Differential Effects of Low-Molecular-Weight Organic Acids on the Mobilization of Soil-Borne Arsenic and Trace Metals
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Soil Samples Used in the Experiment
2.2. The Organic Acid Incubation Experiment
2.3. The Extraction of Metals by 1 M HNO3
2.4. Analytical Methods
2.5. The Statistical Analysis Method
3. Results
3.1. Arsenic and Trace Metals Released from the Soils by LMWOA
3.2. The Relationship between Different Organic Acid-Extractable Metal Forms
3.3. The Mobility of As and Its Relationship with Mobilizable Fe
3.4. The Mobility of Cu and Its Relationship with Mobilizable Fe
3.5. The Mobility of Pb and Its Relationship with Mobilizable Fe
3.6. The Mobility of Zn and Its Relationship with Mobilizable Fe
3.7. The Relationship between HNO3-Extractable Fraction and Oxalic Acid-Extractable Fraction
3.8. The Relationship between the HNO3-Extractable Fraction and the Citric Acid-Extractable Fraction
3.9. The Relationship between the HNO3-Extractable Fraction and the Malic Acid-Extractable Fraction
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mench, M.; Vangronsveld, J.; Didier, V.; Clijsters, H. Evaluation of metal mobility, plant availability and immobilization by chemical agents in a limed-silty soil. Environ. Pollut. 1994, 86, 279–286. [Google Scholar] [CrossRef]
- McGrath, D. Application of single and sequential extraction procedures to polluted and unpolluted soils. Sci. Total Environ. 1996, 178, 37–44. [Google Scholar] [CrossRef]
- Maiz, I.; Arambarri, I.; Garcia, R.; Millán, E. Evaluation of heavy metal availability in polluted soils by two sequential extraction procedures using factor analysis. Environ. Pollut. 2000, 110, 3–9. [Google Scholar] [CrossRef]
- Strobel, B.W. Influence of vegetation on low-molecular-weight carboxylic acids in soil solution-a review. Geoderma 2001, 99, 169–198. [Google Scholar] [CrossRef]
- Boddy, E.; Hill, P.W.; Farrar, J.; Jones, D.L. Fast turnover of low molecular weight components of the dissolved organic carbon pool of temperate grassland field soils. Soil Biol. Biochem. 2007, 39, 827–835. [Google Scholar] [CrossRef]
- Jones, D.L.; Darrah, P.R. Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Plant Soil 1994, 166, 247–257. [Google Scholar] [CrossRef]
- Jones, D.L.; Dennis, P.G.; Owen, A.G.; van Hees, P.A.W. Organic acid behavior in soils-misconceptions and knowledge gaps. Plant Soil 2003, 248, 31–41. [Google Scholar] [CrossRef]
- Schwab, A.P.; Zhu, D.S.; Banks, M.K. Influence of organic acids on the transport of heavy metals in soil. Chemosphere 2008, 72, 986–994. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Wu, Y.; Lu, W.; Chen, A.; Liu, Y. Water chemistry and ecotoxicity of an acid mine drainage-affected stream in subtropical China during a major flood event. J. Hazard. Mater. 2007, 142, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Navarro, M.C.; Pérez-Sirvent, C.; Martínez-Sánchez, M.J.; Vidal, J.; Tovar, P.J.; Bech, J. Abandoned mine sites as a source of contamination by heavy metals: A case study in a semi-arid zone. J. Geochem. Explor. 2008, 96, 183–193. [Google Scholar] [CrossRef]
