020103
APA StyleBurger, J., Hansen, E. S., Ng, K., & Gochfeld, M. (2025). Element Levels in Feathers of Atlantic Puffins (Fratercula arctica) in Iceland: Establishing Background Levels in an Arctic Migratory Species. Toxics, 13(2), 103. https://doi.org/10.3390/toxics13020103