A Review on the Prevalence and Treatment of Antibiotic Resistance Genes in Hospital Wastewater
Abstract
:1. Introduction
2. The Prevalence of ARB and ARGs in HWW
2.1. Methods Used for Analyzing ARGs and ARB
2.2. Carbapenem Resistance
2.3. MRSA
2.4. VRE
2.5. ESBL
2.6. Other Resistance Mechanisms
3. ARG Treatment in HWW
Study | Samples | Strategy | ARG | Before Treatment | After Treatment |
---|---|---|---|---|---|
[60] | Hospital in China | Chlorination | the relative abundance of LARGs (blaNDM, mcr, tet(X)) | influent > effluent (p < 0.05) | |
[61] | Eye hospital in China | Activated sludge wastewater treatment | The average total abundance of ARGs | 1.614 ± 0.177 | 1.240 ± 0.237 |
General hospital in China | Direct chlorination disinfection wastewater treatment | 1.883 ± 0.451 | 1.278 ± 0.048 | ||
[59] | Hospital in China | Chlorine dioxide disinfection process | The removal efficiencies of various genes (%) | sul1:55.75%; sul2:87.62%; sul3:93.51% | |
aadA:79.33%; aac(6′)-Ib: 90.21%; | |||||
ereA:70.86%; ermB:85.76% | |||||
blaNDM-1:89.75%; penA: 69.55% | |||||
tetM eliminated after treatment | |||||
intI1:75.95%; 16S rRNA:58.59% | |||||
tetB:−15.37%; blaTEM-1:−52.93% | |||||
[58] | Hospital in China | WWTP | log removal of ARGs (=log(Cuntreated/Ctreated) | −0.85~2.71 | |
[54] | Hospital in Iran | Ozonation | The removal efficiencies of P. aeruginosa concentration 108 CFU/mL | 1 × 10−1 (TOD1 = 11 mg/L) 1 × 10−4 (TOD4 = 45 mg/L) | |
[63] | Hospital in Sweden | Ozonation | CFU/mL of ESBL-producing Enterobacteriaceae | 14,500 ± 4910 | 12,300 ± 1160 |
[29] | Hospital in France | WWTP | The normalized cumulative abundance of all gene classes | Hospital WWTP influent > WWTP effluent (78 and 5 times, p < 0.003) | |
[57] | Hospital in Irea | WWTP | Copies/genome equivalent mefA | 0.2 | 0.03 |
Copies/genome equivalent mel | 0.17 | 0.03 | |||
[62] | Hospital in Iran (MSSA, n = 10) | WWTP | mec A (p = 1) | 1(10%) | 1(10%) |
vanA (p = 0.305) | 1(10%) | 0 | |||
vanB | 0 | 0 | |||
vanC (p = 0.305) | 1(10%) | 0 | |||
aacA-D (p = 0.051) | 1(10%) | 5(50%) | |||
tetK (p = 1) | 3(30%) | 3(30%) | |||
tetM (p = 0.160) | 5(50%) | 8(80%) | |||
Hospital in Iran (MRSA, n = 20) | WWTP | mec A (p = 1) | 20(100%) | 20(100%) | |
vanA | 0 | 0 | |||
vanB | 0 | 0 | |||
vanC (p = 0.429) | 3(15%) | 5(25%) | |||
aacA-D (p = 0.072) | 20(100%) | 17(85%) | |||
tetK (p = 0.001) | 19(95%) | 9(45%) | |||
tetM (p = 0.185) | 9(45%) | 5(25%) | |||
[66] | HWW (location 1), two sampling rounds in the Netherlands | Ozonation, membrane bioreactor treatment (MBR), UV treatment, and granulated activated carbon (GAC) | Log10-fold gene reduction | Pharmafilter * | |
blaKPC | >1.7 1,3 | ||||
blaSHV | >3.1 1,3 | ||||
blaOXA | >3.6 1,3 | ||||
qnrS | >0.9 3 | ||||
mecA | 2 | ||||
ermB | >4.4 1,3 | ||||
tetM | >3.1 1,3 | ||||
tetB | >3.1 1,3 | ||||
vanA | >2.4 3 | ||||
int1 | 0.5 ± 0.9 1 | ||||
ermF | 1.7 ± 0.8 | ||||
aph(III)a | >3.8 1,3 | ||||
sul1 | 1.7 ± 0.4 1 | ||||
[31] | Hospital in Sweden (together with household) | WWTP | Number of ARGs | 44 | 33 |
[21] | Hospitals and community in Spain | WWTP | vancomycin ARG/genome | 0.037 ± 0.006 | <0.001 |
[67] | Hospital in China | E-peroxone-SBR | gene reduction of qnrS, qnrA, qepA aac(6′)-Ib-cr aac(6′)-Ib-cr | p < 0.05 | |
[55] | Urban hospital in Vietnam | WWTP | blaCTX-M | 14 (52%) | 2 (17%) |
blaTEM | 27 (100%) | 10 (83%) | |||
qepA | 12 (86%) | 7 (88%) | |||
[35] | Hospital in Spain | WWTP | Absolute concentration [log (ARG copies/mL)] blaTEM, ermB, qnrS, sul1, tetM | influent > effluent (p < 0.05) | |
[51] | Hospital in Iran | Chlorination (HW3: Chlorination + UV) | ctx-m-32 presence/absence | + | - |
4. COVID-19 and Antimicrobial Resistance
5. Discussion
6. Conclusions
- (1)
- Publicity and education: The WHO established a global campaign called “The World AMR Awareness Week (WAAW)” to raise awareness and understanding of AMR, encouraging global action. However, much more attention is paid to patients than to wastewater in hospitals, so it is critical to strengthen public awareness and education on the importance of hospital sewage treatment;
- (2)
- The life-cycle management of antibiotics: Guidelines to reduce non-essential antibiotic use in clinical settings should be strengthened and stricter pretreatment regulations for HWW discharge into the environment should be enforced. Meanwhile, we also need to establish monitoring systems, tracking ARG dynamic distribution in real time;
- (3)
- Innovative treatment technologies: First, we should upgrade existing facilities and build on-site wastewater treatment equipment. Second, we should also make more efforts to develop innovative treatment technologies, with an emphasis on cost-efficiency and compatibility with existing infrastructure;
- (4)
