Environmental Contaminants Exposure and Preterm Birth: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion Criteria
2.3. Exclusion Criteria
3. Results
3.1. Environmental Compounds
3.1.1. Air Pollutants
Particulate Matter (PM)
Polycyclic Aromatic Hydrocarbons (PAHS)
3.1.2. Organic Pollutants
Drinking Water Contaminants
Persistent Organic Pollutants: Organochlorine Compounds (OCPs) and Perfluoroalkylated Substances (PFAS)
Non-Persistent Organic Pollutants: Phthalates, Phenols, and Parabens
3.1.3. Tobacco Smoke and Electronic Cigarettes Aerosol
3.1.4. Toxic Metals
4. Mechanisms Involved
4.1. DNA Damage
4.2. Hypoxia
4.3. Oxidative Stress
4.4. Inflammation
4.5. Epigenetic Changes
5. Not Only Environmental Toxic Compounds: The Role of Global Warming
6. Discussion
Funding
Conflicts of Interest
References
- Robert, L.; Goldenberg, M.D.; Rouse, D.J. Prevention of Premature Birth. N. Engl. J. Med. 1998, 339, 313–320. [Google Scholar]
- Lawn, J.E.; Cousens, S.; Zupan, J. Lancet Neonatal Survival Steering Team. 4 million neonatal deaths: When? Where? Why? Lancet 2005, 365, 891–900. [Google Scholar] [CrossRef]
- Ananth, C.V.; Vintzileos, A.M. Epidemiology of preterm birth and its clinical Subtypes. J. Matern.-Fetal Neonatal Med. 2006, 19, 773–782. [Google Scholar] [CrossRef] [PubMed]
- Escobar, G.J.; Clark, R.H.; Greene, J.D. Short-term outcomes of infants born at 35 and 36 weeks gestation: We need to ask more questions. Semin. Perinatol. 2006, 30, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Goldenberg, R.L.; Culhane, J.F.; Iams, J.D.; Romero, R. Epidemiology and causes of preterm birth. Lancet 2008, 371, 75–84. [Google Scholar] [CrossRef]
- Padula, A.M.; Yang, W.; Lurmann, F.W.; Balmes, J.; Hammond, S.K.; Shaw, G.M. Prenatal exposure to air pollution, maternal diabetes and preterm birth. Environ. Res. 2018, 170, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Anand, M.; Agarwal, P.; Singh, L.; Taneja, A. Persistent organochlorine pesticides and oxidant/antioxidant status in the placental tissue of the women with full-term and pre-term deliveries. Toxicol. Res. 2015, 4, 326–332. [Google Scholar] [CrossRef]
- West, J.J.; Cohen, A.; Dentener, F.; Brunekreef, B.; Zhu, T.; Armstrong, B.; Bell, M.L.; Brauer, M.; Carmichael, G.; Costa, D.L.; et al. What we breathe impacts our health: Improving understanding of the link between air pollution and health. Environ. Sci. Technol. 2016, 50, 4895–4904. [Google Scholar] [CrossRef] [PubMed]
- Fajersztajn, L.; Veras, M.; Barrozo, L.V.; Saldiva, P. Air pollution: A potentially modifiable risk factor for lung cancer. Nat. Rev. Cancer 2013, 13, 674–678. [Google Scholar] [CrossRef] [PubMed]
- Loomis, D.; Grosse, Y.; Lauby-Secretan, B.; El Ghissassi, F.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Baan, R.; Mattock, H.; Straif, K.; et al. The carcinogenicity of outdoor air pollution. Lancet Oncol. 2013, 14, 1262–1263. [Google Scholar] [CrossRef]
- World Health Organization. WHO Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide; Global Update 2005; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Maisonet, M.; Correa, A.; Misra, D.; Jaakkola, J.J.K. A review of the literature on the effects of ambient air pollution on fetal growth. Environ. Res. 2004, 95, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Parker, J.D.; Rich, D.Q.; Glinianaia, S.V.; Leem, J.H.; Wartenberg, D.; Bell, M.L.; Bonzini, M.; Brauer, M.; Darrow, L.; Gehring, U.; et al. The international collaboration on air pollution and pregnancy outcomes: Initial results. Environ. Health Perspect. 2011, 119, 1023–1028. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.S.; Balkhair, T. Knowledge synthesis group on determinants of preterm/LBW births air pollution and birth outcomes: A systematic review. Environ. Int. 2011, 37, 498–516. [Google Scholar] [CrossRef] [PubMed]
- Estarlich, M.; Ballester, F.; Davdand, P.; Llop, S. Exposure to ambient air pollution during pregnancy and preterm birth: A Spanish multicenter birth cohort study. Environ. Res. 2016, 147, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Fleischer, N.L.; Merialdi, M.; van Donkelaar, A.; Vadillo-Ortega, F.; Martin, R.V.; Betran, A.P.; O’Neill, M.S. Outdoor air pollution, preterm birth, and low birth weight: Analysis of the world health organization global survey on maternal and perinatal health. Environ. Health Perspect. 2014, 122, 425–430. [Google Scholar] [CrossRef] [PubMed]
- Pike, K.; Jane Pillow, J.; Lucas, J.S. Long term respiratory consequences of intrauterine growth restriction. Semin. Fetal Neonatal Med. 2012, 17, 92–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, N.; Sioutas, C.; Cho, A.; Schmitz, D.; Misra, C.; Sempf, J.; Wang, M.; Oberley, T.; Froines, J.; Nel, A. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ. Health Perspect. 2003, 111, 455–460. [Google Scholar] [CrossRef] [PubMed]
