Ecotoxicity of Plastics from Informal Waste Electric and Electronic Treatment and Recycling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Overview and Research Background
2.1.1. WEEE Plastic Treatments and Recycling
2.1.2. BFRs in E-Plastics
2.1.3. Flame Retarded E-Plastic Toxicity
2.1.4. Re-Use of E-Plastics as Construction Material
2.1.5. E-Plastic Toxicity Assessment
2.2. LCA Methodology
2.2.1. Goal and Scope
2.2.2. Functional Unit and System Boundaries
2.2.3. Inventory Analysis
2.2.4. Informal Treatment
2.2.5. End-of-Life Alternative Scenarios
Incineration Scenario (WEEP-I)
Landfill Scenario (WEEP-L)
Re-Use in Cement Scenario (WEEEP-RC and WEEEP-RCS)
Re-Use as is in Bituminous Pavement Scenario (WEEEP-RBP)
2.2.6. Impact Assessment
3. Results
3.1. LCIA Results Associated with Informal E-Plastic Treatment
3.2. LCIA Results Associated with End-of-Life Alternative Scenarios
3.3. Results Interpretation
3.4. Sensitivity Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ilankoon, I.M.S.K.; Ghorbani, Y.; Chong, M.N.; Herath, G.; Moyo, T.; Petersen, J. E-waste in the international context—A review of trade flows, regulations, hazards, waste management strategies and technologies for value recovery. Waste Manag. 2018, 82, 258–275. [Google Scholar] [CrossRef] [PubMed]
- Pini, M.; Lolli, F.; Balugani, E.; Gamberini, R.; Neri, P.; Rimini, B.; Ferrari, A.M. Preparation for reuse activity of waste electrical and electronic equipment: Environmental performance, cost externality and job creation. J. Clean. Prod. 2019, 222, 77–89. [Google Scholar] [CrossRef]
- Prasad, M.N.V. Introduction-Opportunities and Challenges in the Electronic Waste Management: Implementation of Innovations to Achieve Sustainable Development Goals. In Electronic Waste Management and Treatment Technology; Elsevier: Amsterdam, The Netherlands, 2019; pp. xxv–xxxiv. [Google Scholar] [CrossRef]
- Bressanelli, G.; Saccani, N.; Pigosso, D.C.A.; Perona, M. Circular Economy in the WEEE industry: A systematic literature review and a research agenda. Sustain. Prod. Consum. 2020, 23, 174–188. [Google Scholar] [CrossRef]
- European Electronics Recyclers Association. EERA’ s Comments and Proposals for the EU Plastics Strategy 2017. Available online: https://www.eera-recyclers.com/publications (accessed on 5 October 2020).
- Schlummer, M.; Gruber, L.; Mäurer, A.; Wolz, G.; van Eldik, R. Characterisation of polymer fractions from waste electrical and electronic equipment (WEEE) and implications for waste management. Chemosphere 2007, 67, 1866–1876. [Google Scholar] [CrossRef]
- Wagner, S.; Schlummer, M. Legacy additives in a circular economy of plastics: Current dilemma, policy analysis, and emerging countermeasures. Resour. Conserv. Recycl. 2020, 158, 104800. [Google Scholar] [CrossRef]
- Doan, L.T.T.; Amer, Y.; Lee, S.H.; Phuc, P.N.K.; Dat, L.Q. E-Waste reverse supply chain: A review and future perspectives. Appl. Sci. 2019, 9, 5195. [Google Scholar] [CrossRef] [Green Version]
- Makdisi, K. Basel Convention. In Green Politics: An A-to-Z Guide; SAGE Publications: Thousand Oaks, CA, USA, 2012. [Google Scholar]
- Fiore, S.; Ibanescu, D.; Teodosiu, C.; Ronco, A. Improving waste electric and electronic equipment management at full-scale by using material flow analysis and life cycle assessment. Sci. Total Environ. 2019, 659, 928–939. [Google Scholar] [CrossRef]
