The Impact of Smoking on the Association between Perfluoroalkyl Acids (PFAS) and Thyroid Hormones: A National Health and Nutrition Examination Survey Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source and Study Population
2.2. NHANES Laboratory Assessments
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fromme, H.; Tittlemier, S.A.; Volkel, W. Perfluorinated compounds--exposure assessment for the general population in Western countries. Int. J. Hyg. Environ. Health 2009, 212, 239–270. [Google Scholar] [CrossRef] [PubMed]
- Giesy, J.P.; Kannan, K. Global distribution of perfluorooctane sulfonate in wildlife. Environ. Sci. Techol. 2001, 35, 1339–1342. [Google Scholar] [CrossRef] [PubMed]
- Lau, C.; Anitole, K.; Hodes, C. Perfluoroalkyl acids: A review of monitoring and toxicological findings. Toxicol. Sci. 2007, 99, 366–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kato, K.; Wong, L.Y.; Jia, L.T. Trends in exposure to polyfluoroalkyl chemicals in the U.S. Population: 1999–2008. Environ. Sci. Technol. 2011, 45, 8037–8045. [Google Scholar] [CrossRef]
- Gore, A.C.; Chappell, V.A.; Fenton, S.E. EDC-2: The Endocrine Society’s Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr. Rev. 2015, 36, E1–E150. [Google Scholar] [CrossRef]
- Bergman, Å.; Heindel, J.J.; Jobling, S. State of the Science of Endocrine Disrupting Chemicals 2012; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Kissa, E. Fluorinated Surfactants and Repellents; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- US Environmental Protection Agency: Drinking Water Health Advisories for PFOA and PFOS. Available online: https://www.epa.gov/ground-water-and-drinking-water/drinking-water-health-advisories-pfoa-and-pfos (accessed on 10 September 2020).
- IARC Monographs: Perfluorooctanoic Acid. Available online: https://monographs.iarc.fr/wp-content/uploads/2018/06/mono110-01.pdf (accessed on 10 September 2020).
- Webster, G.M.; Rauch, S.A.; Marie, N.S. Cross-Sectional Associations of Serum Perfluoroalkyl Acids and Thyroid Hormones in U.S. Adults: Variation According to TPOAb and Iodine Status (NHANES 2007–2008). Environ. Health Perspect. 2016, 124, 935–942. [Google Scholar] [CrossRef]
- Wen, L.L.; Lin, L.Y.; Su, T.C. Association between serum perfluorinated chemicals and thyroid function in U.S. adults: The National Health and Nutrition Examination Survey 2007–2010. J. Clin. Endocrinol. Metab. 2013, 98, E1456–E1464. [Google Scholar] [CrossRef]
- Webster, G.M.; Venners, S.A.; Mattman, A. Associations between perfluoroalkyl acids (PFAS) and maternal thyroid hormones in early pregnancy: A population-based cohort study. Environ. Res. 2014, 133, 338–347. [Google Scholar] [CrossRef]
- Wang, Y.; Starling, A.P.; Haug, L.S. Association between perfluoroalkyl substances and thyroid stimulating hormone among pregnant women: A cross-sectional study. Environ. Health 2013, 12, 76. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Espinosa, M.J.; Mondal, D.; Armstrong, B. Thyroid function and perfluoroalkyl acids in children living near a chemical plant. Environ. Health Perspect. 2012, 120, 1036–1041. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.Y.; Wen, L.L.; Lin, L.Y. The associations between serum perfluorinated chemicals and thyroid function in adolescents and young adults. J. Hazard. Mater. 2013, 244–245, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.B. Association between thyroid profile and perfluoroalkyl acids: Data from NHANES 2007–2008. Environ. Res. 2013, 126, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Melzer, D.; Rice, N.; Depledge, M.H. Association between serum perfluorooctanoic acid (PFOA) and thyroid disease in the U.S. National Health and Nutrition Examination Survey. Environ. Health Perspect. 2010, 118, 686–692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winquist, A.; Steenland, K. Perfluorooctanoic acid exposure and thyroid disease in community and worker cohorts. Epidemiology 2014, 25, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Steenland, K.; Fletcher, T.; Savitz, D. C8 Science Panel Status Report: PFOA and Adult Thyroid Disease in the Mid-Ohio Valley. 2011. Available online: http://www.c8sciencepanel.org/pdfs/Status_Report_C8_and_thyroid_disease_5Dec2011.pdf (accessed on 10 September 2020).
