Effects of Short-Term Traffic-Related Air Pollution Exposure on Nasal Microbiome in Young Healthy Adults: A Randomized Crossover Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants of the Study
2.2. Study Design
2.3. Exposure Measurements
2.4. Nasal Mucus Collection
2.5. Extraction and PCR Amplification and Quantification of Total DNA from the Microbiome
2.6. Sequencing Library Preparation, On-Line Quality Control, and Sequencing
2.7. Statistical Analysis
3. Results
3.1. Descriptive Data
3.2. Key Air Pollutants and Meteorological Conditions
3.3. Characterization and Diversity of the Nasal Microbiome
3.4. Impact of Short-Term Exposure to Traffic-Related Air Pollution on the α-Diversity of the Nasal Microbiome
3.5. Differences in the Species Composition of the Nasal Microbiome Following Short-Term Exposure to TRAP
3.6. Predicting the Metabolic Functions of Nasal Microbiota and the Impact of Short-Term TRAP on These Functions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vohra, K.; Vodonos, A.; Schwartz, J.; Marais, E.A.; Sulprizio, M.P.; Mickley, L.J. Global Mortality from Outdoor Fine Particle Pollution Generated by Fossil Fuel Combustion: Results from Geos-Chem. Env. Environ. Res. 2021, 195, 110754. [Google Scholar] [CrossRef] [PubMed]
- Burnett, R.; Chen, H.; Szyszkowicz, M.; Fann, N.; Hubbell, B.; Pope, C.A.; Apte, J.S.; Brauer, M.; Cohen, A.; Weichenthal, S.; et al. Global Estimates of Mortality Associated with Long-Term Exposure to Outdoor Fine Particulate Matter. Proc. Natl. Acad. Sci. USA 2018, 115, 9592–9597. [Google Scholar] [CrossRef] [PubMed]
- Monzón, A.; Guerrero, M.J. Valuation of Social and Health Effects of Transport-Related Air Pollution in Madrid (Spain). Sci. Total Environ. 2004, 334–335, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, N.; Al-Shahwani, D.; Al-Thani, H.; Isaifan, R.J. Risk Assessment of the Impact of Heavy Metals in Urban Traffic Dust on Human Health. Atmosphere 2023, 14, 1049. [Google Scholar] [CrossRef]
- Frey, H.C.; Grieshop, A.P.; Khlystov, A.; Bang, J.J.; Rouphail, N.; Guinness, J.; Rodriguez, D.; Fuentes, M.; Saha, P.; Brantley, H.; et al. Characterizing Determinants of near-Road Ambient Air Quality for an Urban Intersection and a Freeway Site. Res. Rep. Health Eff. Inst. 2022, 2022, 207. [Google Scholar]
- Orach, J.; Rider, C.F.; Yuen, A.C.Y.; Carlsten, C. Concentration-Dependent Increase in Symptoms Due to Diesel Exhaust in a Controlled Human Exposure Study. Part. Fibre Toxicol. 2022, 19, 66. [Google Scholar] [CrossRef]
- Zhang, Q.; Du, X.; Li, H.; Jiang, Y.; Zhu, X.; Zhang, Y.; Niu, Y.; Liu, C.; Ji, J.; Chillrud, S.N.; et al. Cardiovascular Effects of Traffic-Related Air Pollution: A Multi-Omics Analysis from a Randomized, Crossover Trial. J. Hazard. Mater. 2022, 435, 129031. [Google Scholar] [CrossRef]
- Bowatte, G.; Lodge, C.J.; Knibbs, L.D.; Lowe, A.J.; Erbas, B.; Dennekamp, M.; Marks, G.B.; Giles, G.; Morrison, S.; Thompson, B.; et al. Traffic-Related Air Pollution Exposure Is Associated with Allergic Sensitization, Asthma, and Poor Lung Function in Middle Age. J. Allergy Clin. Immunol. 2017, 139, 122–129.e1. [Google Scholar] [CrossRef]
