Organophosphate Pesticide Exposures in Early and Late Pregnancy Influence Different Aspects of Infant Developmental Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
2.3. Measurement of Urinary OP Metabolites
2.4. Developmental Performance Assessment
2.5. Statistical Analysis
2.6. Ethical Approval
3. Results
3.1. Demographic Characteristics of the Mothers and Infants in the Agricultural Community
3.2. Urinary OP Metabolites Levels in Pregnant Women in the Agricultural Community
3.3. BSID–III Screening Test Scores of Infants at 2 and 6 Months of Age
3.4. Association between Maternal Urinary OP Metabolites in the 1st–2nd Trimester and the 3rd Trimester of Pregnancy and Infant Developmental Screening Scores at 2 and 6 Months of Age
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Voorhees, J.R.; Rohlman, D.S.; Lein, P.J.; Pieper, A.A. Neurotoxicity in preclinical models of occupational exposure to organophosphorus compounds. Front. Neurosci. 2017, 10, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Bradman, A.; Barr, D.B.; Claus Henn, B.G.; Drumheller, T.; Curry, C.; Eskenazi, B. Measurement of pesticides and other toxicants in amniotic fluid as a potential biomarker of prenatal exposure: A validation study. Environ. Health Perspect. 2003, 111, 1779–1782. [Google Scholar] [CrossRef]
- Rice, D.; Barone, S. Critical periods of vulnerability for the developing nervous system: Evidence from humans and animal models. Environ. Health Perspect. 2000, 108, 511–533. [Google Scholar] [CrossRef]
- Furlong, C.E.; Holland, N.; Richter, R.J.; Bradman, A.; Ho, A.; Eskenazi, B. PON1 status of farmworker mothers and children as a predictor of organophosphate sensitivity. Pharm. Genom. 2006, 16, 183–190. [Google Scholar] [CrossRef]
- Ferguson, K.K.; Dries, M.A.; Gaillard, R.; Pronk, A.; Spaan, S.; Tiemeier, H.; Jaddoe, V.W.V. Organophosphate pesticide exposure in pregnancy in association with ultrasound and delivery measures of fetal growth. Environ. Health Perspect. 2019, 127, 087005. [Google Scholar] [CrossRef]
- Naksen, W.; Prapamontol, T.; Mangklabruks, M.; Chantara, S.; Thavornyutikarn, P.; Srinual, N.; Panuwet, P.; Ryan, P.B.; Riederer, A.M.; Barr, D.B. Associations of maternal organophosphate pesticide exposure and PON1 activity with birth outcomes in SAWASDEE birth cohort, Thailand. Environ. Res. 2015, 142, 288–296. [Google Scholar] [CrossRef] [Green Version]
- Rauch, V.A.; Braun, J.M.; Barr, D.B.; Calafat, A.M.; Khoury, J.; Montesano, A.M.; Yolton, K.; Lanphear, B.P. Associations of prenatal exposure to organophosphate pesticide metabolites with gestational age and birth weight. Environ. Health Perspect. 2012, 120, 1054–1060. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Tian, Y.; Wang, X.J.; Gao, Y.; Shi, R.; Wang, G.Q.; Hu, G.H.; Shen, X.M. Organophosphate pesticide exposure and perinatal outcomes in Shanghai, China. Environ. Int. 2012, 42, 100–104. [Google Scholar] [CrossRef]