- Jedrychowski, W.A.; Perera, F.P.; Maugeri, U.; Spengler, J.; Mroz, E.; Flak, E.; Stigter, L.; Majewska, R.; Kaim, I.; Sowa, A.; et al. Prohypertensive effect of gestational personal exposure to fine particulate matter. Prospective cohort study in non-smoking and nonobese pregnant women. Cardiovasc. Toxicol. 2012, 12, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Sun, J.; Liu, Y.; Liang, H.; Wang, M.; Wang, C.; Shi, T. Different exposure levels of fine particulate matter and preterm birth: A meta-analysis based on cohort studies. Environ. Sci. Pollut. Res. Int. 2017, 24, 17976–17984. [Google Scholar] [CrossRef] [PubMed]
- Padula, A.M.; Noth, E.M.; Hammond, S.K.; Lurmann, F.W.; Yang, W.; Tager, I.B.; Shaw, G.M. Exposure to airborne polycyclic aromatic hydrocarbons during pregnancy and risk of preterm birth. Environ. Res. 2014, 135, 221–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilhelm, M.; Ghosh, J.K.; Su, J.; Cockburn, M.; Jerrett, M.; Ritz, B. Traffic-related air toxics and preterm birth: A population-based case-control study in Los Angeles County, California. Environ. Health 2011, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Huo, X.; Wu, K.; Liu, J.; Zhang, Y.; Xu, X. Carcinogenic polycyclic aromatic hydrocarbons in umbilical cord blood of human neonates from Guiyu, China. Sci. Total Environ. 2012, 427–428, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, K.K.; McElrath, T.F.; Meeker, J.D. Environmental Phthalate Exposure and Preterm Birth. JAMA Pediatr. 2014, 168, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, K.K.; McElrath, T.F.; Ko, Y.A.; Mukherjee, B.; Meeker, J.D. Variability in urinary phthalate metabolite levels across pregnancy and sensitive windows of exposure for the risk of preterm birth. Environ. Int. 2014, 70, 118–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, X.; Wang, Q.; Peng, J.; Wu, M.; Pan, B.; Xing, B. Transfer of polycyclic aromatic hydrocarbons from mother to fetus in relation to pregnancy complications. Sci. Total Environ. 2018, 636, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Dodds, L.; King, W.; Woolcott, C.; Pole, J. Trihalomethanes in public water supplies and adverse birth outcomes. Epidemiology 1999, 10, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, M.D.; Nuckols, J.R.; Stallones, L.; Savitz, D.A. Exposure to trihalomethanes and adverse pregnancy outcomes. Epidemiology 1998, 9, 484–489. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, C.S.; Mendola, P.; Savitz, D.A.; Herring, A.H.; Loomis, D.; Hartmann, K.E.; Singer, P.C.; Weinberg, H.S.; Olshan, A.F. Drinking water disinfection by-product exposure and duration of gestation. Epidemiology 2008, 19, 738–746. [Google Scholar] [CrossRef] [PubMed]
- Kramer, M.D.; Lynch, C.F.; Isacson, P.; Hanson, J.W. The association of waterborne chloroform with intrauterine growth retardation. Epidemiology 1992, 3, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Lewis, C.; Suffet, I.H.; Ritz, B. Estimated effects of disinfection by-products on birth weight in a population served by a single water utility. Am. J. Epidemiol. 2006, 163, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Savitz, D.A.; Andrews, K.W.; Pastore, L.M. Drinking water and pregnancy outcome in central North Carolina: Source, amount, and trihalomethane levels. Environ. Health Perspect. 1995, 103, 592–596. [Google Scholar] [CrossRef] [PubMed]
- Wright, J.M.; Schwartz, J.; Dockery, D.W. The effect of disinfection by-products and mutagenic activity on birth weight and gestational duration. Environ. Health Perspect. 2004, 112, 920–925. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.Y.; Xiao, Z.P.; Ho, S.C.; Wu, T.N.; Tsai, S.S. Association between trihalomethane concentrations in drinking water and adverse pregnancy outcome in Taiwan. Environ. Res. 2007, 104, 390–395. [Google Scholar] [CrossRef] [PubMed]
- Grellier, J.; Bennett, J.; Patelarou, E.; Smith, R.B.; Toledano, M.B.; Rushton, L.; Briggs, D.J.; Nieuwenhijsen, M.J. Exposure to disinfection by-products, fetal growth, and prematurity: A systematic review and meta-analysis. Epidemiology 2010, 21, 300–313. [Google Scholar] [CrossRef] [PubMed]
- Graves, C.G.; Matanoski, G.M.; Tardiff, R.G. Weight of evidence for an association between adverse reproductive and developmental effects and exposure to disinfection by-products: A critical review. Regul. Toxicol. Pharmacol. 2001, 34, 103–124. [Google Scholar] [CrossRef] [PubMed]