- Barry, V.; Winquist, A.; Steenland, K. Perfluorooctanoic acid (PFOA) exposures and incident cancers among adults living near a chemical plant. Environ. Health Perspect. 2013, 121, 1313–1318. [Google Scholar] [CrossRef] [Green Version]
- Cho, C.R.; Lam, N.H.; Cho, B.M. Concentration and correlations of perfluoroalkyl substances in whole blood among subjects from three different deographical areas in Korea. Sci. Total Environ. 2015, 512–513, 397–405. [Google Scholar] [CrossRef]
- Soldin, O.P.; Goughenour, B.E.; Gilbert, S.Z. Thyroid hormone levels associated with active and passive cigarette smoking. Thyroid 2009, 19, 817–823. [Google Scholar] [CrossRef]
- Belin, R.M.; Astor, B.C.; Powe, N.R. Smoke exposure is associated with a lower prevalence of serum thyroid autoantibodies and thyrotropin concentration elevation and a higher prevalence of mild thyrotropin concentration suppression in the third National Health and Nutrition Examination Survey (NHANES III). J. Clin. Endocrinol. Metab. 2004, 89, 6077–6086. [Google Scholar]
- Kuklenyik, Z.; Needham, L.L.; Calafat, A.M. Measurement of 18 perfluorinated organic acids and amides in human serum using on-line solid-phase extraction. Anal. Chem. 2005, 77, 6085–6091. [Google Scholar] [CrossRef]
- Graber, J.M.; Alexander, C.; Laumbach, R.J. Per and polyfluoroalkyl substances (PFAS) blood levels after contamination of a community water supply and comparison with 2013–2014 NHANES. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 172–182. [Google Scholar] [CrossRef]
- Garber, J.; Cobin, R.; Gharib, H. Clinical practice guidelines for hypothyroidism in adults: Cosponsored by the American Association of Clinical Endocrinologists and the American Thyroid Association. Endocr. Pract. 2012, 18, 988–1028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benowitz, N.L.; Bernert, J.T.; Caraballo, R.S. Optimal serum cotinine levels for distinguishing cigarette smokers and nonsmokers within different racial/ethnic groups in the United States between 1999 and 2004. Am. J. Epidemiol. 2009, 169, 236–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buttke, D.E.; Sircar, K.; Martin, C. Exposures to endocrine-disrupting chemicals and age of menarche in adolescent girls in NHANES (2003–2008). Environ. Health Perspect. 2012, 120, 1613–1618. [Google Scholar] [CrossRef] [PubMed]