- Harley, K.G.; Huen, K.; Schall, R.A.; Holland, N.T.; Bradman, A.; Barr, D.B.; Eskenazi, B. Association of Organophosphate Pesticide Exposure and Paraoxonase with Birth Outcome in Mexican-American Women. PLoS ONE 2011, 6, e23923. [Google Scholar] [CrossRef] [Green Version]
- Sapbamrer, R.; Hongsibsong, S. Effects of prenatal and postnatal exposure to organophosphate pesticides on child neurodevelopment in different age groups: A systematic review. Environ. Sci. Pollut. Rec. 2019, 26, 18267–18290. [Google Scholar] [CrossRef]
- Hertz-Picciotto, I.; Sass, J.B.; Engel, S.; Bennett, D.H.; Bradman, A.; Eskenazi, B.; Lanphear, B.; Whyatt, R. Organophosphate exposures during pregnancy and child neurodevelopment: Recommendations for essential policy reforms. PLoS Med. 2018, 15, e1002671. [Google Scholar] [CrossRef] [PubMed]
- Woskie, S.; Kongtip, P.; Thanasanpaiboon, W.; Kiatdamrong, N.; Charoonrungsirikul, N.; Nankongnab, N.; Surach, A.; Phamonphon, A. A pilot study of maternal exposure to organophosphate pesticides and newborn neurodevelopment in Thailand. Int. J. Occup. Environ. Health 2017, 23, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Silver, M.K.; Shao, J.; Zhu, B.; Chen, M.; Xia, Y.; Kaciroti, N.; Lozoff, B.; Meeker, J.D. Prenatal naled and chlorpyrifos exposure is associated with deficits in infant motor function in a cohort of Chinese infants. Environ. Int. 2017, 106, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Engel, S.M.; Wetmur, J.; Chen, J.; Zhu, C.; Barr, D.B.; Canfield, R.L.; Wolff, M.S. Prenatal exposure to organophosphates, paraoxonase 1, and cognitive development in childhood. Environ. Health Perspect. 2011, 19, 1182–1188. [Google Scholar] [CrossRef] [Green Version]
- Kongtip, P.; Techasaensiri, B.; Nankongnab, N.; Adams, J.; Phamonphon, A.; Surach, A.; Sangprasert, S.; Thongsuksai, A.; Srikumpol, P.; Susan Woskie, S. The impact of prenatal organophosphate pesticide exposures on Thai infant neurodevelopment. Environ. Res. Public Health 2017, 14, 570. [Google Scholar] [CrossRef] [Green Version]
- Rauch, V.A.; Garfinkel, R.; Perera, F.P.; Andrews, H.F.; Hoepner, L.; Barr, D.B.; Whitehead, R.; Tang, D.; Whyatt, R.W. Impact of prenatal chlorpyrifos exposure on neurodevelopment in the first 3 years of life among inner-city children. Pediatrics 2006, 118, e1845–e1859. [Google Scholar] [CrossRef] [Green Version]
- Eskenazi, B.; Marks, A.R.; Bradman, A.; Harley, K.; Barr, D.B.; Johnson, C.; Morga, N.; Jewell, N.P. Organophosphate Pesticide Exposure and Neurodevelopment in Young Mexican-American Children. Environ. Health Perspect. 2007, 115, 792–798. [Google Scholar] [CrossRef] [PubMed]