- Integrated emergency equipment development: It is essential to formulate secure medical equipment to enable the rapid and efficient treatment of HWW during a Public Health Emergency of International Concern (PHEIC), such as the COVID-19 pandemic.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qiao, M.; Ying, G.G.; Singer, A.C.; Zhu, Y.G. Review of antibiotic resistance in China and its environment. Environ. Int. 2018, 110, 160–172. [Google Scholar] [CrossRef] [PubMed]
- Dafale, N.A.; Purohit, H.J. Genomic Tools for the Impact Assessment of ’Hotspots’ for Early Warning of MDR Threats. Biomed. Environ. Sci. 2016, 29, 656–674. [Google Scholar] [CrossRef] [PubMed]
- Hassoun-Kheir, N.; Stabholz, Y.; Kreft, J.U.; de la Cruz, R.; Romalde, J.L.; Nesme, J.; Sorensen, S.J.; Smets, B.F.; Graham, D.; Paul, M. Comparison of antibiotic-resistant bacteria and antibiotic resistance genes abundance in hospital and community wastewater: A systematic review. Sci. Total Environ. 2020, 743, 140804. [Google Scholar] [CrossRef] [PubMed]
- Rowe, W.P.M.; Baker-Austin, C.; Verner-Jeffreys, D.W.; Ryan, J.J.; Micallef, C.; Maskell, D.J.; Pearce, G.P. Overexpression of antibiotic resistance genes in hospital effluents over time. J. Antimicrob. Chemother. 2017, 72, 1617–1623. [Google Scholar] [CrossRef]
- Versporten, A.; Zarb, P.; Caniaux, I.; Gros, M.F.; Drapier, N.; Miller, M.; Jarlier, V.; Nathwani, D.; Goossens, H.; Koraqi, A.; et al. Antimicrobial consumption and resistance in adult hospital inpatients in 53 countries: Results of an internet-based global point prevalence survey. Lancet Glob. Health 2018, 6, e619–e629. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, J.; Zhao, Z.; Cao, Y.; Li, B. Hospital Wastewater as a Reservoir for Antibiotic Resistance Genes: A Meta-Analysis. Front. Public Health 2020, 8, 574968. [Google Scholar] [CrossRef]
- Husain Khan, A.; Abdul Aziz, H.; Palaniandy, P.; Naushad, M.; Cevik, E.; Zahmatkesh, S. Pharmaceutical residues in the ecosystem: Antibiotic resistance, health impacts, and removal techniques. Chemosphere 2023, 339, 139647. [Google Scholar] [CrossRef]
- Liu, K.; Gan, C.; Peng, Y.E.; Gan, Y.Q.; He, J.; Du, Y.; Tong, L.; Shi, J.B.; Wang, Y.X. Occurrence and source identification of antibiotics and antibiotic resistance genes in groundwater surrounding urban hospitals. J. Hazard. Mater. 2024, 465, 133368. [Google Scholar] [CrossRef]
- Huang, J.; Wang, Z.Y.; Chen, Z.H.; Liang, H.B.; Li, X.Y.; Li, B. Occurrence and Removal of Antibiotic Resistance in Nationwide Hospital Wastewater Deciphered by Metagenomics Approach—China, 2018–2022. China CDC Wkly. 2023, 5, 1023–1028. [Google Scholar] [CrossRef]
- Le, T.H.; Ng, C.; Chen, H.; Yi, X.Z.; Koh, T.H.; Barkham, T.M.; Zhou, Z.; Gin, K.Y. Occurrences and Characterization of Antibiotic-Resistant Bacteria and Genetic Determinants of Hospital Wastewater in a Tropical Country. Antimicrob. Agents Chemother. 2016, 60, 7449–7456. [Google Scholar] [CrossRef]
- Li, J.; Cheng, W.; Xu, L.; Strong, P.J.; Chen, H. Antibiotic-resistant genes and antibiotic-resistant bacteria in the effluent of urban residential areas, hospitals, and a municipal wastewater treatment plant system. Environ. Sci. Pollut. Res. Int. 2015, 22, 4587–4596. [Google Scholar] [CrossRef] [PubMed]
- Ogunlaja, A.; Ogunlaja, O.O.; Olukanni, O.D.; Taylor, G.O.; Olorunnisola, C.G.; Mousse, W.; Fatta-Kassinos, D.; Msagati, T.A.M.; Unuabonah, E.I. Antibiotic resistomes and their chemical residues in aquatic environments in Africa. Environ. Pollut. 2022, 312, 119783. [Google Scholar] [CrossRef] [PubMed]
- Shuai, X.; Zhou, Z.; Zhu, L.; Achi, C.; Lin, Z.; Liu, Z.; Yu, X.; Zhou, J.; Lin, Y.; Chen, H. Ranking the risk of antibiotic resistance genes by metagenomic and multifactorial analysis in hospital wastewater systems. J. Hazard. Mater. 2024, 468, 133790. [Google Scholar] [CrossRef] [PubMed]
- Zagui, G.S.; Almeida, O.G.G.D.; Moreira, N.C.; Abichalki, N.; Machado, G.P.; Martinis, E.C.P.D.; Darini, A.L.C.; Andrade, L.N.; Segura-Munoz, S.I. A set of antibiotic-resistance mechanisms and virulence factors in GES-16-producing from hospital wastewater revealed by whole-genome sequencing. Environ. Pollut. 2023, 316, 120645. [Google Scholar] [CrossRef]
- Alexander, J.; Hembach, N.; Schwartz, T. Evaluation of antibiotic resistance dissemination by wastewater treatment plant effluents with different catchment areas in Germany. Sci. Rep. 2020, 10, 8952. [Google Scholar] [CrossRef]
- Hembach, N.; Schmid, F.; Alexander, J.; Hiller, C.; Rogall, E.T.; Schwartz, T. Occurrence of the mcr Colistin Resistance Gene and other Clinically Relevant Antibiotic Resistance Genes in Microbial Populations at Different Municipal Wastewater Treatment Plants in Germany. Front. Microbiol. 2017, 8, 1282. [Google Scholar] [CrossRef]
- Perry, M.R.; Lepper, H.C.; McNally, L.; Wee, B.A.; Munk, P.; Warr, A.; Moore, B.; Kalima, P.; Philip, C.; de Roda Husman, A.M.; et al. Secrets of the Hospital Underbelly: Patterns of Abundance of Antimicrobial Resistance Genes in Hospital Wastewater Vary by Specific Antimicrobial and Bacterial Family. Front. Microbiol. 2021, 12, 703560. [Google Scholar] [CrossRef]
