Biodegradation of Carbon Tetrachloride in Groundwater: Microbial Community Shifts and Functional Genes Involvement in Enhanced Reductive Dechlorination
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Microcosm Sample Setup
2.3. Analytical Methods
2.4. Microbial Community
3. Results and Discussion
3.1. Physicochemical Properties of the Groundwater
3.2. CT Degradation Pathway
3.3. Microbial Community Composition
3.4. Functional Genes and Related Microorganisms
3.4.1. Hydrogenase Genes
3.4.2. Reductive Dehalogenase Genes
3.5. Deduced Mechanisms of CT Biodegradation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Xiao, X.; Prinn, R.G.; Fraser, P.J.; Weiss, R.F.; Simmonds, P.G.; O’Doherty, S.; Golombek, A. Atmospheric three-dimensional inverse modeling of regional industrial emissions and global oceanic uptake of carbon tetrachloride. Atmos. Chem. Phys. 2010, 10, 10421–10434. [Google Scholar] [CrossRef]
- Fraser, P.J.; Dunse, B.L.; Manning, A.J.; Walsh, S.; Wang, R.H.J.; Krummel, P.B.; Simmonds, P.G. Australian carbon tetrachloride emissions in a global context. Environ. Chem. 2014, 11, 77–88. [Google Scholar] [CrossRef]
- Puigserver, D.; Herrero, J.; Parker, B.L.; Carmona, J.M. Natural attenuation of pools and plumes of carbon tetrachloride and chloroform in the transition zone to bottom aquitards and the microorganisms involved in their degradation. Sci. Total Environ. 2020, 712, 135679. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Chen, X.; Wang, S.; Luo, Y.; Du, W.; Yin, Y.; Guo, H. A field study of a novel permeable-reactive-biobarrier to remediate chlorinated hydrocarbons contaminated groundwater. Environ. Pollut. 2024, 351, 124042. [Google Scholar] [CrossRef]
- Knox, R.C.; Canter, L.W. Prioritization of ground water contaminants and sources. Water Air Soil Pollut. 1996, 88, 205–226. [Google Scholar] [CrossRef]
- GB 5749-2022; Hygienic Standards for Drinking Water. The State Administration for Market Regulation and the Standardization Administration of the People’s Republic of China: Beijing, China, 2022.
- Jiao, Y.; Qiu, C.; Huang, L.; Wu, K.; Ma, H.; Chen, S.; Ma, L.; Wu, D. Reductive dechlorination of carbon tetrachloride by zero-valent iron and related iron corrosion. Appl. Catal. B Environ. Energy 2009, 91, 434–440. [Google Scholar] [CrossRef]
- Liang, C.; Chou, H.-Y.; Wu, S.C. Reductive degradation of carbon tetrachloride with guava leaf extract. J. Ind. Eng. Chem. 2022, 113, 275–282. [Google Scholar] [CrossRef]
- Tang, P.; Jiang, W.; Lyu, S.; Qiu, Z.; Sui, Q. Ethanol enhanced carbon tetrachloride degradation in Fe(II) activated calcium peroxide system. Sep. Purif. Technol. 2018, 205, 105–112. [Google Scholar] [CrossRef]
- Xu, Z.; Cheng, Y.; Lei, Z.; Wei, N.; Cai, L.; Lyu, S. Reductive carbon tetrachloride degradation by surfactant derived radicals in persulfate activation system. Sep. Purif. Technol. 2024, 335, 126147. [Google Scholar] [CrossRef]
- Tang, P.; Jiang, W.; Lyu, S.; Brusseau, M.L.; Xue, Y.; Qiu, Z.; Sui, Q. Mechanism of carbon tetrachloride reduction in ferrous ion activated calcium peroxide system in the presence of methanol. Chem. Eng. J. 2019, 362, 243–250. [Google Scholar] [CrossRef]