- Tardiff, R.G.; Carson, M.L.; Ginevan, M.E. Updated weight of evidence for an association between adverse reproductive and developmental effects and exposure to disinfection by-products. Regul. Toxicol. Pharmacol. 2006, 45, 185–205. [Google Scholar] [CrossRef] [PubMed]
- Jaakkola, J.J.; Jaakkola, N.; Zahlsen, K. Fetal growth and length of gestation in relation to prenatal exposure to environmental tobacco smoke assessed by hair nicotine concentration. Environ. Health Perspect. 2001, 109, 557–561. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Haltmeier, P.; Klotz, J.B.; Weisel, C.P. Evaluation of biomarkers of environmental exposures: Urinary haloacetic acids associated with ingestion of chlorinated drinking water. Environ. Res. 1999, 80, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Costet, N.; Garlantézec, R.; Monfort, C.; Rouget, F.; Gagnière, B.; Chevrier, C.; Cordier, S. Environmental and Urinary Markers of Prenatal Exposure to Drinking Water Disinfection By-Products, Fetal Growth, and Duration of Gestation in the PELAGIE Birth Cohort (Brittany, France, 2002–2006). Am. J. Epidemiol. 2012, 175, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Horton, B.J.; Luben, T.J.; Herring, A.H.; Savitz, D.A.; Singer, P.C.; Weinberg, H.S.; Hartmann, K.E. The effect of water disinfection by-products on pregnancy outcomes in two southeastern US communities. J. Occup. Environ. Med. 2011, 53, 1172–1178. [Google Scholar] [CrossRef] [PubMed]
- Bove, F.J.; Fulcomer, M.C.; Klotz, J.B.; Esmart, J.; Dufficy, E.M.; Savrin, J.E. Public drinking water contamination and birth outcomes. Am. J. Epidemiol. 1995, 141, 850–862. [Google Scholar] [CrossRef] [PubMed]
- Aschengrau, A.; Weinberg, J.; Rogers, S.; Gallagher, L.; Winter, M.; Vieira, V.; Webster, T.; Ozonoff, D. Prenatal Exposure to Tetrachloroethylene-Contaminated Drinking Water and the Risk of Adverse Birth Outcomes. Environ. Health Perspect. 2008, 116, 814–820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forand, S.P.; Lewis-Michl, E.L.; Gomez, M.I. Adverse birth outcomes and maternal exposure to trichloroethylene and tetrachloroethylene through soil vapor intrusion in New York State. Environ. Health Perspect. 2011, 120, 616–621. [Google Scholar] [CrossRef] [PubMed]
- Rinsky, J.L.; Hopenhayn, C.; Golla, V.; Browning, S.; Bush, H.M. Atrazine exposure in public drinking water and preterm birth. Public Health Rep. 2012, 127, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Heilier, J.F.; Nackers, F.; Verougstraete, V.; Tonglet, R.; Lison, D.; Donnez, J. Increased dioxin-like compounds in the serum of women with peritoneal endometriosis and deep endometriotic (adenomyotic) nodules. Fertil. Steril. 2005, 84, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Porpora, M.G.; Medda, E.; Abballe, A.; Bolli, S.; De Angelis, I.; di Domenico, A.; Ferro, A.; Ingelido, A.M.; Maggi, A.; Panici, P.B.; et al. Endometriosis and organochlorinated environmental pollutants: A case-control study on Italian women of reproductive age. Environ. Health Perspect. 2009, 117, 1070–1075. [Google Scholar] [CrossRef] [PubMed]
- Porpora, M.G.; Ingelido, A.M.; di Domenico, A.; Ferro, A.; Crobu, M.; Pallante, D.; Cardelli, M.; Cosmi, E.V.; De Felip, E. Increased levels of polychlorobiphenyls in Italian women with endometriosis. Chemosphere 2006, 63, 1361–1367. [Google Scholar] [CrossRef] [PubMed]
- Ploteau, S.; Cano-Sancho, G.; Volteau, C.; Legrand, A.; Vénisseau, A.; Vacher, V.; Marchand, P.; Le Bizec, B.; Antignac, J.P. Associations between internal exposure levels of persistent organic pollutants in adipose tissue and deep infiltrating endometriosis with or without concurrent ovarian endometrioma. Environ. Int. 2017, 108, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Ploteau, S.; Antignac, J.-P.; Volteau, C.; Marchand, P.; Vénisseau, A.; Vacher, V.; Le Bizec, B. Distribution of persistent organic pollutants in serum, omental, and parietal adipose tissue of French women with deep infiltrating endometriosis and circulating versus stored ratio as new marker of exposure. Environ. Int. 2016, 97, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Abballe, A.; Ballard, T.J.; Dellatte, E.; di Domenico, A.; Ferri, F.; Fulgenzi, A.R.; Grisanti, G.; Iacovella, N.; Ingelido, A.M.; Malisch, R.; et al. Persistent environmental contaminants in human milk: Concentrations and time trends in Italy. Chemosphere 2008, 73, S220–S227. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wu, X.; Lei, B.; Jing, Y.; Jiang, Z.A.; Zhang, X.; Fang, X.; Yu, Y. Transplacental transfer characteristics of organochlorine pesticides in paired maternal and cord sera, and placentas and possible influencing factors. Environ. Pollut. 2018, 233, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Waliszewski, S.M.; Aguirre, A.A.; Infanzon, R.M.; Silva, C.S.; Siliceo, J. Organochlorine pesticide levels in maternal adipose tissue, maternal blood serum, umbilical blood serum, and milk from inhabitants of Veracruz, Mexico. Arch. Environ. Contam. Toxicol. 2001, 40, 432–438. [Google Scholar] [CrossRef] [PubMed]