- Costa, L.G.; Chang, Y.C.; Cole, T.B. Developmental Neurotoxicity of Traffic-Related Air Pollution: Focus on Autism. Curr. Env. Environ. Health Rep. 2017, 4, 156–165. [Google Scholar] [CrossRef]
- Costerton, J.W.; Stewart, P.S.; Greenberg, E.P. Bacterial Biofilms: A Common Cause of Persistent Infections. Science 1999, 284, 1318–1322. [Google Scholar] [CrossRef]
- Qin, T.; Wang, Y.; Deng, J.; Xu, B.; Zhu, X.; Wang, J.; Zhou, H.; Zhao, N.; Jin, F.; Ren, H.; et al. Super Dominant Pathobiontic Bacteria in the Nasopharyngeal Microbiota Cause Secondary Bacterial Infection in Covid-19 Patients. Microbiol. Spectr. 2022, 10, e0195621. [Google Scholar] [CrossRef] [PubMed]
- Panumasvivat, J.; Pratchayasakul, W.; Sapbamrer, R.; Chattipakorn, N.; Chattipakorn, S.C. The Possible Role of Particulate Matter on the Respiratory Microbiome: Evidence from in Vivo to Clinical Studies. Arch. Toxicol. 2023, 97, 913–930. [Google Scholar] [CrossRef] [PubMed]
- Thaiss, C.A.; Levy, M.; Suez, J.; Elinav, E. The Interplay between the Innate Immune System and the Microbiota. Curr. Opin. Immunol. 2014, 26, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Man, W.H.; de Steenhuijsen Piters, W.A.; Bogaert, D. The Microbiota of the Respiratory Tract: Gatekeeper to Respiratory Health. Nat. Rev. Microbiol. 2017, 15, 259–270. [Google Scholar] [CrossRef]
- Zhou, Y.; Mihindukulasuriya, K.A.; Gao, H.; La Rosa, P.S.; Wylie, K.M.; Martin, J.C.; Kota, K.; Shannon, W.D.; Mitreva, M.; Sodergren, E.; et al. Exploration of Bacterial Community Classes in Major Human Habitats. Genome Biol. 2014, 15, R66. [Google Scholar] [CrossRef]
- Frank, D.N.; Feazel, L.M.; Bessesen, M.T.; Price, C.S.; Janoff, E.N.; Pace, N.R. The Human Nasal Microbiota and Staphylococcus Aureus Carriage. PLoS ONE 2010, 5, e10598. [Google Scholar] [CrossRef]
- Pettigrew, M.M.; Laufer, A.S.; Gent, J.F.; Kong, Y.; Fennie, K.P.; Metlay, J.P. Upper Respiratory Tract Microbial Communities, Acute Otitis Media Pathogens, and Antibiotic Use in Healthy and Sick Children. Appl. Env. Environ. Microbiol. 2012, 78, 6262–6270. [Google Scholar] [CrossRef]
- Bomar, L.; Brugger, S.D.; Lemon, K.P. Bacterial Microbiota of the Nasal Passages across the Span of Human Life. Curr. Opin. Microbiol. 2018, 41, 8–14. [Google Scholar] [CrossRef]
- von Hertzen, L.; Hanski, I.; Haahtela, T. Natural Immunity. Biodiversity Loss and Inflammatory Diseases Are Two Global Megatrends That Might Be Related. EMBO Rep. 2011, 12, 1089–1093. [Google Scholar] [CrossRef]
- Niemeier-Walsh, C.; Ryan, P.H.; Meller, J.; Ollberding, N.J.; Adhikari, A.; Reponen, T. Exposure to Traffic-Related Air Pollution and Bacterial Diversity in the Lower Respiratory Tract of Children. PLoS ONE 2021, 16, e0244341. [Google Scholar] [CrossRef]
- Mariani, J.; Favero, C.; Spinazzè, A.; Cavallo, D.M.; Carugno, M.; Motta, V.; Bonzini, M.; Cattaneo, A.; Pesatori, A.C.; Bollati, V. Short-Term Particulate Matter Exposure Influences Nasal Microbiota in a Population of Healthy Subjects. Environ. Res. 2018, 162, 119–126. [Google Scholar] [CrossRef]
