Haematological, Biochemical and Antioxidant Changes in Wistar Rats Exposed to Dichlorvos Based Insecticide Formulation Used in Southeast Nigeria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Sample Collection, Haematological, Biochemical and Antioxidant Assessment
2.3. Data Analysis and Statistical Procedures
3. Results
3.1. Effects of Exposure to Local Pesticide on Haematological Parameters
3.2. Effects of Exposure to Local Pesticide on Biochemical Parameters
3.3. Effects of Exposure to Local Pesticide on Antioxidants
4. Discussion
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Zhang, W.; Jiang, F.; Ou, J. Global Pesticide Consumption and Pollution: With China as a Focus. Proc. Int. Acad. Ecol. Environ. Sci. 2011, 1, 125–144. [Google Scholar]
- Gale, R.W.; Cranor, W.L.; Alvarez, D.A.; Huckins, J.N.; Petty, J.D.; Robertson, G.L. Semi volatile Organic Compounds in Residential Air along the Arizona-Mexico Border. Environ. Sci Technol. 2009, 43, 3054–3060. [Google Scholar] [CrossRef] [PubMed]
- Nigg, H.N.; Beier, R.C.; Carter, O.; Chaisson, C.; Franklin, C.; Lavy, T.; Lewis, R.G.; Lombardo, P.; McCarthy, J.F.; Maddy, K.T.; et al. Exposure to pesticides. In The Effects of Pesticides on Human Health; Baker, S.R., Wilkinson, C.F., Eds.; Princeton Scientific Publishing Co, Inc.: Princeton, NJ, USA, 1990; pp. 35–130. [Google Scholar]
- National Pesticides Telecommunications Network. Pesticides in Indoor Air of Homes (General Fact Sheet). Available online: http://npic.orst.edu/factsheets/air_gen.pdf (accessed on 27 September 2016).
- Damalas, C.A.; Eleftherohorinos, I.G. Pesticide Exposure, Safety Issues, and Risk Assessment Indicators. Int. J. Environ. Res. Public Health 2011, 8, 1402–1419. [Google Scholar] [CrossRef] [PubMed]
- Greenfacts. Indoor Air Quality. Available online: http://ec.europa.eu/health/opinions/indoor-air-pollution-l2_en.pdf (accessed on 6 October 2016).
- World Malaria Factsheet. World Health Organization: Geneva. Available online: http://www.who.int/mediacentre/factsheets/fs094/en/ (accessed on 27 September 2016).
- Musa, U.; Hati, S.; Mustapha, A.; Magaji, G. Dichlorvos concentrations in locally formulated pesticide (Otapiapia) utilized in northeastern Nigeria. Sci. Res. Essays 2010, 5, 49–54. [Google Scholar]
- Garba, U.S.; Aminu Nasiru, A.; Musa Haruna, A.; Ahmad Mayun, A.; Musa Alhaji, B.; Wazis, H.C.; Zezi, U.A.; Samuel, Y. Biochemical and Histopathologic Changes in Liver of Albino Rats Exposed to 1% Dichlorvos Pesticide at Sub-Acute Period Liver toxicity of a Nigerian dichlorvors pesticide. J. Pharm. Biomed. Sci. 2013, 3, 1–6. [Google Scholar]
- Idowu, E.T.; Omotayo, A.I.; Otubanjo, O.A. Evaluation of the toxicity of a mixture of dichlorvos and formaldehyde used for mosquito control in Nigeria. Niger. J. Parasitology 2016, 37, 16–22. [Google Scholar] [CrossRef]
