Assessing Combined Effects for Mixtures of Similar and Dissimilar Acting Neuroactive Substances on Zebrafish Embryo Movement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Organism
2.2. Chemicals
2.3. Mixture Testing in the STC Test
2.4. Mixture Modeling
2.5. Concentration–Response Modeling
2.6. Measurement of the Exposure Concentrations
3. Results
3.1. Chemical Analysis
3.2. Description of Mixture Effect in Comparison to CA and IA Models
3.3. Antagonistic Mixture Effects in the STC Test
4. Discussion
4.1. Mixture Components with Different Mechanisms of Action but Similar Effect Direction Can Act in an Additive Way
4.2. Mechanistic Understanding of the Predictability Power of CA and IA
4.3. Mixture Components with Different Mechanisms of Action and Opposing Effect Direction Are Antagonistic
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Faust, M.; Backhaus, T.; Altenburger, R.; Dulio, V.; van Gils, J.; Ginebreda, A.; Kortenkamp, A.; Munthe, J.; Posthuma, L.; Slobodnik, J.; et al. Prioritisation of water pollutants: The EU Project Solutions proposes a methodological framework for the integration of mixture risk assessments into prioritisation procedures under the European Water Framework Directive. Environ. Sci. Eur. 2019, 31. [Google Scholar] [CrossRef] [Green Version]
- Belden, J.B.; Gilliom, R.J.; Lydy, M.J. How well can we predict the toxicity of pesticide mixtures to aquatic life? Integr. Environ. Assess. Manag. 2007, 3, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Bliss, C.I. The Toxicity of Poisons Applied Jointly. Ann. Appl. Biol. 1939, 26, 585–615. [Google Scholar] [CrossRef]
- Hewlett, P.S.; Plackett, R.L. A Unified Theory for Quantal Responses to Mixtures of Drugs: Non-Interactive Action. Biometrics 1959, 15, 591–610. [Google Scholar] [CrossRef]
- Altenburger, R.; Backhaus, T.; Boedeker, W.; Faust, M.; Scholze, M.; Grimme, L.H. Predictability of the toxicity of multiple chemical mixtures to Vibrio fischeri: Mixtures composed of similarly acting chemicals. Environ. Toxicol. Chem. 2000, 19, 2341–2347. [Google Scholar] [CrossRef]
- Backhaus, T.; Altenburger, R.; Boedeker, W.; Faust, M.; Scholze, M.; Grimme, L.H. Predictability of the toxicity of a multiple mixture of dissimilarly acting chemicals to Vibrio fischeri. Environ. Toxicol. Chem. 2000, 19, 2348–2356. [Google Scholar] [CrossRef]
- Faust, M.; Altenburger, R.; Backhaus, T.; Blanck, H.; Boedeker, W.; Gramatica, P.; Hamer, V.; Scholze, M.; Vighi, M.; Grimme, L.H. Predicting the joint algal toxicity of multi-component s-triazine mixtures at low-effect concentrations of individual toxicants. Aquat. Toxicol. 2001, 56, 13–32. [Google Scholar] [CrossRef]
- Cedergreen, N.; Svendsen, C.; Backhaus, T. Toxicity Prediction of Chemical Mixtures. Encycl. Environ. Manag. 2013, 2572–2581. [Google Scholar] [CrossRef]
- Busch, W.; Schmidt, S.; Kühne, R.; Schulze, T.; Krauss, M.; Altenburger, R. Micropollutants in European rivers: A mode of action survey to support the development of effect-based tools for water monitoring. Environ. Toxicol. Chem. 2016, 35, 1887–1899. [Google Scholar] [CrossRef] [Green Version]