- Porpora, M.G.; Lucchini, R.; Abballe, A.; Ingelido, A.M.; Valentini, S.; Fuggetta, E.; Cardi, V.; Ticino, A.; Marra, V.; Fulgenzi, A.R.; et al. Placental transfer of persistent organic pollutants: A preliminary study on mother-newborn pairs. Int. J. Environ. Res. Public Health 2013, 10, 699–711. [Google Scholar] [CrossRef] [PubMed]
- Pathak, R.; Ahmed, R.S.; Tripathi, A.K.; Guleria, K.; Sharma, C.S.; Makhijani, S.D.; Banerjee, B.D. Maternal and cord blood levels of organochlorine pesticides: Association with preterm labour. Clin. Biochem. 2009, 42, 746–749. [Google Scholar] [CrossRef] [PubMed]
- Wood, S.L.; Jarrell, J.J.; Swaby, C.; Chan, S. Endocrine disruptors and spontaneous premature labor: A case control study. Environ. Health. 2007, 6, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Munoz, M.J.; Rodríguez, M.A.; Luque, S.; Alvarez, J.R. Recovery of heavy metals from metal industry waste waters by chemical precipitation and nanofiltration. Desalination 2006, 200, 742–744. [Google Scholar] [CrossRef]
- Wester, P.W. Histopathological effects of environmental pollutants beta-HCH and methyl mercury on reproductive organs in freshwater fish. Comp. Biochem. Physiol. C 1991, 100, 237–239. [Google Scholar] [CrossRef]
- Tyagi, V.; Mustafa, M.D.; Sharma, T.; Banerjee, B.D.; Ahmed, R.S.; Tripathi, A.K.; Guleria, K. Association of organochlorine pesticides with the mRNA expression of tumour necrosis factor-alpha (TNF-α) & cyclooxygenase-2 (COX-2) genes in idiopathic preterm birth. Indian J. Med. Res. 2016, 143, 731. [Google Scholar] [PubMed]
- Lavezzi, A.M.; Cappiello, A.; Pusiol, T.; Corna, M.F.; Termopoli, V.; Matturri, L. Pesticide exposure during pregnancy, like nicotine, affects the brainstem α7 nicotinic acetylcholine receptor expression, increasing the risk of sudden unexplained perinatal death. J. Neurol. Sci. 2015, 348, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Sagiv, S.K.; Rifas-Shiman, S.L.; Fleisch, A.F.; Webster, T.F.; Calafat, A.M.; Ye, X.; Gillman, M.W.; Oken, E. Early-Pregnancy Plasma Concentrations of Perfluoroalkyl Substances and Birth Outcomes in Project Viva: Confounded by Pregnancy Hemodynamics? Am. J. Epidemiol. 2018, 187, 793–802. [Google Scholar] [CrossRef] [PubMed]
- De Felip, E.; Abballe, A.; Albano, F.L.; Battista, T.; Carraro, V.; Conversano, M.; Franchini, S.; Giambanco, L.; Iacovella, N.; Ingelido, A.M.; et al. Current exposure of Italian women of reproductive age to PFOS and PFOA: A human biomonitoring study. Chemosphere 2015, 137, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, O.M.L.; Basheer, A.A.; Khattab, R.A.; Ali, I. Health and environmental effects of persistent organic pollutants. J. Mol. Liquids 2018, 263, 442–453. [Google Scholar] [CrossRef]
- Adibi, J.J.; Hauser, R.; Williams, P.L.; Whyatt, R.M.; Calafat, A.M.; Nelson, H.; Herrick, R.; Swan, S.H. Maternal urinary metabolites of Di-(2-Ethylhexyl) phthalate in relation to the timing of labor in a US multicenter pregnancy cohort study. Am. J. Epidemiol. 2009, 169, 1015–1024. [Google Scholar] [CrossRef] [PubMed]
- Meeker, J.D.; Hu, H.; Cantonwine, D.E.; Lamadrid-Figueroa, H.; Calafat, A.M.; Ettinger, A.S.; Hernandez-Avila, M.; Loch-Caruso, R.; Téllez-Rojo, M.M. Urinary phthalate metabolites in relation to preterm birth in Mexico city. Environ. Health Perspect. 2009, 117, 1587–1592. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, K.K.; McElrath, T.F.; Chen, Y.-H.; Loch-Caruso, R.; Mukherjee, B.; Meeker, J.D. Repeated measures of urinary oxidative stress biomarkers during pregnancy and preterm birth. Am. J. Obstet. Gynecol. 2015, 212, 208. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, K.K.; Chen, Y.H.; VanderWeele, T.J.; McElrath, T.F.; Meeker, J.D.; Mukherjee, B. Mediation of the Relationship between Maternal Phthalate Exposure and Preterm Birth by Oxidative Stress with Repeated Measurements across Pregnancy. Environ. Health Perspect. 2016, 125, 488–494. [Google Scholar] [CrossRef] [PubMed]
- Aung, M.T.; Ferguson, K.K.; Cantonwine, D.E.; Bakulski, K.M.; Mukherjee, B.; Loch-Caruso, R.; McElrath, T.F.; Meeker, J.D. Science of the Total Environment Associations between maternal plasma measurements of in flammatory markers and urinary levels of phenols and parabens during pregnancy: A repeated measures study. Sci. Total Environ. 2019, 650 Pt 1, 1131–1140. [Google Scholar] [CrossRef] [PubMed]