- Donauer, S.; Altaye, M.; Xu, Y.; Sucharew, H.; Succop, P.; Calafat, A.M.; Khoury, J.C.; Lanphear, B.; Yolton, K. An observational study to evaluate associations between low-level gestational exposure to organophosphate pesticides and cognition during early childhood. Am. J. Epidemiol. 2016, 184, 410–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fluegge, K.R.; Nishioka, M.; Wilkins, J.R. Effects of simultaneous prenatal exposures to organophosphate and synthetic pyrethroid insecticides on infant neurodevelopment at three months of age. J. Environ. Toxicol. Public Health 2016, 1, 60–73. [Google Scholar] [CrossRef]
- Prapamontol, T.; Sutan, K.; Laoyang, S.; Hongsibsong, S.; Lee, G.; Yano, Y.; Hunter, R.E.; Ryan, P.B.; Barr, D.B.; Panuwet, P. Cross validation of gas chromatography-flame photometric detection and gas chromatography-mass spectrometry methods for measuring dialkylphosphate metabolites of organophosphate pesticides in human urine. Int. J. Hyg. Environ. Health 2014, 217, 554–566. [Google Scholar] [CrossRef] [PubMed]
- Butler, A.R. The Jaffé reaction Part II: A kinetic study of the Janovsky complexes formed from creatinine (2-imino-1-methylimazolidin-4-one) and acetone. J. Chem. Soc. Perkin Trans. 1975, 2, 853–857. [Google Scholar] [CrossRef]
- Hornung, R.W.; Reed, L.D. Estimation of average concentration in the presence of nondetectable values. Appl. Occup. Environ. Hyg. 1990, 5, 46–51. [Google Scholar] [CrossRef]
- Bayley, N. Bayley Scales Infant Toddler Development, 3rd ed.; NCS Pearson, Inc.: San Antonio, TX, USA, 2006; pp. 9–45. [Google Scholar]
- Bayley, N. Bayley Scales Infant Toddler Development Screening Test, 3rd ed.; Harcourt Assessment, Inc.: San Antonio, TX, USA, 2006; pp. 1–25. [Google Scholar]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Stat. Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Wattananon, Y. The important role of nurses in labour room: Health assessment of the newborn. Thai J. Nurs. Counc. 2012, 15, 51–65. Available online: https://he02.tcithaijo.org/index.php/TJONC/article/view/2316 (accessed on 29 November 2020). (In Thai).
- Bureau of Agricultural Regulation, Department of Agriculture, Thailand. Agricultural Hazardous Substances Import in Thailand 2016 Report. Available online: www.thaipan.org/stat/408 (accessed on 17 December 2020).
- Sapbamrer, R.; Hongsibsong, S. Organophosphorus pesticide residues in vegetables from farms, markets, and a supermarket around Kwan Phayao Lake of Northern Thailand. Arch. Environ. Contam. Toxicol. 2014, 67, 60–67. [Google Scholar] [CrossRef]
- Angsupaisal, M.; Thawinchai, N.; Prathep, W. Developmental performance of young children aged 1–42 months in Mueang Pitsanulok, Thailand: The Bayley-III screening survey. Int. J. Child Dev. Ment. Health 2018, 6, 30–39. [Google Scholar]