- Corbel, V.; Stankiewicz, M.; Bonnet, J.; Grolleau, F.; Hougard, J.M.; Lapied, B. Synergism between insecticides permethrin and propoxur occurs through activation of presynaptic muscarinic negative feedback of acetylcholine release in the insect central nervous system. Neurotoxicology 2006, 27, 508–519. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, H.; Zhou, J.; Liu, J.; Liu, W. Joint toxicity of permethrin and cypermethrin at sublethal concentrations to the embryo-larval zebrafish. Chemosphere 2014, 96, 146–154. [Google Scholar] [CrossRef]
- Strähle, U.; Scholz, S.; Geisler, R.; Greiner, P.; Hollert, H.; Rastegar, S.; Schumacher, A.; Selderslaghs, I.; Weiss, C.; Witters, H.; et al. Zebrafish embryos as an alternative to animal experiments-A commentary on the definition of the onset of protected life stages in animal welfare regulations. Reprod. Toxicol. 2012, 33, 128–132. [Google Scholar] [CrossRef]
- Ogungbemi, A.; Leuthold, D.; Scholz, S.; Küster, E. Hypo- or hyperactivity of zebrafish embryos provoked by neuroactive substances: A review on how experimental parameters impact the predictability of behavior changes. Environ. Sci. Eur. 2019. [Google Scholar] [CrossRef]
- Saint-Amant, L.; Drapeau, P. Time course of the development of motor behaviors in the zebrafish embryo. J. Neurobiol. 1998, 37, 622–632. [Google Scholar] [CrossRef]
- Kimmel, C.B.; Patterson, J.; Kimmel, R.O. The development and behavioral characteristics of the startle response in the zebra fish. Dev. Psychobiol. 1974, 7, 47–60. [Google Scholar] [CrossRef]
- Selderslaghs, I.W.T.; Hooyberghs, J.; De Coen, W.; Witters, H.E. Locomotor activity in zebrafish embryos: A new method to assess developmental neurotoxicity. Neurotoxicol. Teratol. 2010, 32, 460–471. [Google Scholar] [CrossRef]
- Ogungbemi, A.O.; Teixido, E.; Massei, R.; Scholz, S.; Küster, E. Optimization of the spontaneous tail coiling test for fast assessment of neurotoxic effects in the zebrafish embryo using an automated workflow in KNIME®. Neurotoxicol. Teratol. 2020, 81, 106918. [Google Scholar] [CrossRef]
- Zhang, K.; Liang, J.; Brun, N.R.; Zhao, Y.; Werdich, A.A. Rapid Zebrafish Behavioral Profiling Assay Accelerates the Identification of Environmental Neurodevelopmental Toxicants. Environ. Sci. Technol. 2021, 55, 1919–1929. [Google Scholar] [CrossRef]
- Vliet, S.M.; Ho, T.C.; Volz, D.C. Behavioral screening of the LOPAC1280 library in zebrafish embryos. Toxicol. Appl. Pharmacol. 2017, 329, 241–248. [Google Scholar] [CrossRef]
- De Oliveira, A.A.S.; Brigante, T.A.V.; Oliveira, D.P. Tail coiling assay in zebrafish (Danio rerio) embryos: Stage of development, promising positive control candidates, and selection of an appropriate organic solvent for screening of developmental neurotoxicity (DNT). Water 2021, 13, 119. [Google Scholar] [CrossRef]
- Casida, J.E.; Durkin, K.A. Neuroactive insecticides: Targets, selectivity, resistance, and secondary effects. Annu. Rev. Entomol. 2013, 58, 99–117. [Google Scholar] [CrossRef] [PubMed]
- Söderpalm, B. Anticonvulsants: Aspects of their mechanisms of action. Eur. J. Pain 2002, 6, 3–9. [Google Scholar] [CrossRef]
- Kimmel, C.B.; Ballard, W.W.; Kimmel, S.R.; Ullmann, B.; Schilling, T.F. Stages of embryonic development of the zebrafish. Dev. Dyn. 1995, 203, 253–310. [Google Scholar] [CrossRef]