- Crane, J.; Keough, M.; Murphy, P.; Burrage, L.; Hutchens, D. Effects of environmental tobacco smoke on perinatal outcomes: A retrospective cohort study. BJOG 2011, 118, 865–871. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; He, X.; Cui, H.; Zhang, C.; Zhang, H.; Dang, Y.; Han, X.; Chen, Y.; Tang, Z.; Zhang, H.; et al. Passive smoking and preterm birth in urban China. Am. J. Epidemiol. 2014, 180, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Salmasi, G.; Grady, R.; Jones, J.; McDonald, S.D. Environmental tobacco smoke exposure and perinatal outcomes: A systematic review and meta-analyses. Acta Obstet. Gynecol. Scand. 2010, 89, 423–441. [Google Scholar] [CrossRef] [PubMed]
- Ion, R.C.; Wills, A.K.; Bernal, A.L. Environmental tobacco smoke exposure in pregnancy is associated with earlier delivery and reduced birth weight. Reprod. Sci. 2015, 22, 1603–1611. [Google Scholar] [CrossRef] [PubMed]
- Cnattingius, S. The epidemiology of smoking during pregnancy: Smoking prevalence, maternal characteristics, and pregnancy outcomes. Nicotine Tob. Res. 2004, 6 (Suppl. 2), S125–S140. [Google Scholar] [CrossRef] [PubMed]
- Benowitz, N.L.; Dempsey, D.A.; Goldenberg, R.L.; Hughes, J.R.; Dolan-Mullen, P.; Ogburn, P.L.; Oncken, C.; Orleans, C.T.; Slotkin, T.A.; Whiteside, H.P., Jr.; et al. The use of pharmacotherapies for smoking cessation during pregnancy. Tob. Control. 2000, 9 (Suppl. 3), III91-4. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, H.; Goldberg, I.D.; Frazier, T.M.; Davis, G.E. Cigarette smoking and prematurity. Public Health Rep. 1964, 79, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Hadley, C.B.; Main, D.M.; Gabbe, S.G. Risk factors for preterm premature rupture of the fetal membranes. Am. J. Perinatol. 1990, 7, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Gong, T.T.; Liu, C.X.; Wu, Q.J. Associations between Passive Maternal Smoking during Pregnancy and Preterm Birth: Evidence from a Meta-Analysis of Observational Studies. PLoS ONE 2016, 11, e0147848. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.L.; Garfinkel, R.; Horton, M.; Camann, D.; Perera, F.P.; Whyatt, R.M.; Kinney, P.L. Polycyclic Aromatic Hydrocarbons, Environmental Tobacco Smoke, and Respiratory Symptoms in an Inner-city Birth Cohort. Chest 2004, 126, 1071–1078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behrooz, L.; Balekian, D.S.; Faridi, M.K.; Espinola, J.A.; Townley, L.P.; &Camargo, C.A. Prenatal and postnatal tobacco smoke exposure and risk of severe bronchiolitis during infancy. Respir. Med. 2018, 140, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Benowitz, N.L. Cotinine as a biomarker of environmental tobaccosmoke exposure. Epidemiol. Rev. 1996, 18, 188–204. [Google Scholar] [CrossRef] [PubMed]
- Shipton, D.; Tappin, D.M.; Vadiveloo, T.; Crossley, J.A.; Aitken, D.A.; Chalmers, J. Reliability of self reported smoking status by pregnant women for estimating smoking prevalence: A retrospective, cross sectional study. BMJ 2009, 339, b4347. [Google Scholar] [CrossRef] [PubMed]
- Ostrea, E.M.; Knapp, D.K.; Romero, A.; Montes, M.; Ostrea, A.R. Meconium analysis to assess fetal exposure to nicotine by active and passive maternal smoking. J. Pediatr. 1994, 124, 471–476. [Google Scholar] [CrossRef]
- Stevens, K.R.; Muñoz, L.R. Cigarette smoking: Evidence to guide measurement. Res. Nurs. Health. 2004, 27, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Secker-Walker, R.H.; Vacek, P.M.; Flynn, B.S.; Mead, P.B. Smoking in pregnancy, exhaled carbon monoxide, and birth weight. Obstet. Gynecol. 1997, 89 Pt 1, 648–653. [Google Scholar] [CrossRef]
- Wagner, N.J.; Camerota, M.; Propper, C. Prevalence and Perceptions of Electronic Cigarette Use during Pregnancy. Matern. Child Health J. 2017, 21, 1655–1661. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Li, G.; Chan, Y.L.; Chapman, D.G.; Sukjamnong, S.; Nguyen, T.; Annissa, T.; McGrath, K.C.; Sharma, P.; Oliver, B.G. Maternal E-Cigarette Exposure in Mice Alters DNA Methylation and Lung Cytokine Expression in Offspring. Am. J. Respir. Cell Mol. Biol. 2018, 58, 366–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, L.; Anand, M.; Singh, S.; Taneja, A. Environmental toxic metals in placenta and their effects on preterm delivery-current opinion. Drug Chem. Toxicol. 2018, 27, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Myers, R.; Wei, T.; Bind, E.; Kassim, P.; Wang, G.; Ji, Y.; Hong, X.; Caruso, D.; Bartell, T.; et al. Placental transfer and concentrations of cadmium, mercury, lead, and selenium in mothers, newborns, and young children. J. Expo. Sci. Environ. Epidemiol. 2014, 24, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Dejmek, J.; Solanský, I.; Benes, I.; Lenícek, J.; Srám, R.J. The impact of polycyclic aromatic hydrocarbons and fine particles on pregnancy outcome. Environ. Health Perspect. 2000, 108, 1159–1164. [Google Scholar] [CrossRef] [PubMed]
