Exposure to Triclosan and Bisphenol Analogues B, F, P, S and Z in Repeated Duplicate-Diet Solid Food Samples of Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Background
2.2. Collection of Food Diaries and DDFS Samples
2.3. Chemical Analysis of the DDSF Samples
2.4. Quality Assurance and Quality Control
2.5. Statistical Analysis of the Data
3. Results
3.1. Phenolic Compound Levels in the DDSF Samples
3.2. Co-Occurrence of the Phenolic Compounds in the DDSF Samples
3.3. Estimated Maximum Dietary Exposure and Dietary Intake Dose to Each Phenol
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Disclaimer
Appendix A
Parameter | Value |
---|---|
GC System | Agilent 6890 gas chromatograph |
Injector | Capillary injector in splitless mode Splitless for 0.75 min, then split at 60 mL/min Temperature: 250 °C Liner: Single gooseneck glass, deactivated Injection volume: 2 µL |
Column | Varian VF-XMS, 20 M × 0.15 mm × 0.15 µm, Column flow: 0.4 mL/min |
Temperature Program | 75 °C for 2 min to 217 °C at 10 °C/min, then 1 °C/min to 223 °C, then 20 °C/min to 330 °C, hold 5 min |
Detector | Agilent 5973 MSD Mode: Electron Impact (EI) operating in SIM mode Electron Multiplier Voltage: Tune + 400 V Source = 230 °C, Quadrupole = 150 °C, Transfer Line: 300 °C |
Compound Name (Type) | Retention Time (min) | Quant/Qual Ion |
---|---|---|
Triclosan 13C12 (I) | 18.45 | 359/372 |
Triclosan | 18.46 | 347/200 |
Bisphenol A 13C12 (I) | 19.36 | 269/384 |
Bisphenol A | 19.36 | 372/357 |
Bisphenol B | 20.72 | 357/371 |
Bisphenol F | 18.54 | 344/179 |
Bisphenol P | 27.19 | 475/490 |
Bisphenol S 13C12 (I) | 25.53 | 406/391 |
Bisphenol S | 25.54 | 394/379 |
Bisphenol Z | 24.88 | 412/369 |
References
- Chen, D.A.; Kannan, K.; Tan, H.; Zheng, Z.; Feng, Y.L.; Wu, Y.; Widelka, M. Bisphenol analogues other than BPA: Environmental occurrence, human exposure, and toxicity—A review. Environ. Sci. Technol. 2016, 50, 5438–5453. [Google Scholar] [CrossRef]
- Gonzalez, N.; Cunhu, S.C.; Ferreira, R.; Fernandez, J.O.; Marques, M.; Nadal, M.; Domingo, J.L. Concentration of nine bisphenol analogues in foods purchased from Catalonia (Spain): Comparison of canned and non-canned foodstuffs. Food Chem. Toxicol. 2020, 136, 110992. [Google Scholar] [CrossRef]
- Baluka, S.A.; Rumbeiha, W.K. Bisphenol A and food safety: Lessons from developed to developing countries. Food Chem. Toxicol. 2016, 92, 58–63. [Google Scholar] [CrossRef]
- Usman, A.; Ahmad, M. From BPA to its analogues: Is it a safe journey? Chemosphere 2016, 158, 131–142. [Google Scholar] [CrossRef]
- Liao, C.; Kannan, K. Concentrations and profiles of bisphenol A and other bisphenol analogues in foodstuffs from the United States and their implications for human exposure. J. Agric. Food Chem. 2013, 61, 4655–4662. [Google Scholar] [CrossRef]
- Lehmler, H.J.; Liu, B.; Gadogbe, M.; Bao, W. Exposure to bisphenol A, bisphenol F, and bisphenol S in U.S. adults and children: The National Health and Nutrition Examination Survey 2013–2014. ACS Omega 2018, 3, 6523–6532. [Google Scholar] [CrossRef] [Green Version]
- Liao, C.; Kannan, K. A survey of bisphenol A and other bisphenol analogues in foodstuffs from nine cities in China. Food Addit. Contam. Part A 2014, 31, 319–329. [Google Scholar] [CrossRef]
- Cao, P.; Zhong, H.N.; Qiu, K.; Wu, G.; Sui, H.X.; Song, Y. Exposure to bisphenol A and its substitutes, bisphenol F and bisphenol S from canned foods and beverages on Chinese market. Food Control 2021, 120, 107502. [Google Scholar] [CrossRef]