- Ikhlayel, M. An integrated approach to establish e-waste management systems for developing countries. J. Clean. Prod. 2018, 170, 119–130. [Google Scholar] [CrossRef]
- Gollakota, A.R.K.; Gautam, S.; Shu, C.M. Inconsistencies of e-waste management in developing nations – Facts and plausible solutions. J. Environ. Manag. 2020, 261, 110234. [Google Scholar] [CrossRef]
- Saeed, A.; Altarawneh, M.; Siddique, K.; Conesa, J.A.; Ortuño, N.; Dlugogorski, B.Z. Photodecomposition properties of brominated flame retardants (BFRs). Ecotoxicol. Environ. Saf. 2020, 192, 110272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, A.; Holuszko, M.; Espinosa, D.C.R. E-waste: An overview on generation, collection, legislation and recycling practices. Resour. Conserv. Recycl. 2017, 122, 32–42. [Google Scholar] [CrossRef]
- Balde, C.P.; Forti, V.; Gray, V.; Kuehr, R.; Stegmann, P. The Global E-Waste Monitor 2017; United Nations University—UNU: Tokyo, Japan; International Telecommunication Union—ITU: Geneva, Switzerland, 2017; ISBN 9789280845556. [Google Scholar]
- Gamberini, R.; Gebennini, E.; Manzini, R.; Ziveri, A. On the integration of planning and environmental impact assessment for a WEEE transportation network—A case study. Resour. Conserv. Recycl. 2010, 54, 937–951. [Google Scholar] [CrossRef]
- Lolli, F.; Ishizaka, A.; Gamberini, R.; Rimini, B.; Ferrari, A.M.; Marinelli, S.; Savazza, R. Waste treatment: An environmental, economic and social analysis with a new group fuzzy PROMETHEE approach. Clean Technol. Environ. Policy 2016, 18, 1317–1332. [Google Scholar] [CrossRef] [Green Version]
- Awasthi, A.K.; Li, J. Sustainable Bioprospecting of Electronic Waste. Trends Biotechnol. 2019, 37, 677–680. [Google Scholar] [CrossRef]
- Ferrari, K.; Gamberini, R.; Rimini, B. The waste hierarchy: A strategic, tactical and operational approach for developing countries. the case study of Mozambique. Int. J. Sustain. Dev. Plan. 2016, 11, 759–770. [Google Scholar] [CrossRef] [Green Version]
- Bakhiyi, B.; Gravel, S.; Ceballos, D.; Flynn, M.A.; Zayed, J. Has the question of e-waste opened a Pandora’s box? An overview of unpredictable issues and challenges. Environ. Int. 2018, 110, 173–192. [Google Scholar] [CrossRef]
- Luhar, S.; Luhar, I. Potential application of E-wastes in construction industry: A review. Constr. Build. Mater. 2019, 203, 222–240. [Google Scholar] [CrossRef]
- Meng, Y.; Ling, T.C.; Mo, K.H. Recycling of wastes for value-added applications in concrete blocks: An overview. Resour. Conserv. Recycl. 2018, 138, 298–312. [Google Scholar] [CrossRef]
- Kumar, K.S.; Baskar, K. Recycling of E-plastic waste as a construction material in developing countries. J. Mater. Cycles Waste Manag. 2015, 17, 718–724. [Google Scholar] [CrossRef]
- Oyinlola, M.; Whitehead, T. Recycling of Plastics for Low Cost Construction. Encycl. Renew. Sustain. Mater. 2020, 2, 555–560. [Google Scholar]
- Christensen, T.H.; Damgaard, A.; Levis, J.; Zhao, Y.; Björklund, A.; Arena, U.; Barlaz, M.A.; Starostina, V.; Boldrin, A.; Astrup, T.F.; et al. Application of LCA modelling in integrated waste management. Waste Manag. 2020, 118, 313–322. [Google Scholar] [CrossRef]