- Perera, F.; Jeffrey, D.B.A.; Mayer, J.; Tang, D.; Warburton, D.; Young, T.-L.; Wazneh, L.; Latriano, L.; Grzybowska, G.M.E.; Chorazy, M.; et al. DNA adducts and related biomarkers in populations exposed to environmental carcinogens. Environ. Health Perspect. 1992, 98, 133–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srám, R. Impact of air pollution on reproductive health. Environ. Health Perspect. 1999, 107, 542–543. [Google Scholar] [CrossRef]
- Topinka, J.; Binková, B.; Mracková, G.; Stávková, Z.; Benes, I.; Dejmek, J.; Lenícek, J.; Srám, R.J. DNA adducts in human placenta as related to air pollution and to GSTM1 genotype. Mutat. Res. 1997, 24, 59–68. [Google Scholar] [CrossRef]
- Perera, F.P.; Whyatt, R.M.; Jedrychowski, W.; Rauh, V.; Manchester, D.; Santella, R.M.; Ottman, R. Recent developments in molecular epidemiology: A study of the effects of environmental polycyclic aromatic hydrocarbons on birth outcomes in Poland. Am. J. Epidemiol. 1998, 147, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Peters, A.; Döring, A.; Wichmann, H.E.; Koenig, W. Increased plasma viscosity during an air pollution episode: A link to mortality? Lancet 1997, 349, 1582–1587. [Google Scholar] [CrossRef]
- Kay, H.H.; Robinette, B.; Shin, Y.Y.; Siew, P.; Shellhaas, C.S.; Tyrey, L. Placental villous glucose metabolism and hormone release respond to varying oxygen tensions. Soc. GynecolInvestig. 1997, 4, 241–246. [Google Scholar]
- Kaiglová, A.; Reichrtová, E.; Áková, A.A.Č.; Wsólová, L. Lactate Dehydrogenase Activity in Human Placenta Following Exposure to Environmental Pollutants. Physiol. Res. 2001, 50, 525–528. [Google Scholar] [PubMed]
- Cummins, G.; Kremer, J.; Bernassau, A.; Brown, A.; Bridle, H.; Schulze, H.; Desmulliez, M. Sensors for Fetal Hypoxia and Metabolic Acidosis: A Review. Sensors 2018, 18, 2648. [Google Scholar] [CrossRef] [PubMed]
- Haworth, S.G.; Hislop, A.A. Lung development—The effects of chronic hypoxia. Semin. Neonatol. 2003, 8, 1–8. [Google Scholar] [CrossRef]
- Faridy, E.E.; Sanii, M.R.; Thliveris, J.A. Fetal lung growth: Influence of maternal hypoxia and hyperoxia in rats. Respir. Physiol. 1988, 73, 225–241. [Google Scholar] [CrossRef]
- Ritz, B.; Yu, F.; Fruin, S.; Chapa, G.; Shaw, G.M.; Harris, J.A. Ambient air pollution and risk of birth defects in southern California. Am. J. Epidemiol. 2002, 155, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Kannan, S.; Misra, D.P.; Dvonch, T.; Krishnakumar, A. Exposures to airborne particulate matter and adverse perinatal outcomes: A biologically plausible mechanistic framework for exploring potential effect modification by nutrition. Environ. Health Perspect. 2006, 114, 1636–1642. [Google Scholar] [CrossRef] [PubMed]
- Slama, R.; Darrow, L.; Parker, J.; Woodruff, T.J.; Strickland, M.; Nieuwenhuijsen, M.; Glinianaia, S.; Hoggatt, K.J.; Kannan, S.; Hurley, F.; et al. Meeting report: Atmospheric pollution and human reproduction. Environ. Health Perspect. 2008, 116, 791–798. [Google Scholar] [CrossRef] [PubMed]
- Myatt, L.; Cui, X. Oxidative stress in the placenta. Histochem. Cell Biol. 2004, 122, 369–382. [Google Scholar] [CrossRef] [PubMed]
- Longini, M.; Perrone, S.; Vezzosi, P.; Marzocchi, B.; Kenanidis, A.; Centini, G.; Rosignoli, L.; Buonocore, G. Association between oxidative stress in pregnancy and preterm premature rupture of membranes. Clin. Biochem. 2007, 40, 793–797. [Google Scholar] [CrossRef] [PubMed]
- Woods, J. Reactive oxygen species and preterm premature rupture of membranes—A review. Placenta 2001, 22, S38–S44. [Google Scholar] [CrossRef] [PubMed]
- Sanders, A.P.; Burris, H.H.; Just, A.C.; Motta, V.; Svensson, K.; Mercado-Garcia, A.; Pantic, I.; Schwartz, J.; Tellez-Rojo, M.M.; Wright, R.O.; et al. microRNA expression in the cervix during pregnancy is associated with length of gestation. Epigenetics 2015, 10, 221–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venkatesh, K.; Cantonwine, D.; Ferguson, K.; Arjona, M.; Meeker, J.D.; McElrath, T.F. Inflammatory and oxidative stress markers associated with decreased cervical length in pregnancy. Am. J. Reprod. Immunol. 2016, 76, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.; Magun, B.E.; Wood, L.J. Lung inflammation caused by inhaled toxicants: A review. Int. J. Chron. Obstruct. Pulmon. Dis. 2016, 11, 1391–1401. [Google Scholar] [CrossRef] [PubMed]
- Fedulov, A.V.; Leme, A.; Yang, Z.; Dahl, M.; Lim, R.; Mariani, T.J.; Kobzik, L. Pulmonary exposure to particles during pregnancy causes increased neonatal asthma susceptibility. Am. J. Respir. Cell Mol. Biol. 2008, 38, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Jonakait, G.M. The effects of maternal inflammation on neuronal development: Possible mechanisms. Int. J. Dev. Neurosci. 2007, 25, 415–425. [Google Scholar] [CrossRef] [PubMed]
