Toxicological Effects of Glufosinate-Ammonium-Containing Commercial Formulations on Biomphalaria glabrata in Aquatic Environments: A Multidimensional Study from Embryotoxicity to Histopathology
Abstract
1. Introduction
2. Materials and Methods
2.1. Breeding and Embryo Collection of B. glabrata
2.2. Chemical Reagents
2.3. GLA Exposure
2.3.1. Behavior, Survival, and Reproductive Changes in Adult B. glabrata Exposed to Different Concentrations of GLA
2.3.2. Embryonic Malformations, Delayed Development, and Mortality in B. glabrata Exposed to Different Concentrations of GLA
2.4. Changes in Hemocyte Numbers in B. glabrata Exposed to Different Concentrations of GLA
2.5. Morphological Observations of B. glabrata Soft Tissues Exposed to Different Concentrations of GLA
2.6. Histopathological Analysis of Hepatopancreas and Gonads in B. glabrata Exposed to Different Concentrations of GLA
2.7. Data Analysis
3. Results
3.1. Acute Toxicity of GLA to Adult B. glabrata
3.2. Chronic Exposure to GLA Results in Growth Inhibition, Morphological Changes, and Abnormal Hemolymph Parameters in B. glabrata
3.3. GLA Exposure Significantly Affects Reproductive Output and Gonad Histopathology in B. glabrata
3.4. Concentration-Dependent Toxic Effects of GLA on B. glabrata Embryonic Development
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Takano, H.K.; Dayan, F.E. Glufosinateammonium: A review of the current state of knowledge. Pest Manag. Sci. 2020, 76, 3911–3925. [Google Scholar] [CrossRef] [PubMed]
- Takano, H.K.; Beffa, R.; Preston, C.; Westra, P.; Dayan, F.E. Reactive oxygen species trigger the fast action of glufosinate. Planta 2019, 249, 1837–1849. [Google Scholar] [CrossRef] [PubMed]
- Cha, Y.; Kim, H.; Lee, Y.; Choi, E.; Kim, H.; Kim, O.; Cha, K.; Lee, K.; Hwang, S. The relationship between serum ammonia level and neurologic complications in patients with acute glufosinate ammonium poisoning: A prospective observational study. Hum. Exp. Toxicol. 2018, 37, 571–579. [Google Scholar] [CrossRef]
- Yeon, S.; Kim, S.H.; Sim, J.; Kim, S.; Lee, Y.; Kim, H.; Cha, Y.S. Major component causing neurological toxicity in acute glufosinate ammonium poisoning: Determination of glufosinate, 1-methoxy-2-propanol, and ammonia in serum and cerebrospinal fluid. Clin. Toxicol. 2022, 60, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Cho, Y.S.; Chun, B.J.; Moon, J.M.; Kim, D.K.; Lee, B.K.; Lee, D.H.; Ryu, S.J.; Jung, E. The trend of ammonia levels in patients with glufosinate ammonium poisoning with respect to neurotoxicity. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2023, 396, 525–531. [Google Scholar] [CrossRef]
- Ferramosca, A.; Lorenzetti, S.; Di Giacomo, M.; Murrieri, F.; Coppola, L.; Zara, V. Herbicides glyphosate and glufosinate ammonium negatively affect human sperm mitochondria respiration efficiency. Reprod. Toxicol. 2021, 99, 48–55. [Google Scholar] [CrossRef]
- Ma, X.; Fan, Y.; Xiao, W.; Ding, X.; Hu, W.; Xia, Y. Glufosinate-ammonium induced aberrant histone modifications in mouse sperm are concordant with transcriptome in preimplantation embryos. Front. Physiol. 2022, 12, 819856. [Google Scholar] [CrossRef]