- Hahladakis, J.N.; Velis, C.A.; Weber, R.; Iacovidou, E.; Purnell, P. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater. 2018, 344, 179–199. [Google Scholar] [CrossRef]
- Ma, C.; Yu, J.; Wang, B.; Song, Z.; Xiang, J.; Hu, S.; Su, S.; Sun, L. Chemical recycling of brominated flame retarded plastics from e-waste for clean fuels production: A review. Renew. Sustain. Energy Rev. 2016, 61, 433–450. [Google Scholar] [CrossRef]
- Buekens, A.; Yang, J. Recycling of WEEE plastics: A review. J. Mater. Cycles Waste Manag. 2014, 16, 415–434. [Google Scholar] [CrossRef]
- Wagner, F.; Peeters, J.R.; De Keyzer, J.; Janssens, K.; Duflou, J.R.; Dewulf, W. Towards a more circular economy for WEEE plastics—Part A: Development of innovative recycling strategies. Waste Manag. 2019, 100, 269–277. [Google Scholar] [CrossRef]
- Maisel, F.; Chancerel, P.; Dimitrova, G.; Emmerich, J.; Nissen, N.F.; Schneider-Ramelow, M. Preparing WEEE plastics for recycling—How optimal particle sizes in pre-processing can improve the separation efficiency of high quality plastics. Resour. Conserv. Recycl. 2020, 154, 104619. [Google Scholar] [CrossRef]
- Alassali, A.; Abis, M.; Fiore, S.; Kuchta, K. Classification of plastic waste originated from waste electric and electronic equipment based on the concentration of antimony. J. Hazard. Mater. 2019, 380, 120874. [Google Scholar] [CrossRef] [PubMed]
- Maris, E.; Botané, P.; Wavrer, P.; Froelich, D. Characterizing plastics originating from WEEE: A case study in France. Miner. Eng. 2015, 76, 28–37. [Google Scholar] [CrossRef] [Green Version]
- Allsopp, M.; Santillo, D.; Johnston, P. Environmental and Human Health Concerns in the Processing of Electrical and Electronic Waste—Greenpeace Research Laboratories. Technical Note: 04/2006. 2006. Available online: http://www.greenpeace.to/publications/Ewastetreatment-May2006-FINAL.pdf (accessed on 5 October 2020).
- Stevels, A.; Huisman, J.; Wang, F.; Li, J.; Li, B.; Duan, H. Take back and treatment of discarded electronics: A scientific update. Front. Environ. Sci. Eng. 2013, 7, 475–482. [Google Scholar] [CrossRef]
- Hennebert, P.; Filella, M. WEEE plastic sorting for bromine essential to enforce EU regulation. Waste Manag. 2018, 71, 390–399. [Google Scholar] [CrossRef]
- Jones, P.; Coady, K.; Newsted, J. Tetrabromobisphenol A. Encycl. Toxicol. 2005, 146–148. [Google Scholar] [CrossRef]
- Birnbaum, L.S.; Staskal, D.F. Brominated flame retardants: Cause for concern? Environ. Health Perspect. 2004, 112, 9–17. [Google Scholar] [CrossRef]
- Kousaiti, A.; Hahladakis, J.N.; Savvilotidou, V.; Pivnenko, K.; Tyrovola, K.; Xekoukoulotakis, N.; Astrup, T.F.; Gidarakos, E. Assessment of tetrabromobisphenol-A (TBBPA) content in plastic waste recovered from WEEE. J. Hazard. Mater. 2020, 390, 121641. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Duan, H.; Tang, Y. Toxicity evaluation of E-waste plastics and potential repercussions for human health. Environ. Int. 2020, 137, 105559. [Google Scholar] [CrossRef]
- Jandric, A.; Part, F.; Fink, N.; Cocco, V.; Mouillard, F.; Huber-Humer, M.; Salhofer, S.; Zafiu, C. Investigation of the heterogeneity of bromine in plastic components as an indicator for brominated flame retardants in waste electrical and electronic equipment with regard to recyclability. J. Hazard. Mater. 2020, 390, 121899. [Google Scholar] [CrossRef]