- Nachman, R.M.; Mao, G.; Zhang, X.; Hong, X.; Chen, Z.; Soria, C.S.; He, H.; Wang, G.; Caruso, D.; Pearson, C.; et al. Intrauterine inflammation and maternal exposure to ambient PM2.5 during preconception and specific periods of pregnancy: The Boston birth cohort. Environ. Health Perspect. 2016, 124, 1608–1615. [Google Scholar] [CrossRef] [PubMed]
- De Melo, J.O.; Soto, S.F.; Katayama, I.A.; Wenceslau, C.F.; Pires, A.G.; Veras, M.M.; Furukawa, L.N.; de Castro, I.; Saldiva, P.H.; Heimann, J.C. Inhalation of fine particulate matter during pregnancy increased IL-4 cytokine levels in the fetal portion of the placenta. Toxicol. Lett. 2015, 232, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Cheng, H.; Mollah, A.K.; Jamison, E.; Morris, S.; Chance, M.R.; Khrapunov, S.; Brenowitz, M. DNA and protein footprinting analysis of the modulation of DNA binding by the N-terminal domain of the Saccharomyces cerevisiae TATA binding protein. Biochemistry 2007, 46, 9886–9898. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Bhatt, G.; Duffy, C.J. An efficient domain decomposition framework for accurate representation of geodata in distributed hydrologic models. Int. J. Geo-Inf. Sci. 2008, 23, 1569–1596. [Google Scholar] [CrossRef]
- Mestan, K.; Yu, Y.; Matoba, N.; Cerda, S.; Demmin, B.; Pearson, C. Placental inflammatory response is associated with poor neonatal growth: Preterm birth cohort study. Pediatrics 2010, 125, e891–e898. [Google Scholar] [CrossRef] [PubMed]
- Baccarelli, A.; Bollati, V. Epigenetics and environmental chemicals. Curr. Opin. Pediatr. 2009, 21, 243–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, L.; Zhang, X.; Wang, D.; Baccarelli, A. Environmental chemical exposures and human epigenetics. Int. J. Epidemiol. 2012, 41, 79–105. [Google Scholar] [CrossRef] [PubMed]
- Tsamou, M.; Vrijens, K.; Madhloum, N.; Lefebvre, W.; Vanpoucke, C.; Nawrot, T.S. Air pollution-induced placental epigenetic alterations in early life: A candidate miRNA approach. Epigenetics 2018, 13, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Janssen, B.G.; Godderis, L.; Pieters, N.; Poels, K.; Kiciński, M.; Cuypers, A.; Fierens, F.; Penders, J.; Plusquin, M.; Gyselaers, W.; et al. Placental DNA hypomethylation in association with particulate air pollution in early life. Part. Fibre Toxicol. 2013, 10, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herbstman, J.B.; Tang, D.; Zhu, D.; Qu, L.; Sjödin, A.; Li, Z.; Camann, D.; Perera, F.P. Prenatal exposure to polycyclic aromatic hydrocarbons, benzo[a]pyrene-DNA adducts, and genomic DNA methylation in cord blood. Environ. Health Perspect. 2012, 120, 733–738. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.; Khurana Hershey, G.K. Genetic and epigenetic influence on the response to environmental particulate matter. J. Allergy Clin. Immunol. 2012, 129, 33–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arroyo, V.; Díaz, J.; Ortiz, C.; Carmona, R.; Sáez, M.; Linares, C. Short term effect of air pollution, noise and heat waves on preterm births in Madrid (Spain). Environ. Res. 2016, 145, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Ha, S.; Liu, D.; Zhu, Y.; Kim, S.S.; Sherman, S.; Mendola, P. Ambient Temperature and Early Delivery of Singleton Pregnancies. Environ. Health Perspect. 2017, 125, 453–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kloog, I.; Melly, S.J.; Coull, B.A.; Nordio, F.; Schwartz, J.D. Using Satellite-Based Spatiotemporal Resolved Air Temperature Exposure to Study the Association between Ambient Air Temperature and Birth Outcomes in Massachusetts. Environ. Health Perspect. 2015, 123, 1053–1058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avalos, L.A.; Chen, H.; Li, D.-K.; Basu, R. The impact of high apparent temperature on spontaneous preterm delivery: A case-crossover study. Environ. Health 2017, 16, 5. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Q.; Lu, C.; Zhang, W.; Zheng, X.; Deng, Q. Preterm birth and ambient temperature: Strong association during night-time and warm seasons. J. Therm. Biol. 2018, 78, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Kloog, I. Air pollution, ambient temperature, green space and preterm birth. Curr. Opin. Pediatr. 2019. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Wang, Y.; Zhang, H.; Zhang, Y.; Zhao, J.; Wang, Y.; Xie, X.; Wang, L.; Zhang, Q.; Liu, D.; et al. The association between ambient temperature and the risk of preterm birth in China. Sci. Total Environ. 2018, 613–614, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Brook, R.D.; Rajagopalan, S. Particulate matter, air pollution, and blood pressure. J. Am. Soc. Hypertens. 2009, 3, 332–350. [Google Scholar] [CrossRef] [PubMed]