- Bassis, C.M.; Tang, A.L.; Young, V.B.; Pynnonen, M.A. The Nasal Cavity Microbiota of Healthy Adults. Microbiome 2014, 2, 27. [Google Scholar] [CrossRef] [PubMed]
- Biswas, K.; Hoggard, M.; Jain, R.; Taylor, M.W.; Douglas, R.G. The Nasal Microbiota in Health and Disease: Variation within and between Subjects. Front. Microbiol. 2015, 9, 134. [Google Scholar] [CrossRef] [PubMed]
- Herbst, T.; Sichelstiel, A.; Schär, C.; Yadava, K.; Bürki, K.; Cahenzli, J.; McCoy, K.; Marsland, B.J.; Harris, N.L. Dysregulation of Allergic Airway Inflammation in the Absence of Microbial Colonization. Am. J. Respir. Crit. Care Med. 2011, 184, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Couturier-Maillard, A.; Secher, T.; Rehman, A.; Normand, S.; De Arcangelis, A.; Haesler, R.; Huot, L.; Grandjean, T.; Bressenot, A.; Delanoye-Crespin, A.; et al. Nod2-Mediated Dysbiosis Predisposes Mice to Transmissible Colitis and Colorectal Cancer. J. Clin. Investig. 2013, 123, 700–711. [Google Scholar] [CrossRef]
- Marsland, B.J.; Yadava, K.; Nicod, L.P. The Airway Microbiome and Disease. Chest 2013, 144, 632–637. [Google Scholar] [CrossRef]
- Li, J.; Hu, Y.; Liu, L.; Wang, Q.; Zeng, J.; Chen, C. Pm2.5 Exposure Perturbs Lung Microbiome and Its Metabolic Profile in Mice. Sci. Total Environ. 2020, 721, 137432. [Google Scholar] [CrossRef]
- Li, N.; He, F.; Liao, B.; Zhou, Y.; Li, B.; Ran, P. Exposure to Ambient Particulate Matter Alters the Microbial Composition and Induces Immune Changes in Rat Lung. Respir. Res. 2017, 18, 143. [Google Scholar] [CrossRef]
- Shen, D.; Guo, Z.; Huang, K.; Dai, P.; Jin, X.; Li, Y.; Li, C. Inflammation-Associated Pulmonary Microbiome and Metabolome Changes in Broilers Exposed to Particulate Matter in Broiler Houses. J. Hazard. Mater. 2022, 421, 126710. [Google Scholar] [CrossRef]
- Li, X.; Sun, Y.; An, Y.; Wang, R.; Lin, H.; Liu, M.; Li, S.; Ma, M.; Xiao, C. Air Pollution During the Winter Period and Respiratory Tract Microbial Imbalance in a Healthy Young Population in Northeastern China. Environ. Pollut. 2019, 246, 972–979. [Google Scholar] [CrossRef]
- Qin, T.; Zhang, F.; Zhou, H.; Ren, H.; Du, Y.; Liang, S.; Wang, F.; Cheng, L.; Xie, X.; Jin, A.; et al. High-Level Pm2.5/Pm10 Exposure Is Associated with Alterations in the Human Pharyngeal Microbiota Composition. Front. Microbiol. 2019, 10, 54. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Cheng, H.; Wang, D.; Zhao, B.; Zhang, J.; Cheng, L.; Yao, P.; Di Narzo, A.; Shen, Y.; Yu, J.; et al. Airway Microbiome Is Associated with Respiratory Functions and Responses to Ambient Particulate Matter Exposure. Ecotoxicol. Environ. Saf. 2019, 167, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Arrieta, M.C.; Stiemsma, L.T.; Dimitriu, P.A.; Thorson, L.; Russell, S.; Yurist-Doutsch, S.; Kuzeljevic, B.; Gold, M.J.; Britton, H.M.; Lefebvre, D.L.; et al. Early Infancy Microbial and Metabolic Alterations Affect Risk of Childhood Asthma. Sci. Transl. Med. 2015, 7, 307ra152. [Google Scholar] [CrossRef]