- Cao, X.L.; Popovic, S. Bisphenol A and three other bisphenol analogues in canned fish products from the Canadian Market 2014. J. Food Prot. 2015, 78, 1402–1407. [Google Scholar] [CrossRef]
- Cao, X.L.; Kosarac, I.; Popovic, S.; Zhou, S.; Smith, D.; Dabeka, R. LC-MS/MS analysis of bisphenol S and five other bisphenols in total diet food samples. Food Addit. Contam. Part A 2019, 36, 1740–1747. [Google Scholar] [CrossRef]
- Yang, Y.; Yu, J.; Yin, J.; Shao, B.; Zhang, J. Molecularly Imprinted Solid-Phase Extraction for Selective Extraction of Bisphenol Analogues in Beverages and Canned Food. J. Agric. Food Chem. 2014, 62, 11130–11137. [Google Scholar] [CrossRef]
- Cunha, S.C.; Inacio, T.; Ferreira, R.; Fernandes, J.O. Gas chromatography–mass spectrometry analysis of nine bisphenols in canned meat products and human risk estimation. Food Res. Int. 2020, 135, 109293. [Google Scholar] [CrossRef] [PubMed]
- Pelcha, K.; Wignall, J.A.; Goldstone, A.E.; Ross, P.K.; Blain, R.B.; Shapiro, A.J.; Holmgrenc, S.D.; Hsieha, H.H.; Svobodad, D.; Auerbach, S.S.; et al. A scoping review of the health and toxicological activity of bisphenol A (BPA) structural analogues and functional alternatives. Toxicology 2019, 424, 152235. [Google Scholar] [CrossRef]
- Glaser, A. The ubiquitous triclosan: A common antibacterial agent exposed. Pestic. You Beyond Pestic./Natl. Coalit. Against Misuse Pestic. 2004, 24, 12–17. [Google Scholar]
- Dann, A.B.; Hontela, A. Triclosan: Environmental exposure, toxicity, and mechanisms of action. J. Appl. Toxicol. 2011, 31, 285–311. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.; Kannan, K. A survey of alkylphenols, bisphenols, and triclosan in personal care products from China and the Unites States. Arch. Environ. Contam. Toxicol. 2014, 67, 50–59. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency (US EPA). Reregistration Eligibility Decision for Triclosan. 2008. Available online: https://archive.epa.gov/pesticides/reregistration/web/pdf/2340red.pdf (accessed on 11 November 2020).
- Canosa, P.; Rodriguez, I.; Rubi, E.; Ramil, M.; Cela, R. Simplified sample preparation method for triclosan and methyltriclosan determination in biota and foodstuff samples. J. Chromatogr. A 2008, 1188, 132–139. [Google Scholar] [CrossRef]
- Yao, K.; Wen, K.; Shan, W.; Jiang, H.; Shao, B. An immunoaffinity purification method for the simultaneous analysis triclocarban and triclosan in foodstuffs by liquid chromatography tandem mass spectrometry. J. Agric. Food Chem. 2019, 67, 9088–9095. [Google Scholar] [CrossRef]
- Azzouz, A.; Colon, L.P.; Hejji, L.; Ballesteros, E. Determination of alkylphenols, phenylphenols, bisphenol A, parabens, organophosphorus pesticides and triclosan in different cereal-based foodstuffs by gas chromatography–mass spectrometry. Anal. Bioanal. Chem. 2020, 412, 2621–2631. [Google Scholar] [CrossRef]
- Weatherly, L.M.; Gosse, J.A. Triclosan exposure, transformation, and human health effects. J. Toxicol. Environ. Health Part B 2017, 20, 447–469. [Google Scholar] [CrossRef]
- Sanidad, K.Z.; Xiao, H.; Zhang, G. Triclosan, a common antimicrobial ingredient, on gut microbiota and gut health. Gut Microbes 2019, 10, 434–437. [Google Scholar] [CrossRef] [PubMed]