- Sánchez-Bayo, F. Insecticides Mode of Action in Relation to Their Toxicity to Non-Target Organisms. J. Environ. Anal. Toxicol. 2012, s4. [Google Scholar] [CrossRef] [Green Version]
- Ogungbemi, A.O.; Teixido, E.; Massei, R.; Scholz, S.; Küster, E. Automated measurement of the spontaneous tail coiling of zebrafish embryos as a sensitive behavior endpoint using a workflow in KNIME. MethodsX 2021, 8, 101330. [Google Scholar] [CrossRef]
- Teixido, E.; Klüver, N.; Ogungbemi, A.O.; Küster, E.; Scholz, S. Evaluation of Neurotoxic effects in zebrafish embryos by automatic measurement of early motor behaviors. In Experimental Neurotoxicology Methods; Neuromethods; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Zhu, X.W.; Chen, J.Y. Mixtox: An r package for mixture toxicity assessment. R J. 2016, 8, 422–434. [Google Scholar] [CrossRef] [Green Version]
- Ritz, C.; Streibig, J.C. Bioassay analysis using R. J. Stat. Softw. 2005, 12. [Google Scholar] [CrossRef] [Green Version]
- Scholze, M.; Silva, E.; Kortenkamp, A. Extending the applicability of the dose addition model to the assessment of chemical mixtures of partial agonists by using a novel toxic unit extrapolation method. PLoS ONE 2014, 9. [Google Scholar] [CrossRef]
- Jackson, A. Partial Agonist. In Encyclopedia of Psychopharmacology; Stolerman, I.P., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 959–960. ISBN 978-3-540-68706-1. [Google Scholar]
- Kortenkamp, A.; Backhaus, T.; Faust, M. State of the Art Report on Mixture Toxicity. Final Report Contract N. 2009, pp. 1–391. Available online: http://ec.europa.eu/environment/chemicals/pdf/report_Mixture%20toxicity.pdf (accessed on 6 December 2017).
- Cleuvers, M. Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects. Toxicol. Lett. 2003, 142, 185–194. [Google Scholar] [CrossRef]
- Drescher, K.; Boedeker, W. Assessment of the Combined Effects of Substances: The Relationship between Concentration Addition and Independent Action. Biometrics 1995, 51, 716–730. [Google Scholar] [CrossRef]
- Rose, S.; Altenburger, R.; Sturm, A. Mixture toxicity effects of sea louse control agents in Daphnia magna. Chemosphere 2016, 144, 599–606. [Google Scholar] [CrossRef]
- Jakobs, G.; Krüger, J.; Schüttler, A.; Altenburger, R.; Busch, W. Mixture toxicity analysis in zebrafish embryo: A time and concentration resolved study on mixture effect predictivity. Environ. Sci. Eur. 2020, 32, 143. [Google Scholar] [CrossRef]
- Cedergreen, N.; Christensen, A.M.; Kamper, A.; Kudsk, P.; Mathiassen, S.K.; Streibig, J.C.; Sørensen, H. A review of independent action compared to concentration addition as reference models for mixtures of compounds with different molecular target sites. Environ. Toxicol. Chem. 2008, 27, 1621–1632. [Google Scholar] [CrossRef]
- Drapeau, P.; Saint-Amant, L.; Buss, R.R.; Chong, M.; McDearmid, J.R.; Brustein, E. Development of the locomotor network in zebrafish. Prog. Neurobiol. 2002, 68, 85–111. [Google Scholar] [CrossRef]
- Wolansky, M.J.; Gennings, C.; DeVito, M.J.; Crofton, K.M. Evidence for dose-additive effects of pyrethroids on motor activity in rats. Environ. Health Perspect. 2009, 117, 1563–1570. [Google Scholar] [CrossRef]