- Leonardo, S.; Roy, T.T.; Inoue, C.; Chien, M.-F. A microbial consortium led by a novel Pseudomonas species enables degradation of carbon tetrachloride under aerobic conditions. Chemosphere 2023, 319, 137988. [Google Scholar] [CrossRef] [PubMed]
- Davis, A.; Fennemore, G.G.; Peck, C.; Walker, C.R.; McIlwraith, J.; Thomas, S. Degradation of carbon tetrachloride in a reducing groundwater environment: Implications for natural attenuation. Appl. Geochem. 2003, 18, 503–525. [Google Scholar] [CrossRef]
- Wang, J.; Wu, S.; Yang, Q.; Liu, B.; Yang, M.; Fei, W.; Tang, Y.; Zhang, X. Effect of the degradation performance on carbon tetrachloride by anaerobic co-metabolism under different external energy sources. Chemosphere 2022, 308, 136262. [Google Scholar] [CrossRef] [PubMed]
- Koenig, J.C.; Lee, M.J.; Manefield, M. Successful microcosm demonstration of a strategy for biodegradation of a mixture of carbon tetrachloride and perchloroethene harnessing sulfate reducing and dehalorespiring bacteria. J. Hazard. Mater. 2012, 219–220, 169–175. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, Y.; Liu, Y.; Lv, M.; Wang, Z.; Wen, L.-L.; Li, A. In situ reductive dehalogenation of groundwater driven by innovative organic carbon source materials: Insights into the organohalide-respiratory electron transport chain. J. Hazard. Mater. 2023, 452, 131243. [Google Scholar] [CrossRef]
- Lin, G.; Zhang, L.; Chu, H.; Chen, M.; Wang, M. Microbial removal of benzene from petroleum contaminated soils. Environ. Prot. Chem. Ind. 2022, 42, 55–60. [Google Scholar]
- Agilent Technologies, Inc. Volatile Organic Compounds in Water by Purge and Trap Capillary Column Gas Chromatography with Photoionization and Electrolytic Conductivity Detectors in Series; Revision 2.1.; Agilent Technologies, Inc.: Santa Clara, CA, USA, 1995. [Google Scholar]
- Leeson, A.; Becvar, E.; Henry, B.; Fortenberry, J.; Coyle, C. Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated Solvents; Technical report Tr-2250-Env; Engineering Service Center: Port Hueneme, CA, USA, 2004. [Google Scholar]
- Huang, H.; Jiang, Y.; Zhao, J.; Li, S.; Sarah, S.; Li, D. BTEX biodegradation is linked to bacterial community assembly patterns in contaminated groundwater ecosystem. J. Hazard. Mater. 2021, 419, 126205. [Google Scholar] [CrossRef]
- Holliger, C.; Schraa, G.; Stams, A.J.M.; Zehnder, A.J.B. A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth. Appl. Environ. Microbiol. 1993, 59, 2991–2997. [Google Scholar] [CrossRef]
- Fennell, D.E.; Gossett, J.M.; Zinder, S.H. Comparison of Butyric Acid, Ethanol, Lactic Acid, and Propionic Acid as Hydrogen Donors for the Reductive Dechlorination of Tetrachloroethene. Environ. Sci. Technol. 1997, 31, 918–926. [Google Scholar] [CrossRef]
- Smatlak, C.R.; Gossett, J.M.; Zinder, S.H. Comparative Kinetics of Hydrogen Utilization for Reductive Dechlorination of Tetrachloroethene and Methanogenesis in an Anaerobic Enrichment Culture. Environ. Sci. Technol. 1996, 30, 2850–2858. [Google Scholar] [CrossRef]
- Ballapragada, B.S.; Stensel, H.D.; Puhakka, J.A.; Ferguson, J.F. Effect of Hydrogen on Reductive Dechlorination of Chlorinated Ethenes. Environ. Sci. Technol. 1997, 31, 1728–1734. [Google Scholar] [CrossRef]
