Which Is More Toxic? Evaluation of the Short-Term Toxic Effects of Chlorpyrifos and Cypermethrin on Selected Biomarkers in Common Carp (Cyprinus carpio, Linnaeus 1758)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Species
2.2. Test Chemicals
2.3. Acute Experimental Exposure
2.4. Dissection
2.5. Chemical Analyses
2.6. Method Validation
2.7. Selected Biomarkers
2.7.1. Histological Analyses
2.7.2. Biochemical Analyses
2.8. Statistical Analyses
3. Results
3.1. Physicochemical Properties of Tested Water
3.2. Bioaccumulation of CPF and CYP, Bioconcentration Factor (BCF)
3.3. Histological Alterations
3.3.1. Gills
3.3.2. Liver
3.4. Biochemical Alterations
3.5. Behavioral Responses
4. Discussion
4.1. Bioaccumulation
4.2. Histology
4.3. Biochemistry
4.4. Behavioral Responses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cui, S.; Hough, R.; Yates, K.; Osprey, M.; Kerr, C.; Cooper, P.; Coull, M.; Zhang, Z. Effects of season and sediment-water exchange processes on the partitioning of pesticides in the catchment environment: Implications for pesticides monitoring. Sci. Total Environ. 2020, 698, 134228. [Google Scholar] [CrossRef] [PubMed]
- Bonansea, R.I.; Amé, M.V.; Wunderlin, D.A. Determination of priority pesticides in water samples combining SPE and SPME coupled to GC-MS. A case study: Suquía River basin (Argentina). Chemosphere 2013, 90, 1860–1869. [Google Scholar] [CrossRef]
- Zhang, Z.; Troldborg, M.; Yates, K.; Osprey, M.; Kerr, C.; Hallett, P.D.; Baggaley, N.; Rhind, S.M.; Dawson, J.J.C.; Hough, R.L. Evaluation of spot and passive sampling for monitoring, flux estimation and risk assessment of pesticides within the constraints of a typical regulatory monitoring scheme. Sci. Total Environ. 2016, 569–570, 1369–1379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, X.; Zhang, C.; Liu, H.; Wu, R.; Tian, D.; Ruan, J.; Zhang, T.; Huang, M.; Ying, G. Occurrence and distribution of neonicotinoid insecticides in surface water and sediment of the Guangzhou section of the Pearl River, South China. Environ. Pollut. 2019, 251, 892–900. [Google Scholar] [CrossRef] [PubMed]
- Fevery, D.; Houbraken, M.; Spanoghe, P. Pressure of non-professional use of pesticides on operators, aquatic organisms and bees in Belgium. Sci. Total Environ. 2016, 550, 514–521. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, M.; Lu, L. Tissue metabolism, hematotoxicity, and hepatotoxicity of trichlorfon in Carassius auratus gibelio after a single oral administration. Front. Physiol. 2018, 9, 551. [Google Scholar] [CrossRef]
- James, T.F.; Nenov, M.N.; Tapia, C.M.; Lecchi, M.; Koshy, S.; Green, T.A.; Laezza, F. Consequences of acute Nav1.1 exposure to deltamethrin. Neurotoxicology 2017, 60, 150–160. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Lim, W.; Song, G. Mediation of oxidative stress toxicity induced by pyrethroid pesticides in fish. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2020, 234, 108758. [Google Scholar] [CrossRef]
- Nunes, M.E.M.; Müller, T.E.; Murussi, C.; do Amaral, A.M.B.; Gomes, J.L.C.; Marins, A.T.; Leitemperger, J.; Rodrigues, C.C.R.; Fiuza, T.L.; Costa, M.D.; et al. Oxidative effects of the acute exposure to a pesticide mixture of cypermethrin and chlorpyrifos on carp and zebrafish—A comparative study. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2018, 206–207, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Narra, M.R.; Rajender, K.; Rudra Reddy, R.; Rao, J.V.; Begum, G. The role of vitamin C as antioxidant in protection of biochemical and haematological stress induced by chlorpyrifos in freshwater fish Clarias batrachus. Chemosphere 2015, 132, 172–178. [Google Scholar] [CrossRef]
- Oğuz, A.R.; Kaval Oğuz, E.; Özok, N. Effects of chlorpyrifos on primary gill cell culture of Lake Van fish (Alburnus tarichi Güldenstaadt 1814). Toxicol. Res. 2021, 9, 741–745. [Google Scholar] [CrossRef] [PubMed]
- Mit, C.; Tebby, C.; Gueganno, T.; Bado-Nilles, A.; Beaudouin, R. Modeling acetylcholine esterase inhibition resulting from exposure to a mixture of atrazine and chlorpyrifos using a physiologically-based kinetic model in fish. Sci. Total Environ. 2021, 773. [Google Scholar] [CrossRef] [PubMed]
- Brodeur, J.C.; Suarez, R.P.; Natale, G.S.; Ronco, A.E.; Elena Zaccagnini, M. Reduced body condition and enzymatic alterations in frogs inhabiting intensive crop production areas. Ecotoxicol. Environ. Saf. 2011, 74, 1370–1380. [Google Scholar] [CrossRef] [PubMed]