- Eskenazi, B.; Bradman, A.; Castorina, R. Exposures of children to organophosphate pesticides and their potential adverse health effects. Environ. Health Perspect. 1999, 107, 409–419. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.C. Brain Regional Heterogeneity and Toxicological Mechanisms of Organophosphates and Carbamates. Toxicol. Mech. Method 2004, 14, 103–143. [Google Scholar] [CrossRef]
- Naughton, S.X.; Terry, A.V. Neurotoxicity in acute and repeated organophosphate exposure. Toxicology 2018, 1, 101–112. [Google Scholar] [CrossRef]
- Lanphear, B.P. The impact of toxins on the developing brain. Annu. Rev. Public Health 2015, 36, 211–230. [Google Scholar] [CrossRef] [Green Version]
- Stiles, J.; Jernigen, T.L. The basics of brain development. Neuropsychol. Rev. 2010, 20, 327–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sagiv, S.K.; Bruno, J.L.; Joseph, M.; Baker, J.M.; Palzes, V.; Kogut, K.; Rauch, S.; Gunier, R.; Mora, A.N.; Reiss, A.L.; et al. Prenatal exposure to organophosphate pesticides and functional neuroimaging in adolescents living in proximity to pesticide application. Proc. Natl. Acad. Sci. USA 2019, 116, 18347–18356. [Google Scholar] [CrossRef] [Green Version]
- Linderkamp, O.; Janus, L.; Linder, R.; Skoruppa, D.B. Time table of normal foetal brain development. Int. J. Prenat. Perinat. Psychol. Med. 2009, 21, 4–16. [Google Scholar]
- Newville, J.; Ortega, M.; Maxwell, J. Babies born early can have brain injury. Front. Young Minds 2018, 6. [Google Scholar] [CrossRef] [Green Version]
- Wessels, D.; Barr, D.B.; Mendola, P. Use of biomarkers to indicate exposure of children to organophosphate pesticides: Implications for a longitudinal study of children’s environmental health. Environ. Health Perspect. 2003, 111, 1939–1946. [Google Scholar] [CrossRef] [Green Version]
- Barr, D.B.; Barr, J.R.; Driskell, W.J.; Hill, R.H., Jr.; Ashley, D.L.; Needham, L.L.; Head, S.L.; Sampson, E.J. Strategies for biological monitoring of exposure for contemporary-use pesticides. Toxicol. Ind. Health 1999, 15, 168–179. [Google Scholar] [CrossRef]
Parameters | n (%) or Mean ± SD | |
---|---|---|
Maternal characteristics | ||
Age (years), mean ± SD | 24.32 ± 4.90 | |
Gestation age (weeks), mean ± SD | 1st–2nd trimester 3rd trimester | 19.33 ± 6.65 31.26 ± 2.11 |
Body mass index (kg/m2), n (%) | <18.5 18.5–24.9 25–29.9 ≥30 | 3 (3.4) 51 (58.0) 26 (29.5) 8 (9.1) |
Parity, n (%) | 1st child 2nd child 3rd child | 26 (29.5) 40 (45.5) 22 (25.0) |
Education, n (%) | Junior high school or less Senior high school or higher | 57 (64.8) 31 (35.2) |
Occupation, n (%) | Agricultural workers Other | 71 (80.7) 17 (19.3) |
Family income (Baht/month), n (%) | <4500 4500–9000 >9000 | 44 (50.0) 35 (39.8) 9 (10.2) |
Alcohol use during pregnancy, n (%) | 1 (1.1) | |
Drugs use during pregnancy, n (%) | 0 (0) | |