- Xia, Y.; Yang, X.; Li, H.; Zhao, B. Optimization of nitrogen removal performance and metabolic pathway of a heterotrophic nitrifying-aerobic denitrifying bacterial strain Acinetobacter johnsonii sp. N26. Microbiol. China 2023, 50, 1374–1395. [Google Scholar]
- Jia, J.; Liu, M.; Feng, L.; Wang, Z. Comparative genomic analysis reveals the evolution and environmental adaptation of Acinetobacter johnsonii. Gene 2022, 808, 145985. [Google Scholar] [CrossRef]
- Murugan, R.S.; Dinesh, G.H.; Raja, R.K.; Obeth, E.S.J.; Bora, A.; Samsudeen, N.M.; Pugazhendhi, A.; Arun, A. Dark fermentative biohydrogen production by Acinetobacter junii-AH4 utilizing various industry wastewaters. Int. J. Hydrogen Energy 2021, 46, 11297–11304. [Google Scholar] [CrossRef]
- Tandon, M.; Thakur, V.; Tiwari, K.L.; Jadhav, S.K. Enterobacter ludwigii strain IF2SW-B4 isolated for bio-hydrogen production from rice bran and de-oiled rice bran. Environ. Technol. Innov. 2018, 10, 345–354. [Google Scholar] [CrossRef]
- Wang, Y.; Xing, Z.; Chen, S.; Su, X.; Cao, K.; Cao, L.; Liao, S.; Dong, L.; Ai, S.; Zhao, T. Transformation mechanism of carbon tetrachloride and the associated micro-ecology in landfill cover, a typical functional layer zone. Chin. J. Biotechnol. 2022, 38, 1874–1888. [Google Scholar]
Microcosm Sample | Components |
---|---|
Control | deionized water + contaminated groundwater containing CT (5 mg/L) + YE (1 g/L) + 10 mg/L HgCl2 |
Experi | deionized water + contaminated groundwater containing CT (5 mg/L) + YE (1 g/L) |
pH | ORP (mV) | DO (mg/L) | NO3− (mg/L) | Fe2+ (mg/L) | Mn2+ (mg/L) | CT (mg/L) | TCA (mg/L) | Benzene (mg/L) |
---|---|---|---|---|---|---|---|---|
6.87 | −38 | 0.55 | 0.882 | 5.40 | 3.55 | 9.010 | 1.200 | 5.501 |
Sample | Chao1 | Goods Coverage | Shannon | Simpson | Ace |
---|---|---|---|---|---|
Initial | 25,267.41 | 0.9999 | 5.9333 | 0.9837 | 24,542.15 |
Experi-3d | 12,244.47 | 0.9999 | 4.7413 | 0.9572 | 11,867.95 |
Experi-10d | 13,410.79 | 0.9999 | 5.0467 | 0.9765 | 12,811.84 |
Experi-50d | 10,510.39 | 0.9999 | 3.8062 | 0.9207 | 10,029.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Sun, M.; Wang, W.; Zhao, S.; Xie, Y.; Lin, X.; Liu, J.; Zhang, S. Biodegradation of Carbon Tetrachloride in Groundwater: Microbial Community Shifts and Functional Genes Involvement in Enhanced Reductive Dechlorination. Toxics 2025, 13, 704. https://doi.org/10.3390/toxics13080704
Liu Z, Sun M, Wang W, Zhao S, Xie Y, Lin X, Liu J, Zhang S. Biodegradation of Carbon Tetrachloride in Groundwater: Microbial Community Shifts and Functional Genes Involvement in Enhanced Reductive Dechlorination. Toxics. 2025; 13(8):704. https://doi.org/10.3390/toxics13080704
Chicago/Turabian StyleLiu, Zhengwei, Mingbo Sun, Wei Wang, Shaolei Zhao, Yan Xie, Xiaoyu Lin, Jingru Liu, and Shucai Zhang. 2025. "Biodegradation of Carbon Tetrachloride in Groundwater: Microbial Community Shifts and Functional Genes Involvement in Enhanced Reductive Dechlorination" Toxics 13, no. 8: 704. https://doi.org/10.3390/toxics13080704
APA StyleLiu, Z., Sun, M., Wang, W., Zhao, S., Xie, Y., Lin, X., Liu, J., & Zhang, S. (2025). Biodegradation of Carbon Tetrachloride in Groundwater: Microbial Community Shifts and Functional Genes Involvement in Enhanced Reductive Dechlorination. Toxics, 13(8), 704. https://doi.org/10.3390/toxics13080704