- Izumi, H.; Demura, M.; Imai, A.; Ogawa, R.; Fukuchi, M.; Okubo, T.; Tabata, T.; Mori, H.; Yoshida, T. Developmental synapse pathology triggered by maternal exposure to the herbicide glufosinate ammonium. Front. Mol. Neurosci. 2023, 16, 1298238. [Google Scholar] [CrossRef]
- Laitinen, P.; Siimes, K.; Eronen, L.; Rämö, S.; Welling, L.; Oinonen, S.; Mattsoff, L.; RuohonenLehto, M. Fate of the herbicides glyphosate, glufosinateammonium, phenmedipham, ethofumesate and metamitron in two Finnish arable soils. Pest Manag. Sci. Former. Pestic. Sci. 2006, 62, 473–491. [Google Scholar] [CrossRef]
- Wang, B.; Jiang, L.; Pan, B.; Lin, Y. Toxicity of glufosinate-ammonium in soil to earthworm (Eisenia fetida). J. Soils Sediments 2022, 22, 1469–1478. [Google Scholar] [CrossRef]
- Li-zhi, N.; Wen-jun, G.; Guo-nian, Z. The degradation of glufosinate in water and toxicity to aquatic organism. Acta Agric. Zhejiangensis 2010, 22, 485–490. [Google Scholar]
- Duan, R.; Zhang, S.; Jiang, S.; Zhang, S.; Song, Y.; Luo, M.; Lu, J. Glufosinate-ammonium increased nitrogen and phosphorus content in water and shaped microbial community in epiphytic biofilm of Hydrilla verticillata. J. Hazard. Mater. 2024, 479, 135674. [Google Scholar] [CrossRef]
- Yan, B.; Lei, L.; Chen, X.; Men, J.; Sun, Y.; Guo, Y.; Yang, L.; Wang, Q.; Han, J.; Zhou, B. Glyphosate and glufosinate-ammonium in aquaculture ponds and aquatic products: Occurrence and health risk assessment. Environ. Pollut. 2022, 296, 118742. [Google Scholar] [CrossRef] [PubMed]
- Kou, Y.; Chen, Y.; Feng, T.; Chen, L.; Wang, H.; Sun, N.; Zhao, S.; Yang, T.; Jiao, W.; Feng, G.; et al. Glufosinateammonium causes liver injury in zebrafish by blocking the Nrf2 pathway. Environ. Toxicol. 2024, 39, 148–155. [Google Scholar] [CrossRef]
- Zhang, Y.; Dang, Y.; Pei, F.; Yuan, Y.; Yuan, J.; Gu, Z.; Wang, J. Sub-acute toxicity of the herbicide glufosinate-ammonium exposure in adult red swamp crayfish (Procambarus clarkii). Environ. Pollut. 2023, 337, 122605. [Google Scholar] [CrossRef] [PubMed]
- Babalola, O.O.; Truter, J.C.; Van Wyk, J.H. Lethal and teratogenic impacts of imazapyr, diquat dibromide, and glufosinate ammonium herbicide formulations using frog embryo teratogenesis assay-xenopus (FETAX). Arch. Environ. Contam. Toxicol. 2021, 80, 708–716. [Google Scholar] [CrossRef]
- Babalola, O.O.; Truter, J.C.; Archer, E.; Van Wyk, J.H. Exposure impacts of environmentally relevant concentrations of a glufosinate ammonium herbicide formulation on larval development and thyroid histology of Xenopus laevis. Arch. Environ. Contam. Toxicol. 2021, 80, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Richards, C.S. Genetic factors in susceptibility of Biomphalaria glabrata for different strains of Schistosoma mansoni. Parasitology 1975, 70, 231–241. [Google Scholar] [CrossRef]
- Zhong, D.; Bu, L.; Habib, M.R.; Lu, L.; Yan, G.; Zhang, S.-M. A haplotype-like, chromosome-level assembled and annotated genome of Biomphalaria glabrata, an important intermediate host of schistosomiasis and the best studied model of schistosomiasis vector snails. PLoS Neglected Trop. Dis. 2024, 18, e0011983. [Google Scholar] [CrossRef]
- Adema, C.M.; Hillier, L.W.; Jones, C.S.; Loker, E.S.; Knight, M.; Minx, P.; Oliveira, G.; Raghavan, N.; Shedlock, A.; Do Amaral, L.R.; et al. Whole genome analysis of a schistosomiasis-transmitting freshwater snail. Nat. Commun. 2017, 8, 15451. [Google Scholar] [CrossRef]