- Kärrman, A.; Davies, J.; Salihovic, S.; Lignell, S.; Aune, M. PFAAs in Matched Milk and Serum from Primipara Women; Swedish Environmental Protection Agency (Naturvårdsverket): Stockholm, Sweden, 2013. [Google Scholar]
- Gunawardena, K.R.; Wells, M.J.; Kershaw, T. Utilising green and blue space to mitigate urban heat island intensity. Sci. Total Environ. 2017, 584–585, 1040–1105. [Google Scholar] [CrossRef] [PubMed]
Toxic Metal | Limit Values in Drinking Water (WHO) | Source of Exposition | Risks of Exposition During Pregnancy |
---|---|---|---|
Lead (Pb) | 0.05 mg/L | Water, food, air, soli, dust | Passive diffusion to placental tissue
|
Cadmium (Cd) | 0.003 mcg/L | Fiber-rich foods
Tobacco smoking | Toxic effect on villous cells with risks of
|
Mercury (Hg) | 1 mcg/L | Food (fish) Cosmetic preservatives Insecticides | High binding on placental tissue leads to:
|
Arsenic | 10 mcg/L | Home tiles Industry Agriculture | Anomalous placental vascularization and oxidative stress:
|
Class of Toxic | Chemicals Compounds | References | Findings |
---|---|---|---|
Air pollutants | CO, NO, NO2, SO2, O3 | Parker JD 2011 [13], Shah PS 2011 [14], Estarlich M 2015 [15], Fleisher NL 2014 [16], Pike K 2012 [17] | Significant association with adverse gestational outcomes |
Particulate matters | Toxics with aerodynamic diameter (PM10-PM2.5) | Jedrychowski WA 2012 [19], Liu C 2017 [20] | Positive correlation with risk of PTB |
Polycyclic aromatic hydrocarbons (PAHS) | Coal or fossil fuel, forest fires, waste incineration, | Dong, X. 2018 [26]; Ferguson KK JAMA pediatrics 2014 [24]; Padula AM 2014 [21]; Wilhelm M 2011 [22]; Guo Y 2012 [23] | PAHs concentration in umbilical cord blood correlates with negative pregnancy outcomes |
Drinking water contaminants | Disinfection by-products, atrazine | Grellier J 2010 [35], Hoffman CS 2008 [29]; Wright JM 2004 [33], Graves CG 2001 [36], Tardiff RG 2006 [37], Jaakkola JJ 2001 [38], Costet N 2012 [40], Horton BJ 2011 [41], Bove FJ 1995 [42]; Aschengrau A 2008 [43]; Forand SP 2011 [44], Rinsky JL 2012 [45] | Unclear correlation with risk of PTB |
Persistent organic compounds | Organochlorine Compounds Perfluoroalkylaed substances | Porpora MG 2013 [54], Pathak R 2008 [55], Wood SL 2007 [56], Tyagi V 2016 [59] Sagiv SK 2018 [61] | High concentration of PCB in maternal and fetal compartments correlates with negative pregnancy outcomes |
Not persistent organic compounds | Phthalates, Phenols, and Parabens | Adibi JJ 2009 [64], Meeker JD 2009 [65], Ferguson KK 2014 [24], Ferguson KK 2014 [25] | Unclear correlation with risk of PTB |
Tobacco smoke and e-cigarettes | Nicotine, CO, cyanide, aniline, methanol, hydrogen sulfide, arsenic, lead, cadmium. | Goldenberg RL 2008 [5], Lavezzi AM 2015 [60], Crane J 2011 [69]; Qiu J 2014 [70]; Salmasi G 2010 [71]; Ion RC 2015 [72], Cnattingius S 2004 [73], Banowitz NL 2000 [74], Goldstein H 1964 [75], Hadley CB 1990 [76], Cui H 2016 [77], Miller RL 2004 [78], Behrooz L 2018 [79], Benowitz NL 1996 [80], Shipton D 2009 [81], Ostrea EM 1994 [82], Stevens KR 2004 [83], Secker-Walker RH 1997 [84], Wagner NJ 2017 [85], Chen H 2018 [86]. | Increasing risk of PPROM, oxidative stress, fetal growth restriction |
Toxic Metals | Lead, cadmium, mercury, arsenic | Singh L 2018 [87], Chen Z 2001 [88] | Positive association with risk of PTB |
Global warming | Arroyo V. 2016 [122], Ha S. 2015 [123], Kloog I. 2015 [124], Avalos LA. 2017 [125], Zhong Q. 2018 [126], Kloog I. 2019 [127], Gou T. 2018 [128] | Positive correlation with PTB |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Porpora, M.G.; Piacenti, I.; Scaramuzzino, S.; Masciullo, L.; Rech, F.; Benedetti Panici, P. Environmental Contaminants Exposure and Preterm Birth: A Systematic Review. Toxics 2019, 7, 11. https://doi.org/10.3390/toxics7010011
Porpora MG, Piacenti I, Scaramuzzino S, Masciullo L, Rech F, Benedetti Panici P. Environmental Contaminants Exposure and Preterm Birth: A Systematic Review. Toxics. 2019; 7(1):11. https://doi.org/10.3390/toxics7010011
Chicago/Turabian StylePorpora, Maria Grazia, Ilaria Piacenti, Sara Scaramuzzino, Luisa Masciullo, Francesco Rech, and Pierluigi Benedetti Panici. 2019. "Environmental Contaminants Exposure and Preterm Birth: A Systematic Review" Toxics 7, no. 1: 11. https://doi.org/10.3390/toxics7010011
APA StylePorpora, M. G., Piacenti, I., Scaramuzzino, S., Masciullo, L., Rech, F., & Benedetti Panici, P. (2019). Environmental Contaminants Exposure and Preterm Birth: A Systematic Review. Toxics, 7(1), 11. https://doi.org/10.3390/toxics7010011