- Zelaya, H.; Tsukida, K.; Chiba, E.; Marranzino, G.; Alvarez, S.; Kitazawa, H.; Agüero, G.; Villena, J. Immunobiotic Lactobacilli Reduce Viral-Associated Pulmonary Damage through the Modulation of Inflammation-Coagulation Interactions. Int. Immunopharmacol. 2014, 19, 161–173. [Google Scholar] [CrossRef]
- Kanehisa, M.; Furumichi, M.; Sato, Y.; Kawashima, M.; Ishiguro-Watanabe, M. Kegg for Taxonomy-Based Analysis of Pathways and Genomes. Nucleic Acids Res. 2023, 51, D587–D592. [Google Scholar] [CrossRef]
- Karp, P.D.; Riley, M.; Paley, S.M.; Pellegrini-Toole, A. The Metacyc Database. Nucleic Acids Res. 2002, 30, 59–61. [Google Scholar] [CrossRef]
- Caspi, R.; Billington, R.; Keseler, I.M.; Kothari, A.; Krummenacker, M.; Midford, P.E.; Ong, W.K.; Paley, S.; Subhraveti, P.; Karp, P.D. The Metacyc Database of Metabolic Pathways and Enzymes—A 2019 Update. Nucleic Acids Res. 2020, 48, D445–D453. [Google Scholar] [CrossRef]
- Chen, M.Y.; Teng, W.K.; Zhao, L.; Han, B.P.; Song, L.R.; Shu, W.S. Phylogenomics Uncovers Evolutionary Trajectory of Nitrogen Fixation in Cyanobacteria. Mol. Biol. Evol. 2022, 39, msac171. [Google Scholar] [CrossRef]
- Facciponte, D.N.; Bough, M.W.; Seidler, D.; Carroll, J.L.; Ashare, A.; Andrew, A.S.; Tsongalis, G.J.; Vaickus, L.J.; Henegan, P.L.; Butt, T.H.; et al. Identifying Aerosolized Cyanobacteria in the Human Respiratory Tract: A Proposed Mechanism for Cyanotoxin-Associated Diseases. Sci. Total Environ. 2018, 645, 1003–1013. [Google Scholar] [CrossRef]
Variable | Mean (SD) |
---|---|
Gender (male/female) | 10/10 |
Age | 21.2 (1.6) |
Height (cm) | 172.7 (6.3) |
Weight (kg) | 65.5 (7.5) |
BMI (kg/m2) | 21.9 (1.9) |
Day | Mean | SD | Min | P25 | P50 | P75 | Max | |
---|---|---|---|---|---|---|---|---|
PM2.5 (μg/m3) | 3.9 | 46.60 | 1.14 | 45.00 | 45.50 | 47.00 | 47.50 | 48.00 |
3.30 | 25.14 | 3.08 | 22.00 | 22.00 | 24.00 | 28.00 | 29.00 | |
PM10 (μg/m3) | 3.9 | 95.60 | 3.78 | 89.00 | 92.50 | 97.00 | 98.00 | 98.00 |
3.30 | 131.43 | 16.79 | 101.00 | 123.00 | 131.00 | 144.00 | 151.00 | |
SO2 (μg/m3) | 3.9 | 6.20 | 0.45 | 6.00 | 6.00 | 6.00 | 6.50 | 7.00 |
3.30 | 5.50 | 0.84 | 4.00 | 4.75 | 6.00 | 6.00 | 6.00 | |
NO2 (μg/m3) | 3.9 | 19.40 | 2.07 | 18.00 | 18.00 | 19.00 | 21.00 | 23.00 |
3.30 | 13.50 | 1.64 | 11.00 | 12.50 | 13.50 | 14.50 | 16.00 | |
O3 (μg/m3) | 3.9 | 120.60 | 4.04 | 115.00 | 116.50 | 122.00 | 124.00 | 125.00 |
3.30 | 124.14 | 5.49 | 117.00 | 119.00 | 124.00 | 129.00 | 132.00 | |
CO (mg/m3) | 3.9 | 0.40 | 0.00 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 |
3.30 | 0.50 | 0.13 | 0.30 | 0.40 | 0.60 | 0.60 | 0.60 | |
Temperature (℃) | 3.9 | 21.57 | 0.79 | 20.00 | 21.00 | 22.00 | 22.00 | 22.00 |
3.30 | 23.50 | 1.23 | 22.00 | 22.75 | 23.00 | 25.00 | 25.00 | |
Relative humidity (%) | 3.9 | 15.29 | 3.55 | 11.00 | 13.00 | 14.00 | 20.00 | 20.00 |
3.30 | 21.17 | 5.49 | 14.00 | 14.75 | 22.50 | 26.25 | 27.00 |
Variable | Mean ± SD | |
---|---|---|
Park | Road | |
Chao1 | 282.16 ± 100.03 | 404.89 ± 184.17 |