- Knox, S.S.; Jackson, T.; Frisbee, S.J. Perfluorocarbon exposure, gender and thyroid function in the C8 Health Project. J. Toxicol Sci. 2011, 36, 403–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olsen, G.W.; Zobel, L.R. Assessment of lipid, hepatic, and thyroid parameters with serum perfluorooctanoate (PFOA) concentrations in fluorochemical production workers. Int. Arch. Occup. Environ. Health 2007, 81, 231–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrari, S.M.; Fallahi, P.; Antonelli, A. Environmental issues in thyroid diseases. Front. Endocrinol. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Benvenga, S.; Elia, G.; Ragusa, F.; Paparo, S.R.; Sturniolo, M.M.; Ferrari, S.M.; Antonelli, A.; Fallahi, P. Endocrine disruptors and thyroid autoimmunity. Best Pract. Res. Clin. Endocrinol. Metab. 2020, 34, 101377. [Google Scholar] [CrossRef]
- Weiss, J.M.; Andersson, P.L.; Lamoree, M.H. Competitive binding of poly- and perfluorinated compounds to the thyroid hormone transport protein transthyretin. Toxicol. Sci. 2009, 109, 206–216. [Google Scholar] [CrossRef] [Green Version]
- Yu, W.G.; Liu, W.; Liu, L. Perfluorooctane sulfonate increased hepatic expression of OAPT2 and MRP2 in rats. Arch. Toxicol. 2011, 85, 613–621. [Google Scholar] [CrossRef]
- Chang, S.C.; Thibodeaux, J.R.; Eastvold, M.L. Thyroid hormone status and pituitary function in adult rats given oral doses of perfluorooctanesulfonate (PFOS). Toxicology 2008, 243, 330–339. [Google Scholar] [CrossRef]
- Yu, W.G.; Liu, W.; Jin, Y.H. Effects of perfluorooctane sulfonate on rat thyroid hormone biosynthesis and metabolism. Environ. Toxicol. Chem. 2009, 28, 990–996. [Google Scholar] [CrossRef] [PubMed]
- Wiersinga, W.M. Smoking and thyroid. Clin. Endocrinol. 2013, 79, 145–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.; Kim, W.G.; Jeon, M.J.; Kim, M.; Oh, H.-S.; Han, M.; Kim, T.Y.; Shong, Y.K.; Kim, W.B. Serum thyroid-stimulating hormone levels and smoking status: Data from the Korean National Health and Nutrition Examination Survey VI. Clin. Endocrinol. 2018, 88, 969–976. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.A.; Kim, J. Thyroid cancer risk and smoking status: A meta-analysis. Cancer Causes Control. 2014, 25, 1187–1195. [Google Scholar] [CrossRef]
- Mack, W.J.; Preston-Martin, S.; Dal Maso, L. A pooled analysis of case-control studies of thyroid cancer: Cigarette smoking and consumption of alcohol, coffee, and tea. Cancer Causes Control. 2003, 14, 773–785. [Google Scholar] [CrossRef]
- Bufalo, N.E.; Leite, J.L.; Guilhen, A.C. Smoking and susceptibility to thyroid cancer: An inverse association with CYP1A1 allelic variants. Endocr. Relat. Cancer 2006, 13, 1185–1193. [Google Scholar] [CrossRef]
- Davies, L.; Welch, H.G. Increasing incidence of thyroid cancer in the United States, 1973–2002. JAMA 2006, 295, 2164–2167. [Google Scholar] [CrossRef] [Green Version]