- Markiewicz-Patkowska, J.; Hursthouse, A.; Przybyla-Kij, H. The interaction of heavy metals with urban soils: Sorption behaviour of Cd, Cu, Cr, Pb and Zn with a typical mixed brownfield deposit. Environ. Int. 2005, 31, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.S.; Xue, Y.; Wang, Y.L.; Cang, L.; Xu, B.; Ding, J. Source identification and apportionment of heavy metals in urban soil profiles. Chemosphere 2015, 127, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Mukwaturi, M.; Lin, C. Mobilization of heavy metals from urban contaminated soils under water inundation conditions. J. Hazard. Mater. 2015, 285, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.H.; Luo, Y.M.; Christie, P.; Wong, M.H. Effects of EDTA and low molecular weight organic acids on soil solution properties of a heavy metal polluted soil. Chemosphere 2003, 50, 819–822. [Google Scholar] [CrossRef]
- Renella, G.; Landi, L.; Nannipieri, P. Degradation of low molecular weight organic acids complexed with heavy metals in soil. Geoderma 2004, 122, 311–315. [Google Scholar] [CrossRef]
- Park, H.; Jung, K.; Alorro, R.D.; Yoo, K. Leaching Behavior of Copper, Zinc and Lead from Contaminated Soil with Citric Acid. Mater. Trans. 2013, 54, 1220–1223. [Google Scholar] [CrossRef]
- Chen, Y.X.; Lin, Q.; Luo, Y.M.; He, Y.F.; Zhen, S.J.; Yu, Y.L.; Tian, G.M.; Wong, M.H. The role of citric acid on the phytoremediation of heavy metal contaminated soil. Chemosphere 2003, 50, 807–811. [Google Scholar] [CrossRef]
- Gao, Y.; He, J.; Ling, W.; Hu, H.; Liu, F. Effects of organic acids on copper and cadmium desorption from contaminated soils. Environ. Int. 2003, 29, 613–618. [Google Scholar] [CrossRef]
- Wen, J.; Stacey, S.P.; McLaughlin, M.J.; Kirby, J.K. Biodegradation of rhamnolipid, EDTA and citric acid in cadmium and zinc contaminated soils. Soil Biol. Biochem. 2009, 41, 2214–2221. [Google Scholar] [CrossRef]
- Su, X.; Zhu, J.; Fu, Q.; Zuo, J.; Liu, Y.; Hu, H. Immobilization of lead in anthropogenic contaminated soils using phosphates with/without oxalic acid. J. Environ. Sci. 2015, 28, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Panias, D.; Taxiarchou, M.; Paspaliaris, I.; Kontopoulos, A. Mechanisms of dissolution of iron oxides in aqueous oxalic acid solutions. Hydrometallurgy 1996, 42, 257–265. [Google Scholar] [CrossRef]
- Zhang, Y.; Kallay, N.; Matijević, E. Interaction of metal hydrous oxides with chelating agents. 7. Hematite-oxalic acid and -citric acid systems. Langmuir 1985, 1, 201–206. [Google Scholar] [CrossRef]
- Ambikadevi, V.R.; Lalithambika, M. Effects of Organic Acids on Ferric Iron Removal from Iron-Stained Kaolinite. Appl. Clay Sci. 2000, 16, 133–145. [Google Scholar] [CrossRef]
- Saal, L.B.; Duckworth, O.W. Synergistic Dissolution of Manganese Oxides as Promoted by Siderophores and Small Organic Acids. Soil Sci. Soc. Am. J. 2010, 74, 2021–2031. [Google Scholar] [CrossRef]
- Jackson, T.A.; Bistricki, T. Selective scavenging of copper, zinc, lead, and arsenic by iron and manganese oxyhydroxide coatings on plankton in lakes polluted with mine and smelter wastes: Results of energy dispersive X-ray micro-analysis. J. Geochem. Explor. 1995, 52, 97–125. [Google Scholar] [CrossRef]
- Hartley, W.; Edwards, R.; Lepp, N.W. Arsenic and heavy metal mobility in iron oxide-amended contaminated soils as evaluated by short- and long-term leaching tests. Environ. Pollut. 2004, 131, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Ni, S.; Ju, Y.; Hou, Q.; Wang, S.; Liu, Q.; Wu, Y.; Xiao, L. Enrichment of heavy metal elements and their adsorption on iron oxides during carbonate rock weathering process. Prog. Nat. Sci. 2009, 19, 1133–1139. [Google Scholar] [CrossRef]
- Ying, S.C.; Kocar, B.D.; Fendorf, S. Oxidation and competitive retention of arsenic between iron- and manganese oxides. Geochim. Cosmochim. Acta 2012, 96, 294–303. [Google Scholar] [CrossRef]