- de Freitas Tallarico, L.; Miyasato, P.A.; Nakano, E. Rearing and maintenance of Biomphalaria glabrata (Say, 1818): Adults and embryos under laboratory conditions. Ann. Aquac. Res. 2016, 3, 1013. [Google Scholar]
- de Freitas Tallarico, L. Freshwater gastropods as a tool for ecotoxicology assessments in Latin America. Am. Malacol. Bull. 2015, 33, 330–336. [Google Scholar] [CrossRef]
- Tallarico, L.d.F.; Silva, F.N.V.d.; Miranda, M.S.; Nakano, E. Sensitivity assessment of Biomphalaria glabrata (SAY, 1818) using reference substance sodium dodecyl sulfate for ecotoxicological analyzes. Ecotoxicology 2024, 33, 1135–1144. [Google Scholar] [CrossRef] [PubMed]
- Pena, R.V.; Silva Brito, R.; Araújo, O.A.; Damacena-Silva, L.; Harayashiki, C.A.Y.; Rocha, T.L. Hazardous effects of nickel ferrite nanoparticles and nickel chloride in early life stages of the freshwater snail Biomphalaria glabrata (Say, 1818). Environ. Sci. Pollut. Res. 2024, 31, 58324–58334. [Google Scholar] [CrossRef] [PubMed]
- Souza-Silva, G.; de Souza, C.R.; Pereira, C.A.d.J.; dos Santos Lima, W.; Mol, M.P.G.; Silveira, M.R. Using freshwater snail Biomphalaria glabrata (Say, 1818) as a biological model for ecotoxicology studies: A systematic review. Environ. Sci. Pollut. Res. 2023, 30, 28506–28524. [Google Scholar] [CrossRef]
- Caixeta, M.B.; Araújo, P.S.; Rodrigues, C.C.; Gonçalves, B.B.; Araújo, O.A.; Bevilaqua, G.B.; Malafaia, G.; Silva, L.D.; Rocha, T.L. Risk assessment of iron oxide nanoparticles in an aquatic ecosystem: A case study on Biomphalaria glabrata. J. Hazard. Mater. 2021, 401, 123398. [Google Scholar] [CrossRef]
- Morais, V.H.T.; de Luna Filho, R.L.C.; dos Santos Júnior, J.A.; Siqueira, W.N.; Pereira, D.R.; Lima, M.V.; Silva, H.A.F.; de França, E.J.; Amaral, R.d.S.; de Albuquerque Melo, A.M.M. Use of Biomphalaria glabrata as a bioindicator of groundwater quality under the influence of NORM. J. Environ. Radioact. 2022, 242, 106791. [Google Scholar] [CrossRef]
- Organisation de Coopération et de Développement Économiques. Test No. 243: Lymnaea Stagnalis Reproduction Test; OECD Publishing: Paris, France, 2016. [Google Scholar]
- Canton, H. Organisation for economic co-operation and development—OECD. In The Europa Directory of International Organizations 2021; Routledge: Oxfordshire, UK, 2021; pp. 677–687. [Google Scholar]
- Committee of Experts on the Transport of Dangerous Goods and on the Globally Harmonized System of Classification and Labelling of Chemicals. Globally Harmonized System of Classification and Labelling of Chemicals (GHS); United Nations Secretariat: New York, NY, USA, 2002. [Google Scholar]
- Ore, O.T.; Adeola, A.O.; Bayode, A.A.; Adedipe, D.T.; Nomngongo, P.N. Organophosphate pesticide residues in environmental and biological matrices: Occurrence, distribution and potential remedial approaches. Environ. Chem. Ecotoxicol. 2023, 5, 9–23. [Google Scholar] [CrossRef]
- Li, H.; Jiao, Y.; Li, L.; Jiao, X. Research progress and trend of effects of organophosphorus pesticides on aquatic organisms in the past decade. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2023, 271, 109673. [Google Scholar] [CrossRef]