Variables | Total Population | PFOA (µmol/L) | PFOS (µmol/L) | PFHxS (µmol/L) | PFNA (µmol/L) | Total PFAS (µmol/L) | Free T4 (ng/dL) | Total T4 (µg/dL) | Free T3 (pg/mL) | Total T3 (ng/dL) | TSH (mIU/L) |
---|---|---|---|---|---|---|---|---|---|---|---|
n (%) | GM (SE) | GM (SE) | GM (SE) | GM (SE) | GM (SE) | Mean (SE) | Mean (SE) | Mean (SE) | Mean (SE) | GM (SE) | |
All | 1325 (100) | 8.89 (0.31) | 33.52 (1.13) | 5.20 (0.26) | 4.26 (0.19) | 55.18 (1.65) | 0.82 (0.01) | 7.78 (0.08) | 3.17 (0.03) | 114.03 (1.26) | 1.50 (0.03) |
Sex | |||||||||||
Male | 717 (52.1) | 10.13 (0.37) | 42.22 (1.91) | 6.91 (0.39) | 4.54 (0.27) | 67.52 (2.77) | 0.82 (0.01) | 7.60 (0.09) | 3.26 (0.03) | 115.14 (1.82) | 1.53 (0.04) |
Female | 608 (47.9) | 7.71 (0.38) | 26.07 (1.01) | 3.81 (0.23) | 3.99 (0.14) | 44.29 (1.45) | 0.82 (0.01) | 7.97 (0.10) | 3.08 (0.02) | 112.82 (1.11) | 1.47 (0.04) |
Age (years) | |||||||||||
20–39 | 510 (38.2) | 8.18 (0.38) | 28.70 (1.55) | 4.84 (0.30) | 3.95 (0.20) | 48.27 (2.43) | 0.83 (0.01) | 7.78 (0.10) | 3.31 (0.03) | 120.26 (1.30) | 1.42 (0.04) |
40–59 | 442 (40.1) | 8.76 (0.47) | 32.37 (1.12) | 4.80 (0.29) | 4.19 (0.27) | 53.50 (1.81) | 0.80 (0.01) | 7.68 (0.10) | 3.16 (0.03) | 112.19 (1.57) | 1.47 (0.08) |
≥60 | 373 (21.7) | 10.58 (0.61) | 46.97 (2.46) | 6.81 (0.52) | 5.04 (0.30) | 73.89 (3.57) | 0.84 (0.01) | 7.95 (0.13) | 2.96 (0.02) | 106.48 (1.57) | 1.72 (0.09) |
Race | |||||||||||
NHW | 469 (65.5) | 9.68 (0.46) | 35.66 (1.32) | 5.97 (0.36) | 4.20 (0.25) | 58.80 (2.11) | 0.81 (0.01) | 7.67 (0.10) | 3.16 (0.03) | 112.82 (1.69) | 1.56 (0.05) |
NHB | 344 (11.5) | 7.66 (0.28) | 34.17 (3.07) | 4.49 (0.20) | 4.55 (0.26) | 54.26 (3.76) | 0.82 (0.01) | 8.01 (0.19) | 3.16 (0.02) | 115.49 (2.24) | 1.25 (0.04) |
Hispanic/other | 512 (23) | 7.52 (0.45) | 27.85 (2.21) | 3.78 (0.30) | 4.31 (0.32) | 46.44 (3.27) | 0.84 (0.01) | 7.96 (0.08) | 3.22 (0.02) | 116.76 (1.33) | 1.47 (0.04) |
BMI (kg/m2) | |||||||||||
<25 | 446 (33.1) | 8.85 (0.42) | 32.75 (1.46) | 5.19 (0.39) | 4.16 (0.20) | 54.32 (2.28) | 0.83 (0.01) | 7.56 (0.11) | 3.17 (0.04) | 110.89 (1.62) | 1.44 (0.04) |
25–30 | 428 (34.6) | 9.88 (0.60) | 36.36 (2.02) | 5.86 (0.39) | 4.80 (0.26) | 60.64 (2.82) | 0.81 (0.01) | 7.79 (0.10) | 3.15 (0.03) | 114.87 (1.52) | 1.54 (0.05) |
≥30 | 451 (32.3) | 7.98 (0.35) | 31.46 (2.10) | 4.58 (0.34) | 3.84 (0.23) | 50.67 (3.03) | 0.81 (0.01) | 7.98 (0.11) | 3.20 (0.03) | 116.36 (1.84) | 1.51 (0.05) |
Smoking * | |||||||||||
Non-smoker | 1058 (79.4) | 9.30 (0.33) | 35.61 (1.27) | 5.38 (0.28) | 4.47 (0.20) | 58.33 (1.86) | 0.82 (0.01) | 7.79 (0.09) | 3.16 (0.02) | 113.11 (1.30) | 1.52 (0.04) |