- Ofordile, C.P.; Okoye, P.A.C.; Raphael, P. Determination of Actual Chemical Composition of a Locally Formulated Pesticide Product in a Nigerian Market. IJST 2014, 3, 243–247. [Google Scholar]
- National Research Council. Guide for the Care and Use of Laboratory Animals, 8th ed.; The National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Fridovich, I. Superoxide radical: An endogenous toxicant. Annu. Rev. Pharmacol. Toxicol. 1989, 23, 239–257. [Google Scholar] [CrossRef] [PubMed]
- Aebi, H.E. Catalase. In Methods of Enzymatic Analysis, 3rd ed.; Bergmeyer, H.U., Ed.; Verlag Chemie: Weinheim, FL, USA, 1983; pp. 273–286. [Google Scholar]
- Jollow, D.J.; Michell, J.R.; Zampaglione, N.; Gillete, J.R. Bromoibenzeneinduced Liver necrosis: Protective role of glutathione and evidence for 3,4-Bromobenzene oxide as hepatotoxic metabolite. Pharmacology 1974, 11, 151–169. [Google Scholar] [CrossRef] [PubMed]
- Jorum, O.H.; Piero, N.M.; Machocho, A.K. Haematological Effects of Dichloromethane-Methanolic Leaf Extracts of Carissa edulis (Forssk.) Vahl in Normal Rat Models. J. Hematol. Thromboembolic Dis. 2016, 5, 2. [Google Scholar] [CrossRef]
- Holy, B.; Kenanagha, B.; Onwuli, D.O. Haemato-pathological effects of dichlorovos on blood picture and liver cells of albino rats. J. Toxicol. Environ. Health Sci. 2015, 7, 18–23. [Google Scholar]
- Celik, I.; Yilmaz, Z.; Turkoglu, V. Hematotoxic and hepatotoxic effects of dichlorvos at sublethal dosages in rats. Environ. Toxicol. 2009, 24, 128–132. [Google Scholar] [CrossRef] [PubMed]
- Abramson, N.; Melton, B. Leukocytosis: Basics of clinical assessment. Am. Fam. Phys. 2000, 62, 2053–2060. [Google Scholar]
- Schafer, A.I. Thrombocytosis. N. Engl. J. Med. 2004, 350, 1211–1219. [Google Scholar] [CrossRef] [PubMed]
- Akomas, S.C.; Okafor, A.I.; Ijioma, S.N. Glucose level, Haematological parameters and lipid profile in Ficus. sur treated diabetic rats. Compr. J. Agric. Biol. Sci. 2014, 2, 5–11. [Google Scholar]
- Wani, W.Y.; Gudup, S.; Sunkaria, A.; Bal, A.; Singh, P.P.; Kandimalla, R.J.; Sharma, D.R.; Gill, K.D. Protective efficacy of mitochondrial targeted antioxidant MitoQ against dichlorvos induced oxidative stress and cell death in rat brain. Neuropharmacol 2011, 61, 1193–1201. [Google Scholar] [CrossRef] [PubMed]
- Alia, M.; Horcajo, C.; Bravo, L.; Goya, L. Effect of grape antioxidant dietary fiber on the total antioxidant capacity and the activity of liver antioxidant enzymes in rats. Nutr. Res. 2003, 23, 1251–1267. [Google Scholar] [CrossRef]
- Edem, V.F.; Kosoko, A.; Akinyoola, S.B.; Owoeye, O.; Rahamon, S.K.; Arinola, O.G. Plasma antioxidant enzymes, lipid peroxidation and hydrogen peroxide in wistar rats exposed to Dichlorvos insecticide. Arch. Appl. Sci. Res. 2012, 4, 1778–1781. [Google Scholar]