- Jiao, C.; Chen, L.; Sun, C.; Jiang, Y.; Zhai, L.; Liu, H.; Shen, Z. Evaluating national ecological risk of agricultural pesticides from 2004 to 2017 in China. Environ. Pollut. 2020, 259, 113778. [Google Scholar] [CrossRef]
- Dong, T.; Guan, Q.; Hu, W.; Zhang, M.; Zhang, Y.; Chen, M.; Wang, X.; Xia, Y. Prenatal exposure to glufosinate ammonium disturbs gut microbiome and induces behavioral abnormalities in mice. J. Hazard. Mater. 2020, 389, 122152. [Google Scholar] [CrossRef]
- Geng, Y.; Jiang, L.; Zhang, D.; Liu, B.; Zhang, J.; Cheng, H.; Wang, L.; Peng, Y.; Wang, Y.; Zhao, Y.; et al. Glyphosate, aminomethylphosphonic acid, and glufosinate ammonium in agricultural groundwater and surface water in China from 2017 to 2018: Occurrence, main drivers, and environmental risk assessment. Sci. Total Environ. 2021, 769, 144396. [Google Scholar] [CrossRef]
- Masiol, M.; Giannì, B.; Prete, M. Herbicides in river water across the northeastern Italy: Occurrence and spatial patterns of glyphosate, aminomethylphosphonic acid, and glufosinate ammonium. Environ. Sci. Pollut. Res. 2018, 25, 24368–24378. [Google Scholar] [CrossRef] [PubMed]
- Wauchope, R.D.; Estes, T.L.; Allen, R.; Baker, J.L.; Hornsby, A.G.; Jones, R.L.; Richards, R.P.; Gustafson, D.I. Predicted impact of transgenic, herbicidetolerant corn on drinking water quality in vulnerable watersheds of the midwestern USA. Pest Manag. Sci. Former. Pestic. Sci. 2002, 58, 146–160. [Google Scholar] [CrossRef] [PubMed]
- Cuzziol Boccioni, A.P.; Lajmanovich, R.C.; Attademo, A.M.; Lener, G.; Lien-Medrano, C.R.; Simoniello, M.F.; Repetti, M.R.; Peltzer, P.M. Toxicity of pesticide cocktails in amphibian larvae: Understanding the impact of agricultural activity on aquatic ecosystems in the Salado River basin, Argentina. Drug Chem. Toxicol. 2024, 48, 247–265. [Google Scholar] [CrossRef] [PubMed]
- Lajmanovich, R.C.; Attademo, A.M.; Lener, G.; Boccioni, A.P.C.; Peltzer, P.M.; Martinuzzi, C.S.; Demonte, L.D.; Repetti, M.R. Glyphosate and glufosinate ammonium, herbicides commonly used on genetically modified crops, and their interaction with microplastics: Ecotoxicity in anuran tadpoles. Sci. Total Environ. 2022, 804, 150177. [Google Scholar] [CrossRef]
- Ellis, R.; Parry, H.; Spicer, J.; Hutchinson, T.; Pipe, R.; Widdicombe, S. Immunological function in marine invertebrates Responses to environmental perturbation. Fish Shellfish Immunol. 2011, 30, 1209–1222. [Google Scholar] [CrossRef]
- Santovito, A.; Lambertini, M.; Schleicherová, D.; Mirone, E.; Nota, A. Cellular and Genomic Instability Induced by the Herbicide Glufosinate-Ammonium: An In Vitro and In Vivo Approach. Cells 2024, 13, 909. [Google Scholar] [CrossRef]
- Xiong, G.; Deng, Y.; Li, J.; Cao, Z.; Liao, X.; Liu, Y.; Lu, H. Immunotoxicity and transcriptome analysis of zebrafish embryos in response to glufosinate-ammonium exposure. Chemosphere 2019, 236, 124423. [Google Scholar] [CrossRef]
- Menga, A.; Serra, M.; Todisco, S.; Riera-Domingo, C.; Ammarah, U.; Ehling, M.; Palmieri, E.M.; Di Noia, M.A.; Gissi, R.; Favia, M.; et al. Glufosinate constrains synchronous and metachronous metastasis by promoting anti-tumor macrophages. EMBO Mol. Med. 2020, 12, e11210. [Google Scholar] [CrossRef]
- Donthi, D.; Kumar, A.D. Glufosinate Ammonium An Overview; Pesticide Action Network India: Kerala, India, 2022. [Google Scholar]