Smoker | 266 (20.6) | 7.50 (0.51) | 26.56 (1.74) | 4.58 (0.35) | 3.57 (0.25) | 44.63 (2.74) | 0.82 (0.01) | 7.73 (0.15) | 3.24 (0.05) | 117.57 (1.92) | 1.41 (0.07) |
Serum cotinine (ng/mL) | |||||||||||
Non-smoker | 993 (74.9) | 9.28 (0.33) | 35.36 (1.10) | 5.35 (0.29) | 4.47 (0.04) | 58.04 (1.64) | 0.82 (0.01) | 7.78 (0.09) | 3.15 (0.02) | 112.91 (1.39) | 1.54 (0.03) |
Smoker | 332 (25.1) | 7.82 (0.43) | 28.57 (1.90) | 4.78 (0.29) | 3.70 (0.24) | 47.43 (2.71) | 0.82 (0.01) | 7.78 (0.14) | 3.24 (0.05) | 117.37 (1.76) | 1.38 (0.07) |
Ln TSH (mIU/L) | Ln Total T4 (µg/dL) | Ln Free T4 (ng/dL) | Ln Total T3 (ng/dL) | Ln Free T3 (pg/mL) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
PFAS | Badj * (95% CI) | p-Value | Badj * (95% CI) | p-Value | Badj * (95% CI) | p-Value | Badj * (95% CI) | p-Value | Badj * (95% CI) | p-Value |
Ln PFOA (µmol/L) | 0.006 (−0.041; 0.053) | 0.787 | −0.008 (−0.027; 0.012) | 0.411 | 0.007 (−0.007; 0.021) | 0.311 | 0.011 (−0.009; 0.031) | 0.252 | 0.003 (−0.011; 0.018) | 0.612 |
Ln PFOS (µmol/L) | −0.002 (−0.055; 0.051) | 0.943 | −0.010 (−0.024; 0.004) | 0.138 | 0.021 (0.008; 0.035) | 0.003 | 0.001 (−0.015; 0.017) | 0.873 | 0.002 (−0.006; 0.010) | 0.565 |
Ln PFHxS (µmol/L) | 0.002 (−0.036; 0.040) | 0.899 | −0.005 (−0.023; 0.013) | 0.558 | 0.011 (−0.003; 0.025) | 0.127 | 0.010 (−0.006; 0.026) | 0.198 | −0.001 (−0.015; 0.012) | 0.834 |
Ln PFNA (µmol/L) | −0.005 (−0.050; 0.041) | 0.837 | 0.000 (−0.019; 0.020) | 0.968 | 0.021 (0.005; 0.038) | 0.014 | 0.013 (−0.006; 0.032) | 0.174 | 0.012 (0.002; 0.023) | 0.024 |
Ln total PFAS (µmol/L) | −0.004 (−0.056; 0.049) | 0.883 | −0.010 (−0.027; 0.007) | 0.216 | 0.023 (0.009; 0.038) | 0.004 | 0.003 (−0.014; 0.020) | 0.716 | 0.003 (−0.008; 0.014) | 0.613 |
Smoking Status | Ln TSH (mIU/L) | Ln Total T4 (µg/dL) | Ln Free T4 (ng/dL) | Ln Total T3 (ng/dL) | Ln Free T3 (pg/mL) | |||||
Non-Smoker | Badj * (95% CI) | p-Value | Badj * (95% CI) | p-Value | Badj * (95% CI) | p-Value | Badj * (95% CI) | p-Value | Badj * (95% CI) | p-Value |
Ln PFOA (µmol/L) | −0.001 (−0.050; 0.049) | 0.975 | −0.007 (−0.025; 0.011) | 0.435 | 0.010 (−0.005; 0.025) | 0.179 | 0.007 (−0.015; 0.029) | 0.494 | 0.003 (−0.013; 0.020) | 0.658 |
Ln PFOS (µmol/L) | −0.023 (−0.067; 0.021) | 0.299 | −0.010 (−0.024; 0.005) | 0.170 | 0.024 (0.009; 0.039) | 0.003 | −0.006 (−0.021; 0.00) | 0.447 | −0.001 (−0.009; 0.008) | 0.840 |
Ln PFHxS (µmol/L) | −0.015 (−0.057; 0.028) | 0.478 | −0.003 (−0.018; 0.012) | 0.675 | 0.014 (0.001; 0.026) | 0.034 | 0.010 (−0.005; 0.024) | 0.178 | −0.000 (−0.013; 0.012) | 0.994 |