- Celik, I.; Suzek, H. Effects of subacute exposure of dichlorvos at sublethal dosages on erythrocyte and tissue antioxidant defense systems and lipid peroxidation in rats. Ecotoxicol. Environ. Saf. 2009, 72, 905–908. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, N.; Flora, S.J. Sub-chronic exposure to arsenic and dichlorvos on erythrocyte antioxidant defense systems and lipid peroxidation in rats. J. Environ. Biol. 2015, 36, 383–391. [Google Scholar] [PubMed]
- Sharma, P.; Singh, R. Dichlorvos and lindane induced oxidative stress in rat brain: Protective effects of ginger. Pharmacognosy Res. 2012, 4, 27–32. [Google Scholar] [PubMed]
- Ojo, A.O.; Oyinloye, B.E.; Ajiboye, B.O.; Ojo, A.B.; Akintayo, C.O.; Okezie, B. Dichlorvos Induced Nephrotoxicity in Rat Kidney: Protective Effects of Alstonia Boonei Stem Bark Extract. IJP 2014, 1, 429–437. [Google Scholar]
- Yang, X.; Schnackenberg, L.K.; Shi, Q.; Salminen, W.F. Hepatic Toxicity Biomarkers. In Biomarkers in Toxicology, 1st ed.; Gupta, R., Ed.; Academic Press: Burlington, MA, USA, 2014; pp. 103–112. [Google Scholar]
- Ozer, J.; Ratner, M.; Shaw, M.; Bailey, W.; Schomaker, S. The current state of serum biomarkers of hepatotoxicity. Toxicology 2008, 245, 194–205. [Google Scholar] [CrossRef] [PubMed]
- Edelstein, C.L. Biomarkers of Acute Kidney Injury. Adv. Chronic Kidney Dis. 2008, 15, 222–234. [Google Scholar] [CrossRef] [PubMed]
- Woo, K.S.; Kim, C.M.; Koo, K.H. An experimental study on the influence of DDVP upon the kidney. Korean J. Pathol. 1985, 19, 150–155. [Google Scholar]
Duration of Exposure | Sub-Group | RBC (×1012/L) | PCV (%) | Hb (g/dL) | WBC (×109/L) | Platelets Count (×109/L) |
---|---|---|---|---|---|---|
Day 1 | Control A | 6.33 ± 0.31 | 41.13 ± 0.58 | 12.47 ± 0.58 | 18.9 ± 1.00 | 293 ± 1.00 |
Test A | 5.28 ± 0.14 *a+ | 34.8 ± 1.04 *a+ | 10.27 ± 0.29 *a+ | 20.13 ± 2.89 *a+ | 233.3 ± 4.04 *a+ | |
Day 7 | Control B | 6.6 ± 0.35 | 37.67 ± 0.58 | 11.13 ± 0.12 | 5.4 ± 0.34 | 360.67 ± 0.58 |
Test B | 6.01 ± 0.01 + | 37.2 ± 0.52 + | 11.17 ± 0.23 b+ | 6.1 ± 2.8 b+ | 415.67 ± 77.36 + | |
Day 14 | Control C | 7.03 ± 0.02 | 41.47 ± 0.40 | 12.07 ± 0.06 | 10.8 ± 0.69 | 386.67 ± 1.16 |
Test C | 5.63 ± 0.47 *b+ | 35.9 ± 1.56 *+ | 10.47 ± 0.06 *c+ | 14.9 ± 1.56 * | 467.33 ± 113.74 + | |
Day 21 | Control D | 7.25 ± 0.05 | 42.34 ± 0.04 | 12.46 ± 0.05 | 12.4 ± 0.35 | 281.33 ± 1.16 |
Test D | 6.26 ± 0.10 * | 36.85 ± 1.17 *+ | 10.42 ± 0.23 *d+ | 16.85 ± 1.87 * | 393.33 ± 25.40 * | |
Day28 | Control E | 7.33 ± 0.017 | 44.03 ± 0.84 | 13.29 ± 0.10 | 13.46 ± 0.40 | 349.67 ± 4.5 |
Test E | 6.45 ± 0.13 *+ | 38.93 ± 0.81 *+ | 11.23 ± 0.06 *+ | 15.13 ± 0.16 * | 391.33 ± 1.16 * | |
Day 35 (seven days withdrawal) | Control F | 7.13 ± 0.02 | 42.12 ± 0.10 | 12.23 ± 0.12 | 18.13 ± 0.12 | 263.67 ± 1.16 |
Test F | 7.25 ± 0.10 | 45.76 ± 1.6 | 12.84 ± 0.19 * | 21.23 ± 4.27 | 236.67 ± 28.87 |
Duration of Exposure | Sub-group | MCV (fL) | MCH (Pg) | MCHC (g/dL) |
---|---|---|---|---|