- Gonçalves, R.; Scholze, M.; Ferreira, A.M.; Martins, M.; Correia, A.D. The joint effect of polycyclic aromatic hydrocarbons on fish behavior. Environ. Res. 2008, 108, 205–213. [Google Scholar] [CrossRef]
- Schmidt, S.; Busch, W.; Altenburger, R.; Küster, E. Mixture toxicity of water contaminants-effect analysis using the zebrafish embryo assay (Danio rerio). Chemosphere 2016, 152, 503–512. [Google Scholar] [CrossRef]
- Altenburger, R.; Nendza, M.; Schüürmann, G. Mixture toxicity and its modeling by quantitative structure-activity relationships. Environ. Toxicol. Chem. 2003, 22, 1900–1915. [Google Scholar] [CrossRef]
- Corbett, J.R. The Biochemical Mode of Action of Pesticides; Academic Press: Cambridge, MA, USA, 1974; 330p. [Google Scholar] [CrossRef]
- Cedergreen, N. Quantifying synergy: A systematic review of mixture toxicity studies within environmental toxicology. PLoS ONE 2014, 9. [Google Scholar] [CrossRef]
- Kühnert, A.; Vogs, C.; Aulhorn, S.; Altenburger, R.; Küster, E.; Busch, W.; Kühnert, A.; Vogs, C.; Altenburger, R.; Hollert, H.; et al. Biotransformation in the zebrafish embryo –temporal gene transcription changes of cytochrome P450 enzymes and internal exposure dynamics of the AhR binding xenobiotic benz[a]anthracene. Environ. Pollut. 2017, 230, 1–11. [Google Scholar] [CrossRef]
- Kienle, C.; Köhler, H.R.; Gerhardt, A. Behavioural and developmental toxicity of chlorpyrifos and nickel chloride to zebrafish (Danio rerio) embryos and larvae. Ecotoxicol. Environ. Saf. 2009, 72, 1740–1747. [Google Scholar] [CrossRef]
- Pérez, J.; Domingues, I.; Monteiro, M.; Soares, A.M.V.M.; Loureiro, S. Synergistic effects caused by atrazine and terbuthylazine on chlorpyrifos toxicity to early-life stages of the zebrafish Danio rerio. Environ. Sci. Pollut. Res. 2013, 20, 4671–4680. [Google Scholar] [CrossRef] [PubMed]
- Bal-Price, A.; Crofton, K.M.; Leist, M.; Allen, S.; Arand, M.; Buetler, T.; Delrue, N.; FitzGerald, R.E.; Hartung, T.; Heinonen, T.; et al. International STakeholder NETwork (ISTNET): Creating a developmental neurotoxicity (DNT) testing road map for regulatory purposes. Arch. Toxicol. 2015, 89, 269–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Baat, M.L.; Kraak, M.H.S.; Van der Oost, R.; De Voogt, P.; Verdonschot, P.F.M. Effect-based nationwide surface water quality assessment to identify ecotoxicological risks. Water Res. 2019, 159, 434–443. [Google Scholar] [CrossRef] [PubMed]
Substance | Chemical Class | Mechanism of Action a | Expected Activity, i.e., Effect Direction | STC EC50 (µmol/L) b | Slope of crc b |
---|---|---|---|---|---|
Chlorpyrifos | Organophosphate | Acetylcholinesterase inhibitor * | Hyperactivity | 1.85 (1.95) | 1.30 |
Chlorpyrifos-oxon | Organophosphate | Acetylcholinesterase inhibitor * | Hyperactivity | 0.32 (0.44) | 1 |
Hexaconazole | Triconazole | Ergosterol biosynthesis inhibitor * | Hyperactivity | 4.03 (3.63) | 1.80 |
Abamectin | Avermectin | Activation of GABA-gated chloride channel $ | Hypoactivity | 0.06 (0.09) | 1.70 |
Carbamazepine | Dibenzazepine | Sodium channel blocker # | Hypoactivity | 271 | 2.28 |
Propafenone | Aromatic Ketone | Sodium channel blocker # | Hypoactivity | 32 (46) | 1.94 |
Mixture | Substances | Observed Activity | Mixture Ratio a | Exposure Concentration (µmol/L) b | Predicted EC50 (µmol/L) | Observed EC50 (µmol/L) | |
