Fate of Chloromethanes in the Atmospheric Environment: Implications for Human Health, Ozone Formation and Depletion, and Global Warming Impacts
Abstract
:1. Introduction
2. Chloromethanes
2.1. Chemical and Physical Properties
2.2. Industrial and Commercial Uses
2.3. Impacts On Human Health
- Group 1: Carcinogenic to humans;
- Group 2A: Probably carcinogenic to humans;
- Group 2B: Possibly carcinogenic to humans;
- Group 3: Not classifiable to be carcinogenic to humans; and
- Group 4: Probably not carcinogenic to humans.
- Group A1: Confirmed human carcinogen;
- Group A2: Suspected human carcinogen;
- Group A3: Confirmed animal carcinogen with unknown relevance to humans;
- Group A4: Not classifiable as a human carcinogen; and
- Group A5: Not suspected as a human carcinogen.
- Category 1: Substances that cause cancer in humans;
- Category 2: Substances that are considered to be carcinogenic for humans;
- Category 3: Substances that cause concern that they could be carcinogenic for humans, but cannot be assessed conclusively owing to lack of data;
- Category 4: Substances with carcinogenic potential for which genotoxicity plays no or at most a minor role. No significant contribution to human cancer risk is expected provided the MAK value is observed; and
- Category 5: Substances with carcinogenic and genotoxic potential, the potency of which is considered to be so low that, provided a MAK value is observed, no significant contribution to human cancer risk is to be expected
3. Atmospheric Fate of Chloromethanes
3.1. Environmental Properties in the Atmosphere
3.1.1. Atmospheric Lifetime
3.1.2. Photochemical Ozone Creation Potential
3.1.3. Global Warming Potential
3.1.4. Ozone Depletion Potential
3.2. Atmospheric Degradation Mechanism
- Methyl chloride (R=CH2Cl)
- (1)
- CH2ClO· → HCOH + Cl
- (2)
- 2CH2ClO2· → 2CH2ClO· + O2CH2ClO· + O2 → HCOCl + HO2·CH2ClO· + HO2· →HCOCl + H2O2
- (3)
- HCOCl → CO + HClHCOCl + Cl → COCl + HClCOCl + O2 → CO2 + ClOCOCl → CO + Cl2ClO + O2 →O2 + 2Cl
- Methylene chloride (R=CHCl2)
- (1)
- CH2ClO· → HCOCl + Cl
- (2)
- 2CHCl2O2· → 2CHCl2O· + O2CHCl2O· + O2 → COCl2 + HO2CH2ClO· + HO2 → COCl2 + H2O2
- Chloroform (R=CCl3)
- (1)
- CCl3O· → COCl2 + Cl
- (2)
- CCl3O· → COCl2 + ClO2CCl3O2· → 2COCl2 + Cl2 + O2
3.3. Hazards of Degradation Products
4. Conclusions
Conflicts of Interest
References
- United Nations Environment Program (UNEP). Handbook for the International Treaties for the Protection of the Ozone Layer, 6th ed.; UNEP: Nairobi, Kenya, 2003. [Google Scholar]
- Tsai, W.T. An overview of environmental hazards and exposure risk of hydrofluorocarbons (HFCs). Chemosphere 2005, 61, 1539–1547. [Google Scholar] [CrossRef] [PubMed]
- International Panel on Climate Change (IPCC). 2006 IPCC Guidelines for National Greenhouse Gases Inventories; IPCC: Geneva, Switzerland, 2006. [Google Scholar]
- Kim, K.H.; Shon, Z.H.; Nguyen, H.T.; Jeon, E.C. A review of major chlorofluorocarbons and their halocarbon alternatives in the air. Atmos. Environ. 2011, 45, 1369–1382. [Google Scholar] [CrossRef]
- Hayman, G.; Derwent, R.D. Atmospheric chemical reactivity and ozone-forming potentials of potential CFC replacements. Environ. Sci. Technol. 1997, 31, 327–336. [Google Scholar] [CrossRef]
- Huang, B.; Lei, C.; Wei, C.; Zeng, G. Chlorinated volatile organic compounds (Cl-VOCs) in environment—Sources, potential human health impacts, and current remediation technologies. Environ. Int. 2014, 71, 118–138. [Google Scholar] [CrossRef] [PubMed]
- Henschler, D. Toxicity of chlorinated organic compounds: Effects of the introduction of chlorine in organic molecules. Angew. Chem. Int. Ed. Engl. 1994, 33, 1920–1935. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Chloroform; ATSDR: Atlanta, GA, USA, 1997.
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Chloromethane; ATSDR: Atlanta, GA, USA, 1998.
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Methylene Chloride; ATSDR: Atlanta, GA, USA, 2000.
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Carbon Tetrachloride; ATSDR: Atlanta, GA, USA, 2005.