Day 1 | Control A | 65.08 ± 4.09 | 19.72 ± 1.48 | 30.31 ± 1.26 |
Test A | 65.87 ± 1.65 a | 19.43 ± 0.2 a | 29.50 ± 0.05 | |
Day 7 | Control B | 57.20 ± 3.62 | 16.90 ± 1.02 | 29.56 ± 0.15 |
Test B | 61.86 ± 0.98 | 18.57 ± 0.35 b | 30.03 ± 1.03 | |
Day 14 | Control C | 59.01 ± 0.38 | 17.17 ± 0.12 | 29.10 ± 0.37 |
Test C | 63.87 ± 2.48 b | 18.67 ± 1.59 c | 29.20 ± 1.40 | |
Day 21 | Control D | 58.38 ± 0.33 | 17.18 ± 0.04 | 29.43 ± 0.10 |
Test D | 58.86 ± 0.88 | 16.65 ± 0.08 * | 28.28 ± 0.28 * | |
Day28 | Control E | 60.07 ± 1.23 | 18.13 ± 0.16 | 30.18 ± 0.35 |
Test E | 60.33 ± 0.01 | 17.41 ± 0.45 | 28.86 ± 0.76 | |
Day 35 (seven days withdrawal) | Control F | 59.10 ± 0.05 | 17.16 ± 0.11 | 29.04 ± 0.20 |
Test F | 63.18 ± 3.07 | 17.72 ± 0.02 * | 28.10 ± 1.44 |
Duration of Exposure | Sub-Group | AST (μ/L) | ALT (μ/L) | Urea (mg/dL) | Creatinine (mg/dL) |
---|---|---|---|---|---|
Day 1 | Control A | 29 ± 2.65 | 31.67 ± 4.51 | 20.28 ± 1.89 | 1.17 ± 0.09 |
Test A | 30.33 ± 8.74 a+ | 37.67 ± 0.58 a+ | 24.4 ± 0.81 *a+ | 1.51 ± 0.09 * | |
Day 7 | Control B | 30.67 ± 7.37 | 40.33 ± 6.66 | 23 ± 1.39 | 1.19 ± 0.17 |
Test B | 51.67 ± 1.53 *b+ | 72 ± 5.29 * | 25.55 ± 2.37 | 1.37 ± 0.22 | |
Day 14 | Control C | 32.33 ± 3.21 | 35 ± 1.73 | 23.83 ± 2.34 | 1.23 ± 0.03 |
Test C | 59.33 ± 4.04 *c | 63 ± 3.0 * | 29.98 ± 5.5 | 1.25 ± 0.05 | |
Day 21 | Control D | 36.33 ± 3.51 | 37.33 ± 1.15 | 22.27 ± 1.45 | 1.17 ± 0.07 |
Test D | 76.33 ± 3.79 * | 64.67 ± 4.04 * | 24.55 ± 1.45 + | 1.46 ± 0.19 | |
Day28 | Control E | 37 ± 6.25 | 32 ± 1.0 | 22.85 ± 1.28 | 1.15 ± 0.06 |
Test E | 67.33 ± 3.06 * | 65.33 ± 5.03 * | 34.96 ± 3.46 * | 1.48 ± 0.17 * | |
Day 35 (seven days withdrawal) | Control F | 32.67 ± 4.51 | 35.67 ± 3.21 | 22.01 ± 1.39 | 1.2 ± 0.05 |
Test F | 66 ± 3.61 * | 63 ± 1.0 * | 35.66 ± 6.12 * | 1.56 ± 0.1 * |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanu, K.C.; Ijioma, S.N.; Atiata, O. Haematological, Biochemical and Antioxidant Changes in Wistar Rats Exposed to Dichlorvos Based Insecticide Formulation Used in Southeast Nigeria. Toxics 2016, 4, 28. https://doi.org/10.3390/toxics4040028
Kanu KC, Ijioma SN, Atiata O. Haematological, Biochemical and Antioxidant Changes in Wistar Rats Exposed to Dichlorvos Based Insecticide Formulation Used in Southeast Nigeria. Toxics. 2016; 4(4):28. https://doi.org/10.3390/toxics4040028
Chicago/Turabian StyleKanu, Kingsley C., Solomon N. Ijioma, and Odudu Atiata. 2016. "Haematological, Biochemical and Antioxidant Changes in Wistar Rats Exposed to Dichlorvos Based Insecticide Formulation Used in Southeast Nigeria" Toxics 4, no. 4: 28. https://doi.org/10.3390/toxics4040028
APA StyleKanu, K. C., Ijioma, S. N., & Atiata, O. (2016). Haematological, Biochemical and Antioxidant Changes in Wistar Rats Exposed to Dichlorvos Based Insecticide Formulation Used in Southeast Nigeria. Toxics, 4(4), 28. https://doi.org/10.3390/toxics4040028