- Thompson, J.M.; Gündogdu, A.; Stratton, H.M.; Katouli, M. Antibiotic resistant Staphylococcus aureus in hospital wastewaters and sewage treatment plants with special reference to methicillin-resistant Staphylococcus aureus (MRSA). J. Appl. Microbiol. 2013, 114, 44–54. [Google Scholar] [CrossRef]
- Hernando-Amado, S.; Coque, T.M.; Baquero, F.; Martínez, J.L. Antibiotic Resistance: Moving From Individual Health Norms to Social Norms in One Health and Global Health. Front. Microbiol. 2020, 11, 1914. [Google Scholar] [CrossRef]
- Lesne, J.; Baron, S. La résistance bactérienne aux antibiotiques: Stratégies de lutte One Health ou Global Health et normes sociales de comportement individuel. Environ. Risque. Sante 2022, 21, 303–309. [Google Scholar] [CrossRef]
- Quintela-Baluja, M.; Abouelnaga, M.; Romalde, J.; Su, J.Q.; Yu, Y.J.; Gomez-Lopez, M.; Smets, B.; Zhu, Y.G.; Graham, D.W. Spatial ecology of a wastewater network defines the antibiotic resistance genes in downstream receiving waters. Water Res. 2019, 162, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Hembach, N.; Alexander, J.; Hiller, C.; Wieland, A.; Schwartz, T. Dissemination prevention of antibiotic resistant and facultative pathogenic bacteria by ultrafiltration and ozone treatment at an urban wastewater treatment plant. Sci. Rep. 2019, 9, 12843. [Google Scholar] [CrossRef]
- Proia, L.; Anzil, A.; Borrego, C.; Farre, M.; Llorca, M.; Sanchis, J.; Bogaerts, P.; Balcazar, J.L.; Servais, P. Occurrence and persistence of carbapenemases genes in hospital and wastewater treatment plants and propagation in the receiving river. J. Hazard. Mater. 2018, 358, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Karkman, A.; Do, T.T.; Walsh, F.; Virta, M.P.J. Antibiotic-Resistance Genes in Waste Water. Trends Microbiol. 2018, 26, 220–228. [Google Scholar] [CrossRef]
- Müller, H.; Sib, E.; Gajdiss, M.; Klanke, U.; Lenz-Plet, F.; Barabasch, V.; Albert, C.; Schallenberg, A.; Timm, C.; Zacharias, N.; et al. Dissemination of multi-resistant Gram-negative bacteria into German wastewater and surface waters. FEMS Microbiol. Ecol. 2018, 94, fiy057. [Google Scholar] [CrossRef]
- Meir-Gruber, L.; Manor, Y.; Gefen-Halevi, S.; Hindiyeh, M.Y.; Mileguir, F.; Azar, R.; Smollan, G.; Belausov, N.; Rahav, G.; Shamiss, A.; et al. Population Screening Using Sewage Reveals Pan-Resistant Bacteria in Hospital and Community Samples. PLoS ONE 2016, 11, e0164873. [Google Scholar] [CrossRef]
- Alexander, J.; Hembach, N.; Schwartz, T. Identification of critical control points for antibiotic resistance discharge in sewers. Sci. Total Environ. 2022, 820, 153186. [Google Scholar] [CrossRef]
- Gibbon, M.J.; Couto, N.; David, S.; Barden, R.; Standerwick, R.; Jagadeesan, K.; Birkwood, H.; Dulyayangkul, P.; Avison, M.B.; Kannan, A.; et al. A high prevalence of bla(OXA-48) in Klebsiella (Raoultella) ornithinolytica and related species in hospital wastewater in South West England. Microb. Genom. 2021, 7, 000509. [Google Scholar] [CrossRef]
- Buelow, E.; Rico, A.; Gaschet, M.; Lourenco, J.; Kennedy, S.P.; Wiest, L.; Ploy, M.C.; Dagot, C. Hospital discharges in urban sanitation systems: Long-term monitoring of wastewater resistome and microbiota in relationship to their eco-exposome. Water Res. X 2020, 7, 100045. [Google Scholar] [CrossRef]
- Sib, E.; Lenz-Plet, F.; Barabasch, V.; Klanke, U.; Savin, M.; Hembach, N.; Schallenberg, A.; Kehl, K.; Albert, C.; Gajdiss, M.; et al. Bacteria isolated from hospital, municipal and slaughterhouse wastewaters show characteristic, different resistance profiles. Sci. Total Environ. 2020, 746, 140894. [Google Scholar] [CrossRef]
- Khan, F.A.; Soderquist, B.; Jass, J. Prevalence and Diversity of Antibiotic Resistance Genes in Swedish Aquatic Environments Impacted by Household and Hospital Wastewater. Front. Microbiol. 2019, 10, 688. [Google Scholar] [CrossRef]
- Ludden, C.; Reuter, S.; Judge, K.; Gouliouris, T.; Blane, B.; Coll, F.; Naydenova, P.; Hunt, M.; Tracey, A.; Hopkins, K.L.; et al. Sharing of carbapenemase-encoding plasmids between Enterobacteriaceae in UK sewage uncovered by MinION sequencing. Microb. Genom. 2017, 3, e000114. [Google Scholar] [CrossRef]
- Islam, M.A.; Islam, M.; Hasan, R.; Hossain, M.I.; Nabi, A.; Rahman, M.; Goessens, W.H.; Endtz, H.P.; Boehm, A.B.; Faruque, S.M. Environmental Spread of New Delhi Metallo-b-Lactamase-1-Producing Multidrug-Resistant Bacteria in Dhaka, Bangladesh. Appl. Environ. Microbiol. 2017, 83, e00793-17. [Google Scholar] [CrossRef]
- Lamba, M.; Graham, D.W.; Ahammad, S.Z. Hospital Wastewater Releases of Carbapenem-Resistance Pathogens and Genes in Urban India. Environ. Sci. Technol. 2017, 51, 13906–13912. [Google Scholar] [CrossRef]
- Rodriguez-Mozaz, S.; Chamorro, S.; Marti, E.; Huerta, B.; Gros, M.; Sanchez-Melsio, A.; Borrego, C.M.; Barcelo, D.; Balcazar, J.L. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Res. 2015, 69, 234–242. [Google Scholar] [CrossRef]