- Keith, L.H.; Walker, M.M. Handbook of Air Toxics: Sampling, Analysis, and Properties; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- Hossaini, R.; Chipperfield, M.P.; Saiz-Lopez, A.; Harrison, J.J.; von Glasow, R.; Sommariva, R.; Atlas, E.; Navarro, M.; Montzka, S.A.; Feng, W.; et al. Growth in stratospheric chlorine from short-lived chemicals not controlled by the Montreal Protocol. Geophy. Res. Lett. 2015, 42, 4573–4580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hossaini, R.; Chipperfield, M.P.; Montzka, S.A.; Leeson, A.A.; Dhomse, S.S.; Pyle, J.A. The increasing threat to stratospheric ozone from dichloromethane. Nat. Commun. 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Taylor, P.H.; Dellinger, B. Thermal degradation characteristics of chloromethane mixtures. Environ. Sci. Technol. 1988, 22, 438–447. [Google Scholar] [CrossRef]
- Howard, P.H. Handbook of Environmental Fate and Exposure Data for Organic Chemicals; CRC Press: Boca Raton, FL, USA, 1993. [Google Scholar]
- Poling, B.E.; Prausnitz, J.M.; O’Connell, J.P. The Properties of Gases and Liquids, 5th ed.; McGraw-Hill: New York, NY, USA, 2001. [Google Scholar]
- Fogg, P.; Sangster, J. Chemicals in the Atmosphere: Solubility, Sources and Reactivity; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Marshall, K.A. Chlorocarbons and chlorohydrocarbons, survey. In Kirk-Othmer Encyclopedia of Chemical Technology, 5th ed.; John Wiley & Sons: New York, NY, USA, 2004; Volume 6. [Google Scholar]
- Lewis, R.J., Sr. Sax’s Dangerous Properties of Industrial Materials, 11th ed.; John Wiley & Sons: New York, NY, USA, 2004. [Google Scholar]
- Lide, D.R. CRC Handbook of Chemistry and Physics, 90th ed.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Cwiertny, D.M.; Scherer, M.M. Chlorinated solvent chemistry: Structures, nomenclature and properties. In In Situ Remediation of Chlorinated Solvent Plume; Stroo, H.F., Ward, C.H., Eds.; Springer: Heidelberg, Germany, 2010. [Google Scholar]
- Morrison, R.D.; Murphy, B.L. Chlorinated Solvents: A Forensic Evaluation; Royal Society of Chemistry: Cambridge, UK, 2013. [Google Scholar]
- Wexler, P. Encyclopedia of Toxicology, 3rd ed.; Academic Press: San Diego, CA, USA, 2014. [Google Scholar]
- Neta, G.; Stewart, P.A.; Rajaraman, P.; Hein, M.J.; Waters, M.A.; Purdue, M.P.; Samanic, C.; Coble, J.B.; Linet, M.S.; Inskip, P.D. Occupational exposure to chlorinated solvents and risks of glioma and meningioma in adults. Occup. Environ. Med. 2012, 69, 793–801. [Google Scholar] [CrossRef] [PubMed]
- National Institute for Occupational Safety and Health (NIOSH). NIOSH Pocket Guide to Chemical Hazards; NIOSH: Atlanta, GA, USA, 2007.
- American Conference of Governmental Industrial Hygienists (ACGIH). 2016 TLVs and BEIs: Based on the Documentation of the Threshold Limit Values for Chemical Substances and Physical Agent; ACGIH: Cincinnati, OH, USA, 2016.
- International Agency for Research on Cancer. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; International Agency for Research on Cancer: Lyon, France, 2017; Available online: http://monographs.iarc.fr/ENG/ (accessed on 28 July 2017).