- Fatunsin, O.T.; Oluseyi, T.O.; Drage, D.; Abdallah, M.A.E.; Turner, A.; Harrad, S. Children’s exposure to hazardous brominated flame retardants in plastic toys. Sci. Total Environ. 2020, 720, 137623. [Google Scholar] [CrossRef]
- Puype, F.; Samsonek, J.; Knoop, J.; Egelkraut-Holtus, M.; Ortlieb, M. Evidence of waste electrical and electronic equipment (WEEE) relevant substances in polymeric food-contact articles sold on the European market. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2015, 32, 410–426. [Google Scholar] [CrossRef] [PubMed]
- Delva, L.; Hubo, S.; Cardon, L.; Ragaert, K. On the role of flame retardants in mechanical recycling of solid plastic waste. Waste Manag. 2018, 82, 198–206. [Google Scholar] [CrossRef]
- Jin, G.Q.; Li, W.D.; Wang, S.; Tang, D.B. A Systematic End-of-Life Management Approach for Waste Electrical and Electronic Equipment. In Proceedings of the 2015 IEEE 19th International Conference on Computer Supported Cooperative Work in Design (CSCWD), Calabria, Italy, 6–8 May 2015; pp. 362–367. [Google Scholar]
- Mäkinen, M.S.E.; Mäkinen, M.R.A.; Koistinen, J.T.B.; Pasanen, A.-L.; Pasanen, P.O.; Kalliokoski, P.J.; Korpi, A.M. Respiratory and Dermal Exposure to Organophosphorus Flame Retardants and Tetrabromobisphenol A at Five Work Environments. Environ. Sci. Technol. 2009, 43, 941–947. [Google Scholar] [CrossRef]
- Hagmar, L.; Sjödin, A.; Höglund, P.; Thuresson, K.; Rylander, L.; Bergman, Å. Biological half-lives of polybro- minated diphenyl ethers and tetrabromobisphenol A in exposed workers. Organohalogen Compd. 2000, 47, 198–201. [Google Scholar]
- Usenko, C.Y.; Abel, E.L.; Hopkins, A.; Martinez, G.; Tijerina, J.; Kudela, M.; Norris, N.; Joudeh, L.; Bruce, E.D. Evaluation of common use Brominated Flame Retardant (BFR) toxicity using a Zebrafish embryo model. Toxics 2016, 4, 21. [Google Scholar] [CrossRef] [Green Version]
- Zuiderveen, E.A.R.; Slootweg, J.C.; de Boer, J. Novel brominated flame retardants—A review of their occurrence in indoor air, dust, consumer goods and food. Chemosphere 2020, 255, 126816. [Google Scholar] [CrossRef]
- Heacock, M.; Kelly, C.B.; Asante, K.A.; Birnbaum, L.S.; Bergman, Å.L.; Bruné, M.N.; Buka, I.; Carpenter, D.O.; Chen, A.; Huo, X.; et al. E-waste and harm to vulnerable populations: A growing global problem. Environ. Health Perspect. 2016, 124, 550–555. [Google Scholar] [CrossRef]
- Santhanam, N.; Ramesh, B.; Agarwal, S.G. Experimental investigation of bituminous pavement (VG30) using E-waste plastics for better strength and sustainable environment. Mater. Today Proc. 2020, 22, 1175–1180. [Google Scholar] [CrossRef]
- Makri, C.; Hahladakis, J.N.; Gidarakos, E. Use and assessment of “e-plastics” as recycled aggregates in cement mortar. J. Hazard. Mater. 2019, 379, 120776. [Google Scholar] [CrossRef]
- Kumar, K.S.; Baskar, K. Effect of temperature and thermal shock on concrete containing hazardous electronic waste. J. Hazard. Toxic Radioact. Waste 2018, 22. [Google Scholar] [CrossRef]
- Gómez, M.; Peisino, L.E.; Kreiker, J.; Gaggino, R.; Cappelletti, A.L.; Martín, S.E.; Uberman, P.M.; Positieri, M.; Raggiotti, B.B. Stabilization of hazardous compounds from WEEE plastic: Development of a novel core-shell recycled plastic aggregate for use in building materials. Constr. Build. Mater. 2020, 230. [Google Scholar] [CrossRef]