Utero smoke exposure, n (%) | Yes No | 38 (43.2) 50 (56.8) |
Household insecticide use, n (%) | 46 (43.4) | |
Fresh fruit/ vegetable consumption (days/week), n (%) | 7 4–6 1–3 | 50 (47.2) 12 (11.3) 26 (24.5) |
Distance from residence to farm (km), n (%) | 0–5 >5 | 65 (73.9) 23 (26.1) |
Agricultural work during pregnancy, n (%) | Yes No | 62 (70.5) 26 (29.5) |
Frequency of agricultural work during pregnancy (days/week), n (%) | 5–7 4 or less | 53 (60.2) 35 (39.8) |
Infant characteristics | ||
Delivery procedure, n (%) | Normal labor Cesarean section | 74 (84.1) 14 (15.9) |
Infant gender, n (%) | Male Female | 35 (39.8) 53 (60.2) |
Gestation duration (weeks), mean ± SD | 38.28 ± 1.72 | |
Birth weight (g), mean ± SD | 3087.76 ± 435.25 | |
Birth height (cm), mean ± SD | 51.45 ± 2.96 | |
Head circumference (cm), mean ± SD | 32.72 ± 1.67 |
OP Metabolites | 1st–2nd Trimester | 3rd Trimester | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
% Samples Detectable | GM | Median | Min–Max | % Samples Detectable | GM | Median | Min–Max | ||
DEP | 64.77 | 6.89 | 6.82 | <LOD-807.14 | 67.05 | 15.04 | 11.82 | <LOD-314.17 | 0.000 ** |
DETP | 51.14 | 2.47 | 1.59 | <LOD-167.33 | 65.91 | 7.52 | 6.20 | <LOD-411.32 | 0.000 ** |
DEDTP | 3.41 | 1.68 | 1.63 | <LOD-19.27 | 11.36 | 3.10 | 2.44 | <LOD-62.84 | 0.000 ** |
DMP | 6.82 | 33.25 | 31.12 | <LOD-1086.81 | 4.55 | 47.39 | 40.65 | <LOD-971.38 | 0.007 * |
DMTP | 5.68 | 4.25 | 4.25 | <LOD-20.45 | 21.59 | 8.23 | 7.34 | <LOD-1358.41 | 0.000 ** |
Total DAP | 70.45 | 61.52 | 54.92 | <LOD-1817.12 | 75.00 | 120.43 | 103.52 | <LOD-2040.16 | 0.000 ** |
DAP Metabolites | DEP | DETP | DEDTP | DMP | DMTP | |||||
---|---|---|---|---|---|---|---|---|---|---|
R | p-Value | r | p-Value | R | p-Value | R | p-Value | R | p-Value | |
1st–2nd trimester | ||||||||||
DEP | – | – | 0.044 | 0.681 | 0.054 | 0.617 | 0.633 | 0.000 ** | 0.151 | 0.161 |
DETP | – | – | – | – | 0.352 | 0.001 ** | −0.031 | 0.773 | −0.018 | 0.865 |
DEDTP | – | – | – | – | – | – | 0.125 | 0.245 | 0.491 | 0.000 ** |
DMP | – | – | – | – | – | – | – | – | 0.317 | 0.003 ** |
DMTP | – | – | – | – | – | – | – | – | – | – |
3rd trimester | ||||||||||
DEP | – | – | 0.663 | 0.000 ** | 0.317 | 0.003 ** | −0.001 | 0.996 | 0.054 | 0.615 |
DETP | – | – | – | – | 0.305 | 0.004 ** | −0.006 | 0.954 | 0.148 | 0.169 |
DEDTP | – | – | – | – | – | – | 0.058 | 0.590 | −0.011 | 0.922 |
DMP | – | – | – | – | – | – | – | – | 0.335 | 0.001 ** |
DMTP | – | – | – | – | – | – | – | – | – | – |
Subtest | 2 Months of Age | 6 Months of Age | ||||||
---|---|---|---|---|---|---|---|---|
Mean | Median | SD | Range | Mean | Median | SD | Range | |
Cognitive | 1.90 | 2 | 1.29 | 0–5 | 5.44 | 6 | 1.88 | 2–10 |
Receptive communication | 3.11 | 3 | 1.19 | 0–5 | 5.86 | 6 | 1.66 | 2–10 |