Ln PFNA (µmol/L) | 0.005 (−0.047; 0.056) | 0.855 | 0.002 (−0.021; 0.025) | 0.866 | 0.026 (0.006; 0.045) | 0.012 | 0.007 (−0.015; 0.029) | 0.509 | 0.013 (−0.002; 0.027) | 0.094 |
Ln PFAS (µmol/L) | −0.021 (−0.066; 0.025) | 0.351 | −0.010 (−0.025; 0.006) | 0.205 | 0.026 (0.010; 0.043) | 0.003 | −0.004 (−0.021; 0.013) | 0.645 | 0.000 (−0.011; 0.012) | 0.938 |
Smoker | Badj * (95% CI) | p-Value | Badj * (95% CI) | p-Value | Badj * (95% CI) | p-Value | ||||
Ln PFOA (µmol/L) | 0.051 (−0.073; 0.175) | 0.396 | −0.016 (−0.058; 0.025) | 0.424 | −0.013 (−0.042; 0.017) | 0.385 | 0.029 (0.005; 0.054) | 0.021 | 0.002 (−0.025; 0.028) | 0.904 |
Ln PFOS (µmol/L) | 0.087 (−0.041; 0.214) | 0.170 | −0.016 (−0.057; 0.025) | 0.413 | 0.004 (−0.021; 0.028) | 0.746 | 0.032 (−0.002; 0.065) | 0.064 | 0.013 (−0.007; 0.034) | 0.180 |
Ln PFHxS (µmol/L) | 0.074 (−0.033; 0.180) | 0.164 | −0.019 (−0.062; 0.024) | 0.365 | −0.005 (−0.035; 0.025) | 0.707 | 0.015 (−0.023; 0.052) | 0.413 | −0.003 (−0.029; 0.022) | 0.786 |
Ln PFNA (µmol/L) | −0.023 (−0.129; 0.082) | 0.649 | −0.008 (−0.048; 0.031) | 0.661 | 0.006 (−0.028; 0.039) | 0.726 | 0.027 (0.006; 0.048) | 0.015 | 0.009 (−0.007; 0.026) | 0.251 |
Ln PFAS (µmol/L) | 0.074 (−0.055; 0.203) | 0.244 | −0.020 (−0.066; 0.027) | 0.389 | 0.003 (−0.023; 0.029) | 0.808 | 0.033 (−0.000; 0.067) | 0.054 | 0.011 (−0.012; 0.034) | 0.333 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Gerwen, M.; Alpert, N.; Alsen, M.; Ziadkhanpour, K.; Taioli, E.; Genden, E. The Impact of Smoking on the Association between Perfluoroalkyl Acids (PFAS) and Thyroid Hormones: A National Health and Nutrition Examination Survey Analysis. Toxics 2020, 8, 116. https://doi.org/10.3390/toxics8040116
van Gerwen M, Alpert N, Alsen M, Ziadkhanpour K, Taioli E, Genden E. The Impact of Smoking on the Association between Perfluoroalkyl Acids (PFAS) and Thyroid Hormones: A National Health and Nutrition Examination Survey Analysis. Toxics. 2020; 8(4):116. https://doi.org/10.3390/toxics8040116
Chicago/Turabian Stylevan Gerwen, Maaike, Naomi Alpert, Mathilda Alsen, Kimia Ziadkhanpour, Emanuela Taioli, and Eric Genden. 2020. "The Impact of Smoking on the Association between Perfluoroalkyl Acids (PFAS) and Thyroid Hormones: A National Health and Nutrition Examination Survey Analysis" Toxics 8, no. 4: 116. https://doi.org/10.3390/toxics8040116
APA Stylevan Gerwen, M., Alpert, N., Alsen, M., Ziadkhanpour, K., Taioli, E., & Genden, E. (2020). The Impact of Smoking on the Association between Perfluoroalkyl Acids (PFAS) and Thyroid Hormones: A National Health and Nutrition Examination Survey Analysis. Toxics, 8(4), 116. https://doi.org/10.3390/toxics8040116