- Komárek, M.; Vaněk, A.; Ettler, V. Chemical stabilization of metals and arsenic in contaminated soils using oxides-A review. Environ. Pollut. 2013, 172, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Hedström, H.; Olin, Å.; Svanström, P.; Åslin, E. The complex formation between Pb2+ and the oxalate and hydrogen oxalate ions a solubility study. J. Inorg. Nucl. Chem. 1977, 39, 1191–1194. [Google Scholar] [CrossRef]
- Kim, E.J.; Baek, K. Enhanced reductive extraction of arsenic from contaminated soils by a combination of dithionite and oxalate. J. Hazard. Mater. 2015, 284, 19–26. [Google Scholar] [CrossRef] [PubMed]
Acetic As | Formic As | Malic As | Citric As | Oxalic As | Tartaric As | |
Acetic As | 1 | |||||
Formic As | 0.851** | 1 | ||||
Malic As | 0.639** | 0.743** | 1 | |||
Citric As | 0.612** | 0.696** | 0.991* | 1 | ||
Oxalic As | 0.052 | 0.071 | -0.016 | -0.059 | 1 | |
Tartaric As | 0.666** | 0.740** | 0.936** | 0.925** | 0.229 | 1 |
Acetic Cu | Formic Cu | Malic Cu | Citric Cu | Oxalic Cu | Tartaric Cu | |
Acetic Cu | 1 | |||||
Formic Cu | 0.928** | 1 | ||||
Malic Cu | 0.852** | 0.975** | 1 | |||
Citric Cu | 0.813** | 0.950** | 0.972** | 1 | ||
Oxalic Cu | 0.876** | 0.932** | 0.909** | 0.890** | 1 | |
Tartaric Cu | 0.821** | 0.956** | 0.989** | 0.981** | 0.903** | 1 |
Acetic Fe | Formic Fe | Malic Fe | Citric Fe | Oxalic Fe | Tartaric Fe | |
Acetic Fe | 1 | |||||
Formic Fe | 0.912** | 1 | ||||
Malic Fe | 0.385 | 0.495* | 1 | |||
Citric Fe | 0.362 | 0.536** | 0.848** | 1 | ||
Oxalic Fe | 0.189 | 0.204 | 0.107 | 0.267 | 1 | |
Tartaric Fe | 0.421* | 0.579** | 0.816** | 0.980** | 0.285 | 1 |
Acetic Mn | Formic Mn | Malic Mn | Citric Mn | Oxalic Mn | Tartaric Mn | |
Acetic Mn | 1 | |||||
Formic Mn | 0.964** | 1 | ||||
Malic Mn | 0.958** | 0.989** | 1 | |||
Citric Mn | 0.962** | 0.994** | 0.996** | 1 | ||
Oxalic Mn | 0.935** | 0.985** | 0.983** | 0.989** | 1 | |
Tartaric Mn | 0.949** | 0.987** | 0.984** | 0.991** | 0.996** | 1 |
Acetic Pb | Formic Pb | Malic Pb | Citric Pb | Oxalic Pb | Tartaric Pb | |
Acetic Pb | 1 | |||||
Formic Pb | 0.213 | 1 | ||||
Malic Pb | 0.213 | 0.905** | 1 | |||
Citric Pb | 0.247 | 0.894** | 0.923** | 1 | ||
Oxalic Pb | 0.114 | 0.153 | 0.092 | 0.114 | 1 | |
Tartaric Pb | 0.263 | 0.841** | 0.883** | 0.946** | 0.181 | 1 |
Acetic Zn | Formic Zn | Malic Zn | Citric Zn | Oxalic Zn | Tartaric Zn | |
Acetic Zn | 1 | |||||
Formic Zn | 0.837** | 1 | ||||
Malic Zn | 0.767** | 0.933** | 1 | |||
Citric Zn | 0.836** | 0.965** | 0.966** | 1 | ||
Oxalic Zn | 0.643** | 0.839** | 0.801** | 0.868** | 1 | |
Tartaric Zn | 0.854** | 0.948** | 0.914** | 0.979** | 0.898** | 1 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nworie, O.E.; Qin, J.; Lin, C. Differential Effects of Low-Molecular-Weight Organic Acids on the Mobilization of Soil-Borne Arsenic and Trace Metals. Toxics 2017, 5, 18. https://doi.org/10.3390/toxics5030018
Nworie OE, Qin J, Lin C. Differential Effects of Low-Molecular-Weight Organic Acids on the Mobilization of Soil-Borne Arsenic and Trace Metals. Toxics. 2017; 5(3):18. https://doi.org/10.3390/toxics5030018
Chicago/Turabian StyleNworie, Obinna Elijah, Junhao Qin, and Chuxia Lin. 2017. "Differential Effects of Low-Molecular-Weight Organic Acids on the Mobilization of Soil-Borne Arsenic and Trace Metals" Toxics 5, no. 3: 18. https://doi.org/10.3390/toxics5030018
APA StyleNworie, O. E., Qin, J., & Lin, C. (2017). Differential Effects of Low-Molecular-Weight Organic Acids on the Mobilization of Soil-Borne Arsenic and Trace Metals. Toxics, 5(3), 18. https://doi.org/10.3390/toxics5030018