- Schwartz, T.; Kohnen, W.; Jansen, B.; Obst, U. Detection of antibiotic-resistant bacteria and their resistance genes in wastewater, surface water, and drinking water biofilms. FEMS Microbiol. Ecol. 2003, 43, 325–335. [Google Scholar] [CrossRef]
- Hamiwe, T.; Kock, M.M.; Magwira, C.A.; Antiabong, J.F.; Ehlers, M.M. Occurrence of enterococci harbouring clinically important antibiotic resistance genes in the aquatic environment in Gauteng, South Africa. Environ. Pollut. 2019, 245, 1041–1049. [Google Scholar] [CrossRef]
- Narciso-da-Rocha, C.; Varela, A.R.; Schwartz, T.; Nunes, O.C.; Manaia, C.M. bla(TEM) and vanA as indicator genes of antibiotic resistance contamination in a hospital-urban wastewater treatment plant system. J. Glob. Antimicrob. Resist. 2014, 2, 309–315. [Google Scholar] [CrossRef]
- Kotzamanidis, C.; Zdragas, A.; Kourelis, A.; Moraitou, E.; Papa, A.; Yiantzi, V.; Pantelidou, C.; Yiangou, M. Characterization of vanA-type Enterococcus faecium isolates from urban and hospital wastewater and pigs. J. Appl. Microbiol. 2009, 107, 997–1005. [Google Scholar] [CrossRef]
- Caplin, J.L.; Hanlon, G.W.; Taylor, H.D. Presence of vancomycin and ampicillin-resistant Enterococcus faecium of epidemic clonal complex-17 in wastewaters from the south coast of England. Environ. Microbiol. 2008, 10, 885–892. [Google Scholar] [CrossRef]
- Novais, C.; Coque, T.M.; Ferreira, H.; Sousa, J.C.; Peixe, L. Environmental contamination with vancomycin-resistant enterococci from hospital sewage in Portugal. Appl. Environ. Microbiol. 2005, 71, 3364–3368. [Google Scholar] [CrossRef]
- Blanch, A.R.; Caplin, J.L.; Iversen, A.; Kühn, I.; Manero, A.; Taylor, H.D.; Vilanova, X. Comparison of enterococcal populations related to urban and hospital wastewater in various climatic and geographic European regions. J. Appl. Microbiol. 2003, 94, 994–1002. [Google Scholar] [CrossRef]
- Iversen, A.; Kuhn, I.; Franklin, A.; Mollby, R. High prevalence of vancomycin-resistant enterococci in Swedish sewage. Appl. Environ. Microbiol. 2002, 68, 2838–2842. [Google Scholar] [CrossRef]
- Atta, H.I.; Idris, S.M.; Gulumbe, B.H.; Awoniyi, O.J. Detection of extended spectrum beta-lactamase genes in strains of Escherichia coli and Klebsiella pneumoniae isolated from recreational water and tertiary hospital waste water in Zaria, Nigeria. Int. J. Environ. Health Res. 2022, 32, 2074–2082. [Google Scholar] [CrossRef]
- Paulshus, E.; Kuhn, I.; Mollby, R.; Colque, P.; O’Sullivan, K.; Midtvedt, T.; Lingaas, E.; Holmstad, R.; Sorum, H. Diversity and antibiotic resistance among Escherichia coli populations in hospital and community wastewater compared to wastewater at the receiving urban treatment plant. Water Res. 2019, 161, 232–241. [Google Scholar] [CrossRef]
- Kwak, Y.K.; Colque, P.; Byfors, S.; Giske, C.G.; Mollby, R.; Kuhn, I. Surveillance of antimicrobial resistance among Escherichia coli in wastewater in Stockholm during 1 year: Does it reflect the resistance trends in the society? Int. J. Antimicrob. Agents. 2015, 45, 25–32. [Google Scholar] [CrossRef]
- Brechet, C.; Plantin, J.; Sauget, M.; Thouverez, M.; Talon, D.; Cholley, P.; Guyeux, C.; Hocquet, D.; Bertrand, X. Wastewater treatment plants release large amounts of extended-spectrum beta-lactamase-producing Escherichia coli into the environment. Clin. Infect. Dis. 2014, 58, 1658–1665. [Google Scholar] [CrossRef]
- Korzeniewska, E.; Korzeniewska, A.; Harnisz, M. Antibiotic resistant Escherichia coli in hospital and municipal sewage and their emission to the environment. Ecotoxicol. Environ. Saf. 2013, 91, 96–102. [Google Scholar] [CrossRef]
- Galvin, S.; Boyle, F.; Hickey, P.; Vellinga, A.; Morris, D.; Cormican, M. Enumeration and characterization of antimicrobial-resistant Escherichia coli bacteria in effluent from municipal, hospital, and secondary treatment facility sources. Appl. Environ. Microbiol. 2010, 76, 4772–4779. [Google Scholar] [CrossRef]
- Hutinel, M.; Larsson, D.G.J.; Flach, C.F. Antibiotic resistance genes of emerging concern in municipal and hospital wastewater from a major Swedish city. Sci. Total Environ. 2022, 812, 151433. [Google Scholar] [CrossRef]
- Aali, R.; Nikaeen, M.; Khanahmad, H.; Hassanzadeh, A. Monitoring and comparison of antibiotic resistant bacteria and their resistance genes in municipal and hospital wastewaters. Int. J. Prev. Med. 2014, 5, 887–894. [Google Scholar]
- Carraro, E.; Bonetta, S.; Bertino, C.; Lorenzi, E.; Bonetta, S.; Gilli, G. Hospital effluents management: Chemical, physical, microbiological risks and legislation in different countries. J. Environ. Manag. 2016, 168, 185–199. [Google Scholar] [CrossRef]
- Waseem, H.; Williams, M.R.; Stedtfeld, R.D.; Hashsham, S.A. Antimicrobial Resistance in the Environment. Water Environ. Res. 2017, 89, 921–941. [Google Scholar] [CrossRef]