- Xue, M.; Xu, Z. Application of Life Cycle Assessment on Electronic Waste Management: A Review. Environ. Manag. 2017, 59, 693–707. [Google Scholar] [CrossRef]
- Ismail, H.; Hanafiah, M.M. An overview of LCA application in WEEE management: Current practices, progress and challenges. J. Clean. Prod. 2019, 232, 79–93. [Google Scholar] [CrossRef]
- Bientinesi, M.; Petarca, L. Comparative environmental analysis of waste brominated plastic thermal treatments. Waste Manag. 2009, 29, 1095–1102. [Google Scholar] [CrossRef]
- Wäger, P.A.; Hischier, R. Life cycle assessment of post-consumer plastics production from waste electrical and electronic equipment (WEEE) treatment residues in a Central European plastics recycling plant. Sci. Total Environ. 2015, 529, 158–167. [Google Scholar] [CrossRef]
- Jonkers, N.; Krop, H.; van Ewijk, H.; Leonards, P.E.G. Life cycle assessment of flame retardants in an electronics application. Int. J. Life Cycle Assess. 2016, 21, 146–161. [Google Scholar] [CrossRef] [Green Version]
- Jaunich, M.K.; DeCarolis, J.; Handfield, R.; Kemahlioglu-Ziya, E.; Ranjithan, S.R.; Moheb-Alizadeh, H. Life-cycle modeling framework for electronic waste recovery and recycling processes. Resour. Conserv. Recycl. 2020, 161, 104841. [Google Scholar] [CrossRef]
- De Meester, S.; Nachtergaele, P.; Debaveye, S.; Vos, P.; Dewulf, J. Using material flow analysis and life cycle assessment in decision support: A case study on WEEE valorization in Belgium. Resour. Conserv. Recycl. 2019, 142, 1–9. [Google Scholar] [CrossRef]
- Wäger, P.A.; Hischier, R.; Eugster, M. Environmental impacts of the Swiss collection and recovery systems for Waste Electrical and Electronic Equipment (WEEE): A follow-up. Sci. Total Environ. 2011, 409, 1746–1756. [Google Scholar] [CrossRef]
- Pathak, P.; Srivastava, R.R. Ojasvi Assessment of legislation and practices for the sustainable management of waste electrical and electronic equipment in India. Renew. Sustain. Energy Rev. 2017, 78, 220–232. [Google Scholar] [CrossRef]
- Aparcana, S.; Salhofer, S. Development of a social impact assessment methodology for recycling systems in low-income countries. Int. J. Life Cycle Assess. 2013, 18, 1106–1115. [Google Scholar] [CrossRef]
- International Organisation for Standardization. ISO 14040: Environmental Management–Life Cycle Assessment—Principles and Framework; International Organisation for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The ecoinvent database version 3 (part I): Overview and methodology. Int. J. Life Cycle Assess. 2016, 18, 1106–1115. [Google Scholar] [CrossRef]
- Sepúlveda, A.; Schluep, M.; Renaud, F.G.; Streicher, M.; Kuehr, R.; Hagelüken, C.; Gerecke, A.C. A review of the environmental fate and effects of hazardous substances released from electrical and electronic equipments during recycling: Examples from China and India. Environ. Impact Assess. Rev. 2010, 30, 28–41. [Google Scholar] [CrossRef]
- Mwanza, B.G.; Mbohwa, C.; Telukdarie, A.; Medoh, C. Value addition to plastic solid wastes: Informal waste collectors’ perspective. Procedia Manuf. 2019, 33, 391–397. [Google Scholar] [CrossRef]