Observed species | 272.98 ± 96.69 | 395.73 ± 181.26 |
Shannon | 2.99 ± 0.84 | 3.35 ± 1.43 |
Simpson | 0.72 ± 0.13 | 0.76 ± 0.10 |
Faith’s PD | 34.32 ± 8.61 | 43.47 ± 13.49 |
Pielou’s evenness | 0.37 ± 0.10 | 0.39 ± 0.10 |
Good’s coverage (%) | 99.95 ± 0.02 | 99.95 ± 0.02 |
Rank | Taxon | Statistic | p-Value | Mean Decrease Accuracy (%) |
---|---|---|---|---|
Phylum | Patescibacteria | 22.50 | 0.036 | 5.75 |
Desulfobacterota_I | 19.00 | 0.021 | 2.50 | |
Class | Saccharimonadia | 16.00 | 0.024 | 6.84 |
Desulfovibrionia | 19.00 | 0.021 | 4.97 | |
Order | Saccharimonadales | 16.00 | 0.024 | 3.87 |
UBA1381 | 0.00 | 0.036 | 3.48 | |
Streptomycetales_400645 | 0.00 | 0.023 | 3.32 | |
Erysipelotrichales | 29.00 | 0.026 | 3.05 | |
Burkholderiales_595427 | 1.00 | 0.035 | 2.26 | |
Oscillospirales | 37.00 | 0.037 | 1.96 | |
Desulfovibrionales | 19.00 | 0.021 | 1.35 | |
Family | Muribaculaceae | 45.00 | 0.046 | 3.33 |
70-9 | 1.00 | 0.035 | 3.01 | |
Anaerovoracaceae | 1.00 | 0.013 | 2.26 | |
Desulfovibrionaceae | 19.00 | 0.021 | 2.16 | |
Clostridiaceae_222000 | 28.00 | 0.041 | 1.93 | |
Erysipelotrichaceae | 33.00 | 0.042 | 1.92 | |
Acutalibacteraceae | 7.00 | 0.042 | 1.89 | |
Genus | CAG-41 | 0.00 | 0.036 | 1.84 |
Desulfovibrio_R_446353 | 0.00 | 0.036 | 1.49 | |
Bacteroides_H | 3.00 | 0.042 | 1.00 | |
Species | Clostridium_T_disporicum_203972 | 24.00 | 0.044 | 2.87 |
cag-41_sp001941225 | 0.00 | 0.036 | 2.51 | |
Fimenecus_sp000432435 | 0.00 | 0.036 | 2.35 | |
Bacteroides_H_acidifaciens | 1.00 | 0.035 | 2.29 |
Relative Abundance (%) | p-Value | ||
---|---|---|---|
Park | Road | ||
f_70-9 | 0.017 | 0.457 | 0.0313 |
Anaerovoracaceae | 0.025 | 1.078 | 0.0078 |
Bacillaceae_H_289398 | 0.000 | 0.450 | 0.0283 |
Bacillaceae_H_294103 | 0.017 | 0.394 | 0.0331 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, L.; Pan, J.; Feng, D.; Yu, B.; Li, S.; Liu, X.; Jin, Y.; Zhu, S.; Wu, W.; Yang, W. Effects of Short-Term Traffic-Related Air Pollution Exposure on Nasal Microbiome in Young Healthy Adults: A Randomized Crossover Controlled Trial. Toxics 2025, 13, 180. https://doi.org/10.3390/toxics13030180
Qin L, Pan J, Feng D, Yu B, Li S, Liu X, Jin Y, Zhu S, Wu W, Yang W. Effects of Short-Term Traffic-Related Air Pollution Exposure on Nasal Microbiome in Young Healthy Adults: A Randomized Crossover Controlled Trial. Toxics. 2025; 13(3):180. https://doi.org/10.3390/toxics13030180
Chicago/Turabian StyleQin, Luwei, Jingqi Pan, Demin Feng, Bingqing Yu, Shunyu Li, Xingyu Liu, Yuefei Jin, Shenshen Zhu, Weidong Wu, and Wenjie Yang. 2025. "Effects of Short-Term Traffic-Related Air Pollution Exposure on Nasal Microbiome in Young Healthy Adults: A Randomized Crossover Controlled Trial" Toxics 13, no. 3: 180. https://doi.org/10.3390/toxics13030180
APA StyleQin, L., Pan, J., Feng, D., Yu, B., Li, S., Liu, X., Jin, Y., Zhu, S., Wu, W., & Yang, W. (2025). Effects of Short-Term Traffic-Related Air Pollution Exposure on Nasal Microbiome in Young Healthy Adults: A Randomized Crossover Controlled Trial. Toxics, 13(3), 180. https://doi.org/10.3390/toxics13030180