- Allen, D.T. Evaluating environmental fate: Approaches based on chemical structure. In Green Engineering: Environmentally Conscious Design of Chemical Processes; Allen, D.T., Shonnard, D.R., Eds.; Prentice Hall: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- Sidebottom, H.; Franklin, J. The atmospheric fate and impact of hydrochlorofluorocarbons and chlorinated solvents. Pure Appl. Chem. 1996, 68, 1757–1769. [Google Scholar] [CrossRef]
- Derwent, R.G.; Jenkin, M.E.; Passant, N.R.; Pilling, M.J. Reactivity-based strategies for photochemical ozone control in Europe. Environ. Sci. Policy 2007, 10, 445–453. [Google Scholar] [CrossRef]
- O’Doherty, S.J.; Carpenter, L.J. Halogenated volatile organic compounds. In Volatile Organic Compounds in the Atmosphere; Koppmann, R., Ed.; Blackwell: Oxford, UK, 2007. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Hodnebrog, Ø.; Etminan, M.; Fuglestvedt, J.S.; Marston, G.; Myhre, G.; Nielsen, C.J.; Shine, K.P.; Wallington, T.J. Global warming potentials and radiative efficiencies of halocarbons and related compounds: A comprehensive review. Rev. Geophys. 2013, 51, 300–378. [Google Scholar] [CrossRef]
- Finlayson-Pitts, B.J.; Pits, J.N., Jr. Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications; Academic Press: San Diego, CA, USA, 2000. [Google Scholar]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Wallington, T.J.; Sulbaek Andersen, M.P.; Nielsen, O.J. Atmospheric chemistry of short-chain haloolefins: Photochemical ozone creation potentials (POCPs), global warming potentials (GWPs), and ozone depletion potentials (ODPs). Chemosphere 2015, 129, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Derwent, R.G.; Jenkin, M.E.; Saunders, S.M. Photochemical ozone creation potentials for a large number of reactive hydrocarbons under European conditions. Atmos. Environ. 1996, 30, 181–199. [Google Scholar] [CrossRef]
- Derwent, R.G.; Jenkin, M.E.; Saunders, S.M.; Pilling, M.J. Photochemical ozone creation potentials for organic compounds in northwest Europe calculated with a master chemical mechanism. Atmos. Environ. 1998, 32, 2429–2441. [Google Scholar] [CrossRef]
- Altenstedt, J.; Pleijel, K. An alternative approach to photochemical ozone creation potentials applied under European conditions. J. Air Waste Manag. Assoc. 2000, 50, 1023–1036. [Google Scholar] [CrossRef] [PubMed]
- Spence, J.W.; Hanst, P.L.; Gay, B.W., Jr. Atmospheric oxidation of methyl chloride, methylene chloride, and chloroform. J. Air Pollut. Control Assoc. 1976, 26, 994–996. [Google Scholar] [CrossRef]
- Kindler, T.P.; Chameides, W.L.; Wine, P.H.; Cunnold, D.M.; Alyea, F.N. The fate of atmospheric phosgene and the stratospheric chlorine loadings of its parent compounds: CCl4, C2Cl4, C2HCl3, CH3CCl3, and CHCl3. J. Geophys. Res. 1995, 100, 1235–1251. [Google Scholar] [CrossRef]
- Lim, K.P.; Michael, J.V. Thermal decomposition of COCl2. J. Phys. Chem. 1994, 98, 211–215. [Google Scholar] [CrossRef]
- Burkholder, J.B.; Cox, R.A.; Ravishankara, A.R. Atmospheric degradation of ozone depleting substances, their substitutes, and related species. Chem. Rev. 2015, 115, 3704–3759. [Google Scholar] [CrossRef] [PubMed]
Property | Units | CH3Cl | CH2Cl2 | CHCl3 | CCl4 |
---|---|---|---|---|---|
IUPAC name | — | Chloromethane | Dichloromethane | Trichloromethane | Tetrachloromethane |
Common name | — | Methyl chloride | Methylene chloride | Chloroform | Carbon tetrachloride |
CAS number | — | 74-87-3 | 75-09-2 | 67-66-3 | 56-23-5 |
Molecular weight | g/mol | 50.5 | 84.9 | 119.4 | 153.8 |
Relative vapor density (air = 1) | -- | 1.75 | 2.93 | 4.12 | 5.32 |
Boiling point at 1 atm | °C | −23.7 | 39.8 | 61.3 | 76.6 |
Freezing point at 1 atm | °C | −97.7 | −96.7 | −63.5 | −22.8 |
Critical temperature | °C | 143.1 | 237.0 | 263.4 | 283.3 |
Critical pressure | MPa | 6.679 | 6.171 | 5.500 | 4.557 |
Critical density | kg/m3 | 353 | 472 | 500 | 558 |
Dipole | Debye | 1.9 | 1.8 | 1.1 | 0.0 |
Density 20 °C | g/cm3 | 0.997 (−24 °C) | 1.322 | 1.490 | 1.595 |
Viscosity (20 °C) | mPa.s | 0.106 (gas) | 0.430 | 0.563 | 0.965 |
Vapor pressure (20 °C) | kPa | 506.1 | 46.5 | 21.3 | 11.9 |