- Greenpeace. Recycling of Electronic Wastes in China & India: Workplace & Environmental Contamination Electronic Wastes Contamination; Greenpeace: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Pizzol, M.; Christensen, P.; Schmidt, J.; Thomsen, M. Impacts of “metals” on human health: A comparison between nine different methodologies for Life Cycle Impact Assessment (LCIA). J. Clean. Prod. 2011, 19, 646–656. [Google Scholar] [CrossRef]
- Hauschild, M.Z.; Huijbregts, M.; Jolliet, O.; Macleod, M.; Margni, M.; Van De Meent, D.; Rosenbaum, R.K.; McKone, T.E. Building a model based on scientific consensus for life cycle impact assessment of chemicals: The search for harmony and parsimony. Environ. Sci. Technol. 2008, 42, 7032–7037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenbaum, R.K.; Bachmann, T.M.; Gold, L.S.; Huijbregts, M.A.J.; Jolliet, O.; Juraske, R.; Koehler, A.; Larsen, H.F.; MacLeod, M.; Margni, M.; et al. USEtox—The UNEP-SETAC toxicity model: Recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int. J. Life Cycle Assess. 2008, 13, 532–546. [Google Scholar] [CrossRef] [Green Version]
- SimaPro. Pre’ Consultants SimaPro Database Manual—Method Library; SimaPro: Amersfoort, The Netherlands, 2014. [Google Scholar]
- Fantke, P.; Huijbregts, M.; Margni, M.; Hauschild, M.; Jolliet, O.; McKone, T.; Resenbaum, R.; van de Meent, D. USEtox 2.0 User Manual (v2); USEtox: Lyngby, Denmark, 2015. [Google Scholar]
- Henderson, A.D.; Hauschild, M.Z.; Van De Meent, D.; Huijbregts, M.A.J.; Larsen, H.F.; Margni, M.; McKone, T.E.; Payet, J.; Rosenbaum, R.K.; Jolliet, O. USEtox fate and ecotoxicity factors for comparative assessment of toxic emissions in life cycle analysis: Sensitivity to key chemical properties. Int. J. Life Cycle Assess. 2011, 16, 701–709. [Google Scholar] [CrossRef]
- Yasin, S.; Sun, D. Propelling textile waste to ascend the ladder of sustainability: EOL study on probing environmental parity in technical textiles. J. Clean. Prod. 2019, 233, 1451–1464. [Google Scholar] [CrossRef]
- Yasin, S.; Behary, N.; Perwuelz, A.; Guan, J. Life cycle assessment of flame retardant cotton textiles with optimized end-of-life phase. J. Clean. Prod. 2018, 172, 1080–1088. [Google Scholar] [CrossRef]
- Jullien, A.; Proust, C.; Yazoghli-Marzouk, O. LCA of alternative granular materials—Assessment of ecotoxicity and toxicty for road case studies. Constr. Build. Mater. 2019, 227, 116737. [Google Scholar] [CrossRef]
- Samani, P.; van der Meer, Y. Life cycle assessment (LCA) studies on flame retardants: A systematic review. J. Clean. Prod. 2020, 274, 123259. [Google Scholar] [CrossRef]
- Huang, M.; Dong, Q.; Ni, F.; Wang, L. LCA and LCCA based Multi-objective Optimization of Pavement Maintenance. J. Clean. Prod. 2020, 124583. [Google Scholar] [CrossRef]
- Knoth, R.; Hoffmann, M.; Kopacek, B.; Kopacek, P. Intelligent disassembly of electr(on)ic equipment. In Proceedings of the 2nd International Symposium on Environmentally Conscious Design and Inverse Manufacturing, Tokyo, Japan, 11–15 December 2001. [Google Scholar]
Contaminants | Main Type of Toxicity |
---|---|
Halogenated flame retardants: | |
Brominated flame retardants (e.g., PBDEs, TBBPA, and HBCD) | Endocrine disrupter and neurotoxic |
Novel brominated flame retardants (e.g., DBDPE, TBPH, and TBBPA-BGE) | |
Chlorinated flame retardants | An endocrine disrupter, neurotoxic, and carcinogenic |
Non-halogenated flame retardants: | |
Organophosphorus-based flame retardants | An endocrine disrupter |