- Baghal Asghari, F.; Dehghani, M.H.; Dehghanzadeh, R.; Farajzadeh, D.; Shanehbandi, D.; Mahvi, A.H.; Yaghmaeian, K.; Rajabi, A. Performance evaluation of ozonation for removal of antibiotic-resistant Escherichia coli and Pseudomonas aeruginosa and genes from hospital wastewater. Sci. Rep. 2021, 11, 24519. [Google Scholar] [CrossRef]
- Lien, T.Q.; Lan, P.T.; Chuc, N.T.K.; Hoa, N.Q.; Nhung, P.H.; Thoa, N.T.M.; Diwan, V.; Tamhankar, A.J.; Stalsby Lundborg, C. Antibiotic Resistance and Antibiotic Resistance Genes in Escherichia coli Isolates from Hospital Wastewater in Vietnam. Int. J. Environ. Res. Public Health 2017, 14, 699. [Google Scholar] [CrossRef]
- Pariente, M.I.; Segura, Y.; Alvarez-Torrellas, S.; Casas, J.A.; de Pedro, Z.M.; Diaz, E.; Garcia, J.; Lopez-Munoz, M.J.; Marugan, J.; Mohedano, A.F.; et al. Critical review of technologies for the on-site treatment of hospital wastewater: From conventional to combined advanced processes. J. Environ. Manag. 2022, 320, 115769. [Google Scholar] [CrossRef]
- Petrovich, M.L.; Zilberman, A.; Kaplan, A.; Eliraz, G.R.; Wang, Y.; Langenfeld, K.; Duhaime, M.; Wigginton, K.; Poretsky, R.; Avisar, D.; et al. Microbial and Viral Communities and Their Antibiotic Resistance Genes Throughout a Hospital Wastewater Treatment System. Front. Microbiol. 2020, 11, 153. [Google Scholar] [CrossRef]
- Yao, S.; Ye, J.; Yang, Q.; Hu, Y.; Zhang, T.; Jiang, L.; Munezero, S.; Lin, K.; Cui, C. Occurrence and removal of antibiotics, antibiotic resistance genes, and bacterial communities in hospital wastewater. Environ. Sci. Pollut. Res. Int. 2021, 28, 57321–57333. [Google Scholar] [CrossRef]
- Cai, M.; Wang, Z.; Gu, H.; Dong, H.; Zhang, X.; Cui, N.; Zhou, L.; Chen, G.; Zou, G. Occurrence and temporal variation of antibiotics and antibiotic resistance genes in hospital inpatient department wastewater: Impacts of daily schedule of inpatients and wastewater treatment process. Chemosphere 2022, 292, 133405. [Google Scholar] [CrossRef]
- Zhu, L.; Yuan, L.; Shuai, X.Y.; Lin, Z.J.; Sun, Y.J.; Zhou, Z.C.; Meng, L.X.; Ju, F.; Chen, H. Deciphering basic and key traits of antibiotic resistome in influent and effluent of hospital wastewater treatment systems. Water Res. 2023, 231, 119614. [Google Scholar] [CrossRef]
- Ma, X.; Dong, X.; Cai, J.; Fu, C.; Yang, J.; Liu, Y.; Zhang, Y.; Wan, T.; Lin, S.; Lou, Y.; et al. Metagenomic Analysis Reveals Changes in Bacterial Communities and Antibiotic Resistance Genes in an Eye Specialty Hospital and a General Hospital Before and After Wastewater Treatment. Front. Microbiol. 2022, 13, 848167. [Google Scholar] [CrossRef]
- Akya, A.; Chegenelorestani, R.; Shahvaisi-Zadeh, J.; Bozorgomid, A. Antimicrobial Resistance of Staphylococcus aureus Isolated from Hospital Wastewater in Kermanshah, Iran. Risk. Manag. Healthc. Policy 2020, 13, 1035–1042. [Google Scholar] [CrossRef]
- Svebrant, S.; Sporndly, R.; Lindberg, R.H.; Olsen Skoldstam, T.; Larsson, J.; Ohagen, P.; Soderstrom Lindstrom, H.; Jarhult, J.D. On-Site Pilot Testing of Hospital Wastewater Ozonation to Reduce Pharmaceutical Residues and Antibiotic-Resistant Bacteria. Antibiotics 2021, 10, 684. [Google Scholar] [CrossRef]
- Baba, H.; Nishiyama, M.; Watanabe, T.; Kanamori, H. Review of Antimicrobial Resistance in Wastewater in Japan: Current Challenges and Future Perspectives. Antibiotics 2022, 11, 849. [Google Scholar] [CrossRef]
- Dong, P.; Wang, H.; Fang, T.; Wang, Y.; Ye, Q. Assessment of extracellular antibiotic resistance genes (eARGs) in typical environmental samples and the transforming ability of eARG. Environ. Int. 2019, 125, 90–96. [Google Scholar] [CrossRef]
- Paulus, G.K.; Hornstra, L.M.; Alygizakis, N.; Slobodnik, J.; Thomaidis, N.; Medema, G. The impact of on-site hospital wastewater treatment on the downstream communal wastewater system in terms of antibiotics and antibiotic resistance genes. Int. J. Hyg. Environ. Health 2019, 222, 635–644. [Google Scholar] [CrossRef]
- Zheng, H.S.; Guo, W.Q.; Wu, Q.L.; Ren, N.Q.; Chang, J.S. Electro-peroxone pretreatment for enhanced simulated hospital wastewater treatment and antibiotic resistance genes reduction. Environ. Int. 2018, 115, 70–78. [Google Scholar] [CrossRef]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Rizvi, S.G.; Ahammad, S.Z. COVID-19 and antimicrobial resistance: A cross-study. Sci. Total Environ. 2022, 807, 150873. [Google Scholar] [CrossRef]
- Getahun, H.; Smith, I.; Trivedi, K.; Paulin, S.; Balkhy, H.H. Tackling antimicrobial resistance in the COVID-19 pandemic. Bull. World Health Organ. 2020, 98, 442. [Google Scholar] [CrossRef]
- Goncalves Mendes Neto, A.; Lo, K.B.; Wattoo, A.; Salacup, G.; Pelayo, J.; DeJoy, R., 3rd; Bhargav, R.; Gul, F.; Peterson, E.; Albano, J.; et al. Bacterial infections and patterns of antibiotic use in patients with COVID-19. J. Med. Virol. 2021, 93, 1489–1495. [Google Scholar] [CrossRef]