Expressive communication | 1.80 | 1 | 1.29 | 0–6 | 4.14 | 4 | 1.53 | 0–8 |
Fine motor | 1.72 | 2 | 0.80 | 0–4 | 5.06 | 5 | 1.53 | 2–8 |
Gross motor | 1.94 | 2 | 1.37 | 0–4 | 6.35 | 6.5 | 2.18 | 1–11 |
OP Metabolites | Cognitive | Receptive Communication | Expressive Communication | Fine Motor | Gross Motor | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
β ± SE | Raw p-Value | FDR Adjusted p-Value | β ± SE | Raw p-Value | FDR Adjusted p-Value | β ± SE | Raw p-Value | FDR Adjusted p-Value | β ± SE | Raw p-Value | FDR Adjusted p-Value | β ± SE | Raw p-Value | FDR Adjusted p-Value | |
2 months of age | |||||||||||||||
DEP | 0.000 ± 0.002 | 0.968 | 0.063 | −0.001 ± 0.001 | 0.546 | 0.063 | −0.002 ± 0.002 | 0.187 | 0.063 | 0.001 ± 0.001 | 0.625 | 0.063 | −0.000 ± 0.002 | 0.993 | 0.063 |
DETP | −0.012 ± 0.004 | 0.005 | 0.030 * | 0.004 ± 0.004 | 0.350 | 0.063 | 0.006 ± 0.005 | 0.218 | 0.063 | 0.002 ± 0.003 | 0.451 | 0.063 | −0.002 ± 0.005 | 0.727 | 0.063 |
DEDTP | 0.040 ± 0.050 | 0.432 | 0.063 | −0.004 ± 0.047 | 0.926 | 0.063 | −0.01 ± 0.052 | 0850 | 0.063 | −0.006 ± 0.034 | 0.871 | 0.063 | −0.002 ± 0.056 | 0.968 | 0.063 |
DMP | 0.000 ± 0.001 | 0.900 | 0.063 | 0.000 ± 0.001 | 0.965 | 0.063 | 0.00 ± 0.001 | 0.141 | 0.063 | 0.000 ± 0.001 | 0.496 | 0.063 | 0.001 ± 0.001 | 0.586 | 0.063 |
DMTP | −0.018 ± 0.034 | 0.599 | 0.063 | 0.007 ± 0.031 | 0.828 | 0.063 | −0.048 ± 0.033 | 0.153 | 0.063 | 0.005 ± 0.022 | 0.082 | 0.063 | 0.061 ± 0.036 | 0.099 | 0.063 |
6 months of age | |||||||||||||||
DEP | −0.002 ± 0.002 | 0.285 | 0.063 | 0.003 ± 0.002 | 0.084 | 0.063 | 0.002 ± 0.002 | 0.196 | 0.063 | 0.003 ± 0.002 | 0.088 | 0.063 | 0.001 ± 0.003 | 0.660 | 0.063 |
DETP | 0.000 ± 0.008 | 0.859 | 0.063 | 0.001 ± 0.006 | 0.859 | 0.063 | −0.00 ± 0.006 | 0.486 | 0.063 | −0.001 ± 0.006 | 0.873 | 0.063 | −0.008 ± 0.008 | 0.334 | 0.063 |
DEDTP | 0.070 ± 0.075 | 0.353 | 0.063 | −0.013 ± 0.066 | 0.847 | 0.063 | −0.00 ± 0.061 | 0.952 | 0.063 | 0.009 ± 0.063 | 0.884 | 0.063 | 0.00 ± 0.087 | 0.998 | 0.063 |
DMP | 0.001 ± 0.001 | 0.352 | 0.063 | 0.002 ± 0.001 | 0.103 | 0.063 | 0.001 ± 0.001 | 0.357 | 0.063 | 0.002 ± 0.001 | 0.063 | 0.063 | 0.001 ± 0.001 | 0.674 | 0.063 |
DMTP | 0.032 ± 0.049 | 0.519 | 0.063 | −0.025 ± 0.043 | 0.569 | 0.063 | −0.060 ± 0.039 | 0.128 | 0.063 | 0.016 ± 0.041 | 0.699 | 0.063 | 0.022 ± 0.057 | 0.701 | 0.063 |
OP Metabolites | Cognitive | Receptive Communication | Expressive Communication | Fine Motor | Gross Motor | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
β ± SE | Raw p-Value | FDR Adjusted p-Value | β ± SE | Raw p-Value | FDR Adjusted p-Value | β ± SE | Raw p-Value | FDRAdjusted p-Value | β ± SE | Raw p-Value | FDR Adjusted p-Value | β ± SE | Raw p-Value | FDR Adjusted p-Value | |
2 months of age | |||||||||||||||