Refractive index (20 °C) | — | 1.3712 (−23.7 °C) | 1.4244 | 1.4467 | 1.4631 |
Latent heat of vaporization at b.p. | kJ/kg | 424.1 | 330.0 | 247.0 | 194.7 |
Log Pow (20 °C) | g/mol | 0.91 | 1.25 | 1.97 | 2.83 |
Water solubility (20 °C) | mg/L | 6310 | 13,000 | 7950 | 805 |
Henry’s Law constant (25 °C) | atm-m3/mol | 0.024 | 0.00268 | 0.00435 | 0.0302 |
Flammability limits | Vol % | 8.1–17.4 | 14-25 | -- | -- |
Compound | NIOSH a | TLV Basis- Critical Effect b | |
---|---|---|---|
Exposure Routes | Target Organs | ||
CH3Cl | Inhalation, skin and/or eye contact (liquid) | Central nervous system (CNS), liver, kidneys, reproductive system | CNS impair; liver, kidney, and testicular damage; teratogenic effects |
CH2Cl2 | Inhalation, skin absorption, ingestion, skin and/or eye contact | Eyes, skin, cardiovascular system, CNS | COHb-emia; CNS impair |
CHCl3 | Inhalation, skin absorption, ingestion, skin and/or eye contact | Liver, kidneys, heart, eyes, skin, CNS | Liver and embryo/fetal damage; CNS impair |
CCl4 | Inhalation, skin absorption, ingestion, skin and/or eye contact | CNS, eyes, lung, liver, kidneys, skin | Liver damage |
Compound | Exposure Limits | ||||
---|---|---|---|---|---|
TLV a | PEL b | IDLH c | MAK d | PCS e | |
CH3Cl | 50 ppm | 100 ppm | 2000 ppm | 50 ppm | 50 ppm |
CH2Cl2 | 50 ppm | 25 ppm | 2300 ppm | 50 ppm | 50 ppm |
CHCl3 | 10 ppm | 50 ppm (Ceiling) | 500 ppm | 0.5 ppm | 10 ppm (Ceiling) |
CCl4 | 0.1 ppm | 10 ppm | 200 ppm | 0.5 ppm | 2 ppm |
Compound | Carcinogenicity Classification/Category | ||||
---|---|---|---|---|---|
IARC | UN EPA | US NTP | ACGIH | DFG | |
CH3Cl | 3 | -- a | -- a | -- | 3B |
CH2Cl2 | 2A | likely to be carcinogenic | Reasonably anticipated to be human carcinogens | A3 | 5 |
CHCl3 | 2B | likely to be carcinogenic | Reasonably anticipated to be human carcinogens | A3 | 4 |
CCl4 | 2B | likely to be carcinogenic | Reasonably anticipated to be human carcinogens | A2 | 4 |
Compound | Atmos. Lifetime a (yr) | Radiative Efficiency b (W m−2 ppb−1) | GWP c | ODP d | POCP e | Surface Mixing Ratio f (ppt) |
---|---|---|---|---|---|---|
CH3Cl | 1.0 | 0.01 | 12 | 0.02 | 1 | 530–560 |
CH2Cl2 | 0.4 | 0.03 | 9 | ≈0.0 | 3 | 20–60 |
CHCl3 | 0.4 | 0.08 | 16 | ≈0.0 | ≈0 | 10–20 |
CCl4 | 33.0 | 0.17 | 1730 | 1.1 | 0 | 80–90 |
Degradation Products | UN NIOSH a | TLV Basis- Critical Effect b | |
---|---|---|---|
Exposure Routes | Target Organs | (TLV) | |
Cl2 | Inhalation, skin and/or eye contact | Eyes, skin, respiratory system | Upper respiratory tract (URT) and eye irritation (0.5 ppm-TWA) |
HCl | Inhalation, skin and/or eye contact, ingestion (solution) | Eyes, skin, respiratory system | URT irritation (2 ppm-ceiling) |
COCl2 | Inhalation, skin and/or eye contact (liquid) | Eyes, skin, respiratory system | URT irritation; pulmonary edema (0.1 ppm-TWA) |
CO | Inhalation, skin and/or eye contact (liquid) | Cardiovascular system, lungs, blood, central nervous system | COHb-emia (25 ppm) |
CO2 | Inhalation, skin and/or eye contact (liquid/solid) | Respiratory system, cardiovascular system | Asphyxia (5000 ppm) |
H2O2 | Inhalation, skin and/or eye contact | Eyes, skin, respiratory system | Eye, URT, and skin irritation (1 ppm) |
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, W.-T. Fate of Chloromethanes in the Atmospheric Environment: Implications for Human Health, Ozone Formation and Depletion, and Global Warming Impacts. Toxics 2017, 5, 23. https://doi.org/10.3390/toxics5040023
Tsai W-T. Fate of Chloromethanes in the Atmospheric Environment: Implications for Human Health, Ozone Formation and Depletion, and Global Warming Impacts. Toxics. 2017; 5(4):23. https://doi.org/10.3390/toxics5040023
Chicago/Turabian StyleTsai, Wen-Tien. 2017. "Fate of Chloromethanes in the Atmospheric Environment: Implications for Human Health, Ozone Formation and Depletion, and Global Warming Impacts" Toxics 5, no. 4: 23. https://doi.org/10.3390/toxics5040023
APA StyleTsai, W. -T. (2017). Fate of Chloromethanes in the Atmospheric Environment: Implications for Human Health, Ozone Formation and Depletion, and Global Warming Impacts. Toxics, 5(4), 23. https://doi.org/10.3390/toxics5040023