- Rawson, T.M.; Moore, L.S.P.; Zhu, N.; Ranganathan, N.; Skolimowska, K.; Gilchrist, M.; Satta, G.; Cooke, G.; Holmes, A. Bacterial and Fungal Coinfection in Individuals With Coronavirus: A Rapid Review To Support COVID-19 Antimicrobial Prescribing. Clin. Infect. Dis. 2020, 71, 2459–2468. [Google Scholar] [CrossRef]
- Garcia-Vidal, C.; Sanjuan, G.; Moreno-Garcia, E.; Puerta-Alcalde, P.; Garcia-Pouton, N.; Chumbita, M.; Fernandez-Pittol, M.; Pitart, C.; Inciarte, A.; Bodro, M.; et al. Incidence of co-infections and superinfections in hospitalized patients with COVID-19: A retrospective cohort study. Clin. Microbiol. Infect. 2021, 27, 83–88. [Google Scholar] [CrossRef]
- Zhang, H.; Tang, W.; Chen, Y.; Yin, W. Disinfection threatens aquatic ecosystems. Science 2020, 368, 146–147. [Google Scholar] [CrossRef]
- Bengoechea, J.A.; Bamford, C.G. SARS-CoV-2, bacterial co-infections, and AMR: The deadly trio in COVID-19? EMBO Mol. Med. 2020, 12, e12560. [Google Scholar] [CrossRef]
- Canton, R.; Gijon, D.; Ruiz-Garbajosa, P. Antimicrobial resistance in ICUs: An update in the light of the COVID-19 pandemic. Curr. Opin. Crit. Care 2020, 26, 433–441. [Google Scholar] [CrossRef]
- Murray, A.K. The Novel Coronavirus COVID-19 Outbreak: Global Implications for Antimicrobial Resistance. Front. Microbiol. 2020, 11, 1020. [Google Scholar] [CrossRef]
- Kampmeier, S.; Tonnies, H.; Correa-Martinez, C.L.; Mellmann, A.; Schwierzeck, V. A nosocomial cluster of vancomycin resistant enterococci among COVID-19 patients in an intensive care unit. Antimicrob. Resist. Infect. Control 2020, 9, 154. [Google Scholar] [CrossRef]
- Nori, P.; Szymczak, W.; Puius, Y.; Sharma, A.; Cowman, K.; Gialanella, P.; Fleischner, Z.; Corpuz, M.; Torres-Isasiga, J.; Bartash, R.; et al. Emerging Co-Pathogens: New Delhi Metallo-beta-lactamase producing Enterobacterales Infections in New York City COVID-19 Patients. Int. J. Antimicrob. Agents 2020, 56, 106179. [Google Scholar] [CrossRef]
- Khurana, S.; Singh, P.; Sharad, N.; Kiro, V.V.; Rastogi, N.; Lathwal, A.; Malhotra, R.; Trikha, A.; Mathur, P. Profile of co-infections & secondary infections in COVID-19 patients at a dedicated COVID-19 facility of a tertiary care Indian hospital: Implication on antimicrobial resistance. Indian J. Med. Microbiol. 2021, 39, 147–153. [Google Scholar] [CrossRef]
- Arastehfar, A.; Carvalho, A.; van de Veerdonk, F.L.; Jenks, J.D.; Koehler, P.; Krause, R.; Cornely, O.A.; Perlin, D.S.; Lass-Flörl, C.; Hoenigl, M. COVID-19 Associated Pulmonary Aspergillosis (CAPA)-From Immunology to Treatment. J. Fungi 2020, 6, 91. [Google Scholar] [CrossRef] [PubMed]
- Blaize, M.; Mayaux, J.; Nabet, C.; Lampros, A.; Marcelin, A.G.; Thellier, M.; Piarroux, R.; Demoule, A.; Fekkar, A. Fatal Invasive Aspergillosis and Coronavirus Disease in an Immunocompetent Patient. Emerg. Infect. Dis. 2020, 26, 1636–1637. [Google Scholar] [CrossRef] [PubMed]
- Koehler, P.; Cornely, O.A.; Bottiger, B.W.; Dusse, F.; Eichenauer, D.A.; Fuchs, F.; Hallek, M.; Jung, N.; Klein, F.; Persigehl, T.; et al. COVID-19 associated pulmonary aspergillosis. Mycoses 2020, 63, 528–534. [Google Scholar] [CrossRef]
- Johar, A.A.; Salih, M.A.; Abdelrahman, H.A.; Al Mana, H.; Hadi, H.A.; Eltai, N.O. Wastewater-based epidemiology for tracking bacterial diversity and antibiotic resistance in COVID-19 isolation hospitals in Qatar. J. Hosp. Infect. 2023, 141, 209–220. [Google Scholar] [CrossRef]
- Wang, C.; Mantilla-Calderon, D.; Xiong, Y.; Alkahtani, M.; Bashawri, Y.M.; Al Qarni, H.; Hong, P.Y. Investigation of Antibiotic Resistome in Hospital Wastewater during the COVID-19 Pandemic: Is the Initial Phase of the Pandemic Contributing to Antimicrobial Resistance? Environ. Sci. Technol. 2022, 56, 15007–15018. [Google Scholar] [CrossRef]
- Morales-Leon, F.; Matus-Kohler, M.; Araya-Vega, P.; Aguilera, F.; Torres, I.; Vera, R.; Ibarra, C.; Venegas, S.; Bello-Toledo, H.; Gonzalez-Rocha, G.; et al. Molecular Characterization of the Convergent Carbapenem-Resistant and Hypervirulent Klebsiella pneumoniae Strain K1-ST23, Collected in Chile during the COVID-19 Pandemic. Microbiol. Spectr. 2023, 11, e0054023. [Google Scholar] [CrossRef]
- de la Fuente-Nunez, C.; Cesaro, A.; Hancock, R.E.W. Antibiotic failure: Beyond antimicrobial resistance. Drug resistance updates: Reviews and commentaries in antimicrobial and anticancer chemotherapy. Drug Resist. Updat. 2023, 71, 101012. [Google Scholar] [CrossRef]
- Langford, B.J.; Soucy, J.R.; Leung, V.; So, M.; Kwan, A.T.H.; Portnoff, J.S.; Bertagnolio, S.; Raybardhan, S.; MacFadden, D.R.; Daneman, N. Antibiotic resistance associated with the COVID-19 pandemic: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2023, 29, 302–309. [Google Scholar] [CrossRef]
- Yang, X.; Li, X.; Qiu, S.; Liu, C.; Chen, S.; Xia, H.; Zeng, Y.; Shi, L.; Chen, J.; Zheng, J.; et al. Global antimicrobial resistance and antibiotic use in COVID-19 patients within health facilities: A systematic review and meta-analysis of aggregated participant data. J. Infect. 2024, 89, 106183. [Google Scholar] [CrossRef]