Nitrogen-based flame retardants | Nephrotoxic and neurotoxic |
Antimony 1 | Lung, eye, and gastro-intestinal irritant |
WEEE Processing | Contaminants | Contaminants’ Source | Main Type of Toxicity |
---|---|---|---|
Combustion (PCBs, plastics, PVC) | PAHs | Brominated, chlorinated, and organophosphorus FRs in plastics and from PVC | Carcinogenic and a photosensitizer |
Incineration of e-waste residues as a disposal strategy | PCDD/Fs PBDD/Fs PXDD/Fs | Immunotoxic, carcinogenic, reprotoxic, endocrine disrupters, may induce birth defects and dermal damage (chloracne) | |
Bisphenol A | From the combustion of polycarbonate plastic | An endocrine disrupter | |
Acids | E.g. hydrobromic acid from brominated FRs, hydrochloric acid from chlorinated FRs and from incomplete combustion of PVC, and phosphoric acid from organophosphorus FRs) | Induces mild to severe burns to the eyes and skin, sore throat, respiratory problems, and corrosive injuries to lips, mouth, throat, etc., if swallowed |
End-of-Life Scenarios | Description |
---|---|
WEEP-I | Open burning |
WEEP-L | Open landfill |
WEEEP-RC | Re-use in cement as is |
WEEEP-RCS | Re-use in cement with a core shell |
WEEEP-RBP | Re-use as is in bituminous pavement |
Re-Use in Cement | Aggregate | Quantity [g] | OPC [g] | Water [mL] | TBBPA Leachate 2 | Styrene Derivatives |
---|---|---|---|---|---|---|
As is (WEEEP-RC) | WP | 131 | 50 | 26 | (23.0 ± 0.1) | 1 |
With core-shell (WEEEP-RCS) | WP@OPC:PPR:AC 1 | 154 | 50 | 25 | (19.4 ± 0.8) | - 3 |
Impact Assessment Categories | u.m. |
---|---|
mid-point level | |
HT, cancer | CTU/kg |
HT, non-cancer | CTU/kg |
freshwater ecotoxicity | PAF.m3.day |
end-point level | |
human health | DALY/kg |
ecosystems | PDF.m3.day |
End-of-Life Scenarios | Sensitivity Parameters |
---|---|
WEEEP-I | Heavy and toxic air and soil emissions (PAH, PCDD, PBDD, PXDD, and Bisphenol A) (Bakhiyi et al., 2018; Awasthi et al., 2019) I (S1): −10% default |
WEEEP-L | Heavy and toxic soil and water contaminants (Cu, Fe, Pb, and Zn) (Pathak et al., 2017) L (S1): −10% default |
WEEEP-RC | TBBPA leachate RC (S1): (4.4 ± 0.1) TBBPA leachate (Gómez et al. (2020)) |
WEEEP-RCS | TBBPA leachate RCS (S1): <LOQ 1 TBBPA leachate (Gómez et al. (2020)) |
WEEEP-RBP | Heavy and toxic soil and water emissions RBP (S1): added according to Jullien et al. (2019) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Butturi, M.A.; Marinelli, S.; Gamberini, R.; Rimini, B. Ecotoxicity of Plastics from Informal Waste Electric and Electronic Treatment and Recycling. Toxics 2020, 8, 99. https://doi.org/10.3390/toxics8040099
Butturi MA, Marinelli S, Gamberini R, Rimini B. Ecotoxicity of Plastics from Informal Waste Electric and Electronic Treatment and Recycling. Toxics. 2020; 8(4):99. https://doi.org/10.3390/toxics8040099
Chicago/Turabian StyleButturi, Maria Angela, Simona Marinelli, Rita Gamberini, and Bianca Rimini. 2020. "Ecotoxicity of Plastics from Informal Waste Electric and Electronic Treatment and Recycling" Toxics 8, no. 4: 99. https://doi.org/10.3390/toxics8040099
APA StyleButturi, M. A., Marinelli, S., Gamberini, R., & Rimini, B. (2020). Ecotoxicity of Plastics from Informal Waste Electric and Electronic Treatment and Recycling. Toxics, 8(4), 99. https://doi.org/10.3390/toxics8040099