---|---|---|---|---|---|---|---|
CA | IA | ||||||
Mixture A | Chlorpyrifos and chlorpyrifos-oxon | Hyperactivity | 0.816:0.184 | 0, 0.25, 0.5, 1, 2, 4 0, 0.1, 0.3, 0.9, 2.7, 5 0, 0.313, 0.625, 1.25, 2.5, 5 | 1.19 | 1.16 | 1.25 |
Carbamazepine and propafenone | Hypoactivity | 0.86:0.14 | 0, 40, 80, 160, 320 0, 78, 125, 200, 320 | 159 | 207 | 132 | |
Mixture B | Hexaconazole and chlorpyrifos | Hyperactivity | 0.65:0.35 | 0, 0.94, 1.87, 3.75, 7.5, 15 0, 0.75, 1.5, 3, 5.73, 12 0, 0.625, 1.25, 2.5, 5, 10 0, 0.625, 1.25, 2.5, 5, 10 | 2.79 | 3.69 | 2.79 |
Abamectin and propafenone | Hypoactivity | 0.002:0.998 | 0, 2.8, 5.6, 11.3, 22.5, 45 0, 4.38, 8.75, 17.5, 35, 70 | 23 | 27.6 | 17.4 | |
Mixture C | Chlorpyrifos, hexaconazole and chlorpyrifos-oxon | Hyperactivity | 0.603:0.324 :0.073 | 0, 0.75, 1.5, 3, 6, 12 0, 0.33, 1, 3, 9 | 2 | 2.19 | 1.95 |
Mixture D | Chlorpyrifos, hexaconazole and abamectin | Hyper and Hypoactivity | 0.34:0.64 :0.02 | 0, 1.25, 2.5, 5 0, 1, 2, 4 | - * | - | - |
Simulation of Hyperactive Mixture A | Chlorpyrifos-oxon, (chlorpyrifos and hexaconazole) | Hyperactivity | 0.184:(0.286 :0.53) | 0, 0.313, 0.625, 1.25, 2.5, 5 0, 0.1, 0.3, 0.9, 2.7 | - | - | - |
Simulation of Hyperactive Mixture B | Hexaconazole, (chlorpyrifos and chlorpyrifos-oxon) | Hperactivity | 0.65:(0.286 :0.064) | 0, 0.625, 1.25, 2.5, 5, 10 0, 0.33, 1, 3, 9 | - | - | - |
Hyperactive Mixture A | Hypoactive Mixture A | Hyperactive Mixture B | Hypoactive Mixture B | ||||
---|---|---|---|---|---|---|---|
Chlorpyrifos | Chlorpyrifos-Oxon | Carbamazepine | Propafenone | Chlorpyrifos | Hexaconazole | Abamectin | Propafenone |
<MDL [0.25] | <MDL [0.05] | 92.2 (+36) | 22.1 (+120) | <MDL [0.2] | 0.4 (−4) | <MDL [0.009] | 6.0 (+37) |
0.2 (−59) | <MDL [0.1] | 128.0 (+20) | 33.1 (+89) | 0.2 (−50) | 0.8 (+5) | <MDL [0.018] | 11.4 (+31) |
0.7 (−32) | 0.5 (+109) | 190.8 (+11) | 47.7 (+70) | 0.6 (−37) | 1.8 (+10) | <MDL [0.035] | 20.2 (+15) |
1.8 (−12) | 0.6 (+39) | 250.7 (−8.8) | 61.3 (+37) | 1.4 (−23) | 3.6 (+10) | <MDL [0.07] | 31.4 (−10) |
3.2 (−20) | 1.1 (+19) | 2.8 (−20) | 7.5 (+15) | <MDL [0.14] | 68.0 (−3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogungbemi, A.O.; Massei, R.; Altenburger, R.; Scholz, S.; Küster, E. Assessing Combined Effects for Mixtures of Similar and Dissimilar Acting Neuroactive Substances on Zebrafish Embryo Movement. Toxics 2021, 9, 104. https://doi.org/10.3390/toxics9050104
Ogungbemi AO, Massei R, Altenburger R, Scholz S, Küster E. Assessing Combined Effects for Mixtures of Similar and Dissimilar Acting Neuroactive Substances on Zebrafish Embryo Movement. Toxics. 2021; 9(5):104. https://doi.org/10.3390/toxics9050104
Chicago/Turabian StyleOgungbemi, Afolarin O., Riccardo Massei, Rolf Altenburger, Stefan Scholz, and Eberhard Küster. 2021. "Assessing Combined Effects for Mixtures of Similar and Dissimilar Acting Neuroactive Substances on Zebrafish Embryo Movement" Toxics 9, no. 5: 104. https://doi.org/10.3390/toxics9050104
APA StyleOgungbemi, A. O., Massei, R., Altenburger, R., Scholz, S., & Küster, E. (2021). Assessing Combined Effects for Mixtures of Similar and Dissimilar Acting Neuroactive Substances on Zebrafish Embryo Movement. Toxics, 9(5), 104. https://doi.org/10.3390/toxics9050104