- Hutinel, M.; Fick, J.; Larsson, D.G.J.; Flach, C.F. Investigating the effects of municipal and hospital wastewaters on horizontal gene transfer. Environ. Pollut. 2021, 276, 116733. [Google Scholar] [CrossRef]
- Pires, J.; Santos, R.; Monteiro, S. Antibiotic resistance genes in bacteriophages from wastewater treatment plant and hospital wastewaters. Sci. Total Environ. 2023, 892, 164708. [Google Scholar] [CrossRef] [PubMed]
- Manoharan, R.K.; Srinivasan, S.; Shanmugam, G.; Ahn, Y.H. Shotgun metagenomic analysis reveals the prevalence of antibiotic resistance genes and mobile genetic elements in full scale hospital wastewater treatment plants. J. Environ. Manag. 2021, 296, 113270. [Google Scholar] [CrossRef]
- Al Mana, H.; Hadi, H.A.; Wilson, G.; Almaslamani, M.A.; Abu Jarir, S.H.; Ibrahim, E.; Eltai, N.O. Antimicrobial Resistance in Qatar: Prevalence and Trends before and Amidst the COVID-19 Pandemic. Antibiotics 2024, 13, 203. [Google Scholar] [CrossRef]
- Carney, M.; Pelaia, T.M.; Chew, T.; Teoh, S.; Phu, A.; Kim, K.; Wang, Y.; Iredell, J.; Zerbib, Y.; Mclean, A.; et al. Host transcriptomics and machine learning for secondary bacterial infections in patients with COVID-19: A prospective, observational cohort study. Lancet Microbe 2024, 5, e272–e281. [Google Scholar] [CrossRef]
- Laxminarayan, R.; Impalli, I.; Rangarajan, R.; Cohn, J.; Ramjeet, K.; Trainor, B.W.; Strathdee, S.; Sumpradit, N.; Berman, D.; Wertheim, H.; et al. Expanding antibiotic, vaccine, and diagnostics development and access to tackle antimicrobial resistance. Lancet 2024, 403, 2534–2550. [Google Scholar] [CrossRef]
- de Heredia, I.B.; González-Gaya, B.; Zuloaga, O.; Garrido, I.; Acosta, T.; Etxebarria, N.; Ruiz-Romera, E. Occurrence of emerging contaminants in three river basins impacted by wastewater treatment plant effluents: Spatio-seasonal patterns and environmental risk assessment. Sci. Total Environ. 2024, 946, 174062. [Google Scholar] [CrossRef]
- Xu, L.; Ceolotto, N.; Jagadeesan, K.; Standerwick, R.; Robertson, M.; Barden, R.; Kasprzyk-Hordern, B. Antimicrobials and antimicrobial resistance genes in the shadow of COVID-19 pandemic: A wastewater-based epidemiology perspective. Water Res. 2024, 257, 121665. [Google Scholar] [CrossRef]
Study | Numbers of Samples | ARB | Hospitals | Other Places | ARG | Hospitals | Other Places |
---|---|---|---|---|---|---|---|
[27] | 7 (H), 20 (RH), 32 (HSG) | - | - | - | Copies/100 mL (blaKPC3) | 1.64 × 102 | - |
Copies/100 mL (blaNDM-1) | 3.13 × 103 | 4.28 × 103 (RH) NA (HSG) | |||||
Copies/100 mL (blaOXA48, blaCTX-M32, blaCTX-M15, blaCMY-2) | 3.95 × 106 | 2.59 × 106 (RH) 1.23 × 106 (HSG) | |||||
[28] | 49 (H), 45 (WWTP) | Number of isolates to Klebsiella apecies | 49 | 45 | Number of resistance genes (median number) | 9 | 4 (WWTP, Serving the hospital and local community, p < 0.001) |
[29] | 21 (HWW), 21 (UWW) | Anaerobic human gut bacteria and Enterobactertiales (%) | (H > U, p < 0.05) | HWW/UWW (ARGs or MGEs) | 3–161 fold (p < 0.004) | ||
[30] | 218 (clinic), 196 (mix), 200 (city) | Citrobacter species (%) | H > M, p < 0.05 | log copies/mL (blaNDM, blaCTX-M-15) | clinic mixed with city > city (p < 0.01, p < 0.05) | ||
Enterobacter/Pseudomonas species (%) | H > M, p < 0.001 | log copies/mL blaVIM | clinic > city (p < 0.01) | ||||
[31] | - | Bacterial species (number) | 25 | 18 (UR) | ARGs (number) | 47 | 22 (UR) |
[25] | 9 (H), 16 (RS) | XDR isolates (%) | 26/475 (5.47%) | 0/568 (0%) | Detected blaNDM (no. of genes) | 70 | 0 |
Detected blaKPC | 1 | 0 | |||||
Detected blaOXA51 | 4 | 0 | |||||
Carbapenemase genes (%) | 134/475 (28.21%) | 8/568 (1.41%) | Detected blaGIM | 5 | 0 | ||
Detected blaOXA48 | 45 | 0 | |||||
Detected blaIMI | 0 | 4 | |||||
Detected blaVIM | 36 | 4 | |||||
[32] | 20 (H), 20 (WWTP) | CPE isolates (number) | 7 | 0 | Detected blaNDM | 1 | 0 |
[33] | 72 (H), 41 (COM) | NDM+/all samples (%) | 51/72 (71%) | 5/41 (12%) (p < 0.001) | blaNDM-1+/all samples (%) | 51/72 (71%) | 5/41 (12%) (p < 0.001) |
[34] | 72, 20 | CRE logCFU/mL | 7.25 | 4.09 | log copies/mL blaNDM | 13.2 | 5.42 |
[26] | 77 (H), 36 (CMO) | - | - | - | blaNDM-1+/all samples (%) | 2/77 (3%) | 1/36 (3%) |
blaKPC+/all samples (%) | 37/77 (48%) | 16/36 (44%) | |||||
[35] | - | - | - | - | log (blaTEM copies/mL) | Hospital effluent > upstream, downstream (p < 0.05) |
Study | Number of Samples | ARB | Hospitals | Other Places | ARG | Hospitals | Other Places |
---|---|---|---|---|---|---|---|
[27] | 7 (H) 20 (RH) | - | - | - | Copies/100 mL (mecA) | 3.26 × 10−7 | 2.55 × 10−7~8.19 × 10−5 |
[36] | 6 (H), 10 (M) | Detected mecA | positive | negative | |||
[29] | 21 (HWW), 21 (UWW) | Anaerobic human gut bacteria and Enterobactertiales (%) | (H > U, p < 0.05) | HWW/UWW (ARGs or MGEs) | 3–161 fold (p < 0.004) | ||
[26] | 53 (H), 50 (CMO) | MRSA+/all samples (%) | 5/53 (9%) | 0/50 (0%) |
Study | Number of Samples | ARB | Hospitals | Other Places | ARG | Hospitals | Other Places |
---|---|---|---|---|---|---|---|