- Zhang, L.; Diao, J.; Chen, L.; Wang, Z.; Zhang, W.; Li, Y.; Tian, Z.; Zhou, Z. Hepatotoxicity and reproductive disruption in male lizards (Eremias argus) exposed to glufosinate-ammonium contaminated soil. Environ. Pollut. 2019, 246, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Chen, L.; Meng, Z.; Zhang, W.; Xu, X.; Wang, Z.; Qin, Y.; Deng, Y.; Liu, R.; Zhou, Z.; et al. Bioaccumulation, behavior changes and physiological disruptions with gender-dependent in lizards (Eremias argus) after exposure to glufosinate-ammonium and L-glufosinate-ammonium. Chemosphere 2019, 226, 817–824. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Wang, B.; Li, Z.; Ding, X.; Wen, Y.; Shan, W.; Hu, W.; Wang, X.; Xia, Y. Effects of glufosinate-ammonium on male reproductive health: Focus on epigenome and transcriptome in mouse sperm. Chemosphere 2022, 287, 132395. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Fu, K.; Xiang, K.P.; Wang, L.Y.; Zhang, Y.F.; Luo, Y.P. Comparison of the chronic and multigenerational toxicity of racemic glufosinate and L-glufosinate to Caenorhabditis elegans at environmental concentrations. Chemosphere 2023, 316, 137863. [Google Scholar] [CrossRef]
- Feng, W.; Xing, C.; Dahan, Y.; Jingfeng, Y.; Guiying, K.; Baoquan, Z.; Xiaoman, L.; Yunzhu, P.; Na, Z.; Wu, D. Toxic effects of glufosinate-ammonium on zebrafish embryos and larvae. Chin. J. Pestic. Sci. 2016, 18, 323–329. [Google Scholar]
- Zhang, L.; Zhang, D.; Xu, B.; Li, Y.; Diao, J. Negative effects on the adaptive strategies of the lizards (Eremias argus) under starvation after exposure to Glufosinate-ammonium. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2025, 287, 110036. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, Y.; Xu, J.; Feng, Y.; Weng, R.; Chen, K.; Zheng, H.; Li, X.; Zhao, Q.; Zhang, X.; Li, H. Toxicological Effects of Glufosinate-Ammonium-Containing Commercial Formulations on Biomphalaria glabrata in Aquatic Environments: A Multidimensional Study from Embryotoxicity to Histopathology. Toxics 2025, 13, 528. https://doi.org/10.3390/toxics13070528
Qian Y, Xu J, Feng Y, Weng R, Chen K, Zheng H, Li X, Zhao Q, Zhang X, Li H. Toxicological Effects of Glufosinate-Ammonium-Containing Commercial Formulations on Biomphalaria glabrata in Aquatic Environments: A Multidimensional Study from Embryotoxicity to Histopathology. Toxics. 2025; 13(7):528. https://doi.org/10.3390/toxics13070528
Chicago/Turabian StyleQian, Yuncheng, Jialu Xu, Yilu Feng, Ruiqi Weng, Keda Chen, Hezheng Zheng, Xianwei Li, Qingzhi Zhao, Xiaofen Zhang, and Hongyu Li. 2025. "Toxicological Effects of Glufosinate-Ammonium-Containing Commercial Formulations on Biomphalaria glabrata in Aquatic Environments: A Multidimensional Study from Embryotoxicity to Histopathology" Toxics 13, no. 7: 528. https://doi.org/10.3390/toxics13070528
APA StyleQian, Y., Xu, J., Feng, Y., Weng, R., Chen, K., Zheng, H., Li, X., Zhao, Q., Zhang, X., & Li, H. (2025). Toxicological Effects of Glufosinate-Ammonium-Containing Commercial Formulations on Biomphalaria glabrata in Aquatic Environments: A Multidimensional Study from Embryotoxicity to Histopathology. Toxics, 13(7), 528. https://doi.org/10.3390/toxics13070528