DEP | −0.006 ± 0.002 | 0.053 | 0.063 | −0.00 ± 0.002 | 0.576 | 0.063 | 0.000 ± 0.002 | 0.831 | 0.063 | −0.001 ± 0.001 | 0.279 | 0.063 | −0.001 ± 0.002 | 0.757 | 0.063 |
DETP | −0.003 ± 0.002 | 0.065 | 0.063 | −0.001 ± 0.002 | 0.576 | 0.063 | −0.001 ± 0.002 | 0.555 | 0.063 | 0.001 ± 0.001 | 0.546 | 0.063 | −0.001 ± 0.002 | 0.726 | 0.063 |
DEDTP | −0.021 ± 0.018 | 0.097 | 0.063 | −0.008 ± 0.013 | 0.513 | 0.063 | −0.020 ± 0.014 | 0.136 | 0.063 | −0.013 ± 0.009 | 0.173 | 0.063 | 0.006 ± 0.016 | 0.692 | 0.063 |
DMP | 0.000 ± 0.001 | 0.865 | 0.063 | −0.002 ± 0.001 | 0.088 | 0.063 | 0.000 ± 0.001 | 0.638 | 0.063 | 0.000 ± 0.001 | 0.892 | 0.063 | 0.000 ± 0.001 | 0.802 | 0.063 |
DMTP | −0.001 ± 0.001 | 0.278 | 0.063 | −0.001 ± 0.001 | 0.346 | 0.063 | −0.001 ± 0.001 | 0.333 | 0.063 | −0.001 ± 0.001 | 0.404 | 0.063 | 0.001 ± 0.001 | 0.623 | 0.063 |
6 months of age | |||||||||||||||
DEP | 0.000 ± 0.003 | 0.942 | 0.063 | −0.001 ± 0.003 | 0.759 | 0.063 | 0.002 ± 0.003 | 0.419 | 0.063 | 0.001 ± 0.003 | 0.666 | 0.063 | 0.000 ± 0.004 | 0.861 | 0.063 |
DETP | 0.002 ± 0.003 | 0.389 | 0.063 | 0.000 ± 0.002 | 0.865 | 0.063 | −0.001 ± 0.002 | 0.731 | 0.063 | 0.003 ± 0.003 | 0.336 | 0.063 | 0.001 ± 0.003 | 0.691 | 0.063 |
DEDTP | −0.020 ± 0.021 | 0.635 | 0.063 | −0.038 ± 0.018 | 0.103 | 0.063 | −0.047 ± 0.016 | 0.007 | 0.042 * | −0.044 ± 0.017 | 0.008 | 0.04 * | −0.025 ± 0.024 | 0.303 | 0.063 |
DMP | 0.001 ± 0.002 | 0.563 | 0.063 | 0.001 ± 0.001 | 0.344 | 0.063 | 0.000 ± 0.001 | 0.722 | 0.063 | 0.001 ± 0.001 | 0.137 | 0.063 | 0.001 ± 0.002 | 0.443 | 0.063 |
DMTP | 0.001 ± 0.001 | 0.440 | 0.063 | −0.001 ± 0.001 | 0.495 | 0.063 | −0.001 ± 0.001 | 0.458 | 0.063 | −0.001 ± 0.001 | 0.521 | 0.063 | 0.000 ± 0.002 | 0.864 | 0.063 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suwannakul, B.; Sapbamrer, R.; Wiwattanadittakul, N.; Hongsibsong, S. Organophosphate Pesticide Exposures in Early and Late Pregnancy Influence Different Aspects of Infant Developmental Performance. Toxics 2021, 9, 99. https://doi.org/10.3390/toxics9050099
Suwannakul B, Sapbamrer R, Wiwattanadittakul N, Hongsibsong S. Organophosphate Pesticide Exposures in Early and Late Pregnancy Influence Different Aspects of Infant Developmental Performance. Toxics. 2021; 9(5):99. https://doi.org/10.3390/toxics9050099
Chicago/Turabian StyleSuwannakul, Boonsita, Ratana Sapbamrer, Natrujee Wiwattanadittakul, and Surat Hongsibsong. 2021. "Organophosphate Pesticide Exposures in Early and Late Pregnancy Influence Different Aspects of Infant Developmental Performance" Toxics 9, no. 5: 99. https://doi.org/10.3390/toxics9050099
APA StyleSuwannakul, B., Sapbamrer, R., Wiwattanadittakul, N., & Hongsibsong, S. (2021). Organophosphate Pesticide Exposures in Early and Late Pregnancy Influence Different Aspects of Infant Developmental Performance. Toxics, 9(5), 99. https://doi.org/10.3390/toxics9050099