[27] | 7 (H) 20 (RH) 32 (HSG) | - | - | - | Copies/100 mL (vanA) | 7.95 × 101 | - |
[37] | 4 (H), 44 (CMO) | - | - | - | Detected vanC | 3 | 3 |
[26] | 54 (H), 55 (CMO) | VRE+/all samples (%) | 18/54 (33%) | 6/55(11%) | - | - | - |
[38] | 7 (H), 42 (CMO) | - | - | - | prevalence of vanA | Significantly higher H >> CMO | |
[39] | 16 (H), 42 (U) | VRE+/all samples (%) | 14/16 (87%) | 20/30 (67%) | Detected vanA | 14 | 20 |
[40] | 26 (H), 21 (U) | Colony-forming units/100 mL VRE | 1.3 × 105 | 5.7 × 105 | Detected vanA | 2 | 3 |
Detected vanB | 2 | 6 | |||||
[41] | 14 (H), 12 (R) | VRE+/all samples (%) | 11/14 (78.6%) | 0/12 (0%) | - | - | - |
[36] | 6 (H), 10 (M) | VRE (%) | 25% | 12.5% | Detected vanA | positive | positive |
[42] | 14 (H), 35 (Raw Water) | Prevalence of VRE8 resistance (%) | 43% in Sweden | 57% in Sweden | - | - | - |
23 (H), 49 (Raw Water) | 30% in Spain | 98% in Spain | - | - | - | ||
22 (H), 21 (Raw Water) | 18% in UK | 67% in UK | - | - | - | ||
[43] | 14 (H) 37 (SW) | VRE+/all samples (%) | 5/14 (36%) | 1/37 (3%) | Detected vanA | 1 | 1 |
Detected vanB | 4 | 0 |
Study | Number of Samples | ARB | Hospitals | Other Places | ARG | Hospitals | Other Places |
---|---|---|---|---|---|---|---|
[44] | 17 (H), 5 (RW) | ESBL production in E. coli (%, Klebsiella pneumoniae) | 35%, 50% | 15%, 0% | Detected blaCTX | 1 | 1 |
Detected blaTEM | 4 | 1 | |||||
Detected blaSHV | 3 | 1 | |||||
[45] | 2644 (H) 2525 (CMO) 2693 (U) | ESBL (%) | 11.5% | 6.9% (CMO) 3.7% (U) | - | - | - |
[34] | 72, 20 | ESBL (logCFU/mL) | 7.29 | 3.97 | log copies/mL blaTEM | 7.08 | 7.36 |
log copies/mL blaOXA | 6.35 | 5.31 | |||||
log copies/mL blaCTX | 7.96 | 6.86 | |||||
[46] | 6 (H), 17 (U) | ESBL isolates (%) | 14.9% | 2.9% | Detected blaCTX-M | 14 | 12 |
ESBL (%) | 13.6% | 2.3% | Detected blaTEM | 18 | 0 | ||
[47] | 45 (H), 60 (U) | ESBL E. coli (CFU/mL) | 27 × 103 | 0.75 × 103 (p < 0.001) | Detected blaSHV | 2 | 5 |
ESBL E. coli/total E. coli (%) | 7.8% | 0.1% | Detected blaTEM | 7 | 4 | ||
[48] | 21 (H), 21 (M) | ESBL isolates (%) | 37.1% | 17.7% | Detected blaCTX-M | 41 | 7 |
Detected blaTEM | 60 | 11 | |||||
Detected blaSHV | 6 | 3 | |||||
Detected blaOXA | 11 | 0 | |||||
[49] | 17 (H), 27 (M) | ESBL/isolates (%) | 5/106 (4.7%) | 1/36 (2.8%) | Detected blaCTX-M | 5 | 1 |
Detected blaSHV | 1 | 0 | |||||
Detected blaTEM | 1 | 0 |
Study | Number of Samples | ARB | Hospitals | Other Places | ARG | Hospitals | Other Places |
---|---|---|---|---|---|---|---|
[27] | 7 (H) 20 (RH) 32 (HSG) | - | - | - | Copies/100 mL (mcr-1) | 2.23 × 10−6 | NA (due to absence of mcr-1 in RH) |
[50] | 15 (H), 15 (M) | - | - | - | mcr-1+/all samples | 6/15 | 11/15 (municipal, p = 0.139, but higher levels in H, p = 0.007) |
mcr-3/4/5 | H < Municipal (p < 0.001) | ||||||
cfr (A)+/all samples | 15/15 | N.D. | |||||
optrA+/all samples | 13/15 | N.D. | |||||
sul4 | 15/15 | 15/15 (municipal) | |||||
gar | 15/15 | 15/15 (municipal) | |||||
[34] | 72, 20 | - | - | - | log copies/mL Int1 | 10.4 | 8.44 |
[51] | Total 66 (H, M) | Gentamicin- resistant bacteria (CFU/100 mL) | 1.84 × 107 | 6.29 × 106 | Detected aac(3)-1 | 2/3 | 3/3 |
Chloramphenicol | 2.84 × 107 | 3.73 × 107 | Detected cmlA1 | 2/3 | 2/3 | ||
Ceftazidim | 7.36 × 107 | 3.73 × 107 | Detected ctx-m-32 | 2/3 | 0/3 | ||
[36] | 6 (H), 10 (M) | - | - | - | Detected ampC | positive | positive |
[30] | 218 (clinic), 196 (mix), 200 (city) | Citrobacter species (%) | higher, p < 0.05 | log copies/mL blaNDM | Mixed (clinic and city) > city (p < 0.01) | ||
log copies/mL blaCTX-M-15 | Mixed (clinic and city) > city (p < 0.05) | ||||||
Enterobacter/Pseudomonasspecies (%) | higher, p < 0.001 | log copies/mL blaVIM | clinic > city (p < 0.01) | ||||
log copies/mL sul1 | Mixed (clinic and city) > city (p < 0.05) | ||||||
log copies/mL mcr-1 | Mixed (clinic and city) > city | ||||||
[42] | 105 (H), 59 (Raw Water) | Prevalence of ERE8 resistance (%) | 86% in Sweden | 26% in Sweden | - | - | - |
83% in Spain | 100% in Spain | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lan, L.; Wang, Y.; Chen, Y.; Wang, T.; Zhang, J.; Tan, B. A Review on the Prevalence and Treatment of Antibiotic Resistance Genes in Hospital Wastewater. Toxics 2025, 13, 263. https://doi.org/10.3390/toxics13040263
Lan L, Wang Y, Chen Y, Wang T, Zhang J, Tan B. A Review on the Prevalence and Treatment of Antibiotic Resistance Genes in Hospital Wastewater. Toxics. 2025; 13(4):263. https://doi.org/10.3390/toxics13040263
Chicago/Turabian StyleLan, Lihua, Yixin Wang, Yuxin Chen, Ting Wang, Jin Zhang, and Biqin Tan. 2025. "A Review on the Prevalence and Treatment of Antibiotic Resistance Genes in Hospital Wastewater" Toxics 13, no. 4: 263. https://doi.org/10.3390/toxics13040263
APA StyleLan, L., Wang, Y., Chen, Y., Wang, T., Zhang, J., & Tan, B. (2025). A Review on the Prevalence and Treatment of Antibiotic Resistance Genes in Hospital Wastewater. Toxics, 13(4), 263. https://doi.org/10.3390/toxics13040263