- Skarha, J.; Mínguez-Alarcón, L.; Williams, P.L.; Korevaar, T.I.; de Poortere, R.A.; Broeren, M.A.; Ford, J.B.; Eliot, M.; Haus, R.; Braun, J.M. Cross-sectional associations between urinary triclosan and serum thyroid function biomarker concentrations in women. Environ. Int. 2019, 122, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Morgan, M.K.; Nash, M.; Barr, D.B.; Starr, J.M.; Clifton, M.S.; Sobus, J.R. Distribution, variability, and predictors of urinary bisphenol A levels in 50 North Carolina Adults over a six-week monitoring period. Environ. Int. 2018, 112, 85–99. [Google Scholar] [CrossRef] [PubMed]
- Morgan, M.K.; Sobus, J.R.; Boyd Barr, D.; Croghan, C.W.; Chen, F.; Walker, R.; Alston, L.; Andersen, E.; Clifton, M.S. Temporal variability of pyrethroid metabolite levels in bedtime, morning, and 24-hr urine samples for 50 adults in North Carolina. Environ. Res. 2016, 144, 81–91. [Google Scholar] [CrossRef]
- Anastassiades, M.; Lehotay, S.J.; Stajnbaher, D.; Schenck, F.J. Fast and easy multiresidue method employing acetonitrile extraction partitioning and dispersive solid phase extraction for determination of pesticide residues in produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clifton, M.S.; Wargo, J.P.; Morgan, M.K. A robust, high through put method for measurement of triclosan and bisphenol A residues in duplicate diet samples. In Proceedings of the 36th National Meeting of the Society of Environmental Toxicology and Chemistry, Salt Lake City, UT, USA, 1–5 November 2015. [Google Scholar]
- Verbovsek, T. A comparison of parameters below the limit of detection in geochemical analyses by substitution methods. Mater. Geoenviron. 2011, 58, 393–404. [Google Scholar]
- Morgan, M.K.; MacMillan, D.K.; Zehr, D.; Sobus, J.R. Pyrethroid insecticides and their environmental degradates in repeated duplicate-diet solid food samples of 50 adults. J. Expo. Anal. Environ. Epidemiol. 2018, 28, 40–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.; Chen, H.; Pan, S.; Wang, J.; Zheng, Y.; Xu, J.; Zhao, Y.; Cai, Z.; Jen, M. Contamination status of bisphenol A and its analogues (bisphenol S, F, and B) in food stuffs and the implications for dietary exposure on adult residents in Zhejiang Province. Food Chem. 2019, 294, 160–170. [Google Scholar] [CrossRef]
- Lim, D.S.; Kwack, S.J.; Kim, K.B.; Kim, H.S. Potential Risk of Bisphenol a Migration From Polycarbonate Containers After Heating, Boiling, and Microwaving. J. Toxicol. Environ. Health A 2009, 72, 1285–1291. [Google Scholar] [CrossRef]
- Cacho, J.I.; Campillo, N.; Vinas, P.; Hernandez-Cordoba, M. Stir bar sorptive extraction coupled to gas chromatography–mass spectrometry for the determination of bisphenols in canned beverages and filling liquids of canned vegetables. J. Chromatogr. A 2012, 1247, 146–153. [Google Scholar] [CrossRef]
- Hormann, A.M.; vom Saal, F.S.; Nagel, S.C.; Stahlhut, R.W.; Moyer, C.L.; Ellersieck, M.R.; Welshons, W.V.; Toutain, P.L.; Taylor, J.A. Holding thermal receipt paper and eating food after using hand sanitizer results in high serum bioactive and urine total levels of bisphenol A (BPA). PLoS ONE 2014, 9, e110509. [Google Scholar] [CrossRef]
- Perez, A.L.; De Saylor, M.A.; Slocombe, A.J.; Lew, M.G. Triclosan occurrence in freshwater systems in the United States: A meta-analysis (1999–2012). Environ. Toxicol. Chem. 2013, 32, 1479–1487. [Google Scholar] [CrossRef] [PubMed]
- United States Food and Drug Administration (US FDA). Safety and Effectiveness of Consumer Antiseptics; Topical Antimicrobial Drug Products for over the Counter Human Use. Final Rule. 2016. Available online: https://www.federalregister.gov/documents/2016/09/06/2016-21337/safety-and-effectiveness-of-consumer-antiseptics-topical-antimicrobial-drug-products-for (accessed on 28 September 2020).
- Wilson, N.K.; Chuang, J.C.; Lyu, C.; Menton, R.; Morgan, M.K. Aggregate exposures of nine preschool children to persistent organic pollutants at day care and at home. J. Expo. Anal. Environ. Epidemiol. 2003, 13, 187–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, N.K.; Chuang, J.C.; Morgan, M.K.; Lordo, R.A.; Sheldon, L.S. An observational study of the potential exposures of preschool children to pentachlorophenol, bisphenol-A, and nonylphenol at home and daycare. Environ. Res. 2007, 103, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Morgan, M.K.; Sheldon, L.S.; Croghan, C.W.; Chuang, J.C.; Lordo, R.; Wilson, N.K.; Lyu, C.; Brinkman, M.; Morse, N.; Chou, Y.; et al. A Pilot Study of Children’s Total Exposure to Persistent Pesticides and Other Persistent Organic Pollutants (CTEPP); U.S. Environmental Protection Agency: Washington, DC, USA, 2005.
- Zhang, H.; Zhang, Y.; Li, J.; Yang, M. Occurrence and exposure assessment of bisphenol analogues in sourcewater and drinking water in China. Sci. Total Environ. 2019, 655, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Karrer, C.; Andreassen, M.; von Goetz, N.; Sonner, F.; Sakhi, A.K.; Hungerbuhler, K.; Dirven, H.; Husoy, T. The EuroMix biomonitoring study: Source-to- dose modeling of cumulative and aggregate exposure for the bisphenols, BPA, BPS, and BPF and comparison to with measured urinary levels. Environ. Int. 2020, 136, 105397. [Google Scholar] [CrossRef] [PubMed]
Phenol | Acronym | CAS Number | Structure |
---|---|---|---|
Bisphenol B | BPB | 77-40-7 | |
Bisphenol F | BPF | 620-92-8 | |
Bisphenol P | BPP | 2167-51-3 | |
Bisphenol S | BPS | 80-09-1 | |
Bisphenol Z | BPZ | 843-55-0 | |
Triclosan | TCS | 3380-34-5 |
Phenol | % a | Percentiles | Maximum | |||
---|---|---|---|---|---|---|
50th | 75th | 95th | 99th | |||
BPB | 1 | --- b | --- | --- | --- | 2.3 |
BPF | 15 | --- | --- | 9.5 | 57.2 | 217 |
BPP | 4 | --- | --- | --- | 1.5 | 35.0 |
BPS | 32 | --- | 0.6 | 3.4 | 21.2 | 103 |
BPZ | 28 | --- | 1.1 | 6.8 | 22.8 | 136 |
TCS | 59 | 0.8 | 2.3 | 10.0 | 34.3 | 394 |
Phenol | 24-h Level a (ng/g) | Dietary Exposure (ng/Day) | Dietary Intake Dose (ng/kg/Day) |
---|---|---|---|
BPB | 1.1 | 1220 | 17.5 |
BPF b | 46.2 | 29,390 | 296 |
BPP bc | 7.0 | 4500 | 59.8 |
BPS | 33.3 | 13,640 | 238 |
BPZ | 81.3 | 51,410 | 706 |
TCS bc | 220 | 120,690 | 1600 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morgan, M.K.; Clifton, M.S. Exposure to Triclosan and Bisphenol Analogues B, F, P, S and Z in Repeated Duplicate-Diet Solid Food Samples of Adults. Toxics 2021, 9, 47. https://doi.org/10.3390/toxics9030047
Morgan MK, Clifton MS. Exposure to Triclosan and Bisphenol Analogues B, F, P, S and Z in Repeated Duplicate-Diet Solid Food Samples of Adults. Toxics. 2021; 9(3):47. https://doi.org/10.3390/toxics9030047
Chicago/Turabian StyleMorgan, Marsha K., and Matthew S. Clifton. 2021. "Exposure to Triclosan and Bisphenol Analogues B, F, P, S and Z in Repeated Duplicate-Diet Solid Food Samples of Adults" Toxics 9, no. 3: 47. https://doi.org/10.3390/toxics9030047
APA StyleMorgan, M. K., & Clifton, M. S. (2021). Exposure to Triclosan and Bisphenol Analogues B, F, P, S and Z in Repeated Duplicate-Diet Solid Food Samples of Adults. Toxics, 9(3), 47. https://doi.org/10.3390/toxics9030047