- Bonifacio, A.F.; Ballesteros, M.L.; Bonansea, R.I.; Filippi, I.; Amé, M.V.; Hued, A.C. Environmental relevant concentrations of a chlorpyrifos commercial formulation affect two neotropical fish species, Cheirodon interruptus and Cnesterodon decemmaculatus. Chemosphere 2017, 188, 486–493. [Google Scholar] [CrossRef] [PubMed]
- Nag, S.K.; Saha, K.; Bandopadhyay, S.; Ghosh, A.; Mukherjee, M.; Raut, A.; Raman, R.K.; Suresh, V.R.; Mohanty, S.K. Status of pesticide residues in water, sediment, and fishes of Chilika Lake, India. Environ. Monit. Assess. 2020, 192. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Tripathi, P.; Prakash, O.; Singh, M.P. Ibuprofen abates cypermethrin-induced expression of pro-inflammatory mediators and mitogen-activated protein kinases and averts the nigrostriatal dopaminergic neurodegeneration. Mol. Neurobiol. 2016, 53, 6849–6858. [Google Scholar] [CrossRef]
- Sharma, R.; Jindal, R. Assessment of cypermethrin induced hepatic toxicity in Catla catla: A multiple biomarker approach. Environ. Res. 2020, 184, 109359. [Google Scholar] [CrossRef]
- Carriquiriborde, P.; Marino, D.J.; Giachero, G.; Castro, E.A.; Ronco, A.E. Global metabolic response in the bile of pejerrey (Odontesthes bonariensis, Pisces) sublethally exposed to the pyrethroid cypermethrin. Ecotoxicol. Environ. Saf. 2012, 76, 46–54. [Google Scholar] [CrossRef]
- World Health Organization. The Who Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2009; World Health Organization: Geneva, Switzerland, 2010; ISBN 9241547960. [Google Scholar]
- Ullah, S.; Zuberi, A.; Alagawany, M.; Farag, M.R.; Dadar, M.; Karthik, K.; Tiwari, R.; Dhama, K.; Iqbal, H.M.N. Cypermethrin induced toxicities in fish and adverse health outcomes: Its prevention and control measure adaptation. J. Environ. Manag. 2018, 206, 863–871. [Google Scholar] [CrossRef]
- McKenzie, D.J.; Axelsson, M.; Chabot, D.; Claireaux, G.; Cooke, S.J.; Corner, R.A.; de Boeck, G.; Domenici, P.; Guerreiro, P.M.; Hamer, B.; et al. Conservation physiology of marine fishes: State of the art and prospects for policy. Conserv. Physiol. 2016, 4, 1–20. [Google Scholar] [CrossRef]
- Plessl, C.; Otachi, E.O.; Körner, W.; Avenant-Oldewage, A.; Jirsa, F. Fish as bioindicators for trace element pollution from two contrasting lakes in the Eastern Rift Valley, Kenya: Spatial and temporal aspects. Environ. Sci. Pollut. Res. 2017, 24, 19767–19776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friberg, N.; Bonada, N.; Bradley, D.C.; Dunbar, M.J.; Edwards, F.K.; Grey, J.; Hayes, R.B.; Hildrew, A.G.; Lamouroux, N.; Trimmer, M.; et al. Biomonitoring of Human Impacts in Freshwater Ecosystems. The Good, the Bad and the Ugly. In Advances in Ecological Research; Woodward, G., Ed.; Elsevier Ltd. Academic Press: Amsterdam, The Netherlands, 2011; pp. 1–68. [Google Scholar]
- Abdel-Moneim, A.M.; Al-Kahtani, M.A.; Elmenshawy, O.M. Histopathological biomarkers in gills and liver of Oreochromis niloticus from polluted wetland environments, Saudi Arabia. Chemosphere 2012, 88, 1028–1035. [Google Scholar] [CrossRef] [PubMed]
- Nyeste, K.; Dobrocsi, P.; Czeglédi, I.; Czédli, H.; Harangi, S.; Baranyai, E.; Simon, E.; Nagy, S.A.; Antal, L. Age and diet-specific trace element accumulation patterns in different tissues of chub (Squalius cephalus): Juveniles are useful bioindicators of recent pollution. Ecol. Indic. 2019, 101, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Sauliute, G.; Svecevičius, G. Heavy metal interactions during accumulation via direct route in fish: A review. Zool. Ecol. 2015, 25, 77–86. [Google Scholar] [CrossRef]
- Sweidan, A.H.; El-Bendary, N.; Hegazy, O.M.; Hassanien, A.E.; Snasel, V. Water Pollution Detection System Based on Fish Gills as a Biomarker. In Proceedings of the Procedia Computer Science; Elsevier: Amsterdam, Nederland, 2015; Volume 65, pp. 601–611. [Google Scholar]
- Jordanova, M.; Rebok, K.; Dragun, Z.; Ramani, S.; Ivanova, L.; Kostov, V.; Valić, D.; Krasnići, N.; Filipović Marijić, V.; Kapetanović, D. Histopathology investigation on the Vardar chub (Squalius vardarensis) populations captured from the rivers impacted by mining activities. Ecotoxicol. Environ. Saf. 2016, 129, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Madliger, C.L.; Love, O.P.; Hultine, K.R.; Cooke, S.J. The conservation physiology toolbox: Status and opportunities. Conserv. Physiol. 2018, 6, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ballesteros, M.L.; Rivetti, N.G.; Morillo, D.O.; Bertrand, L.; Amé, M.V.; Bistoni, M.A. Multi-biomarker responses in fish (Jenynsia multidentata) to assess the impact of pollution in rivers with mixtures of environmental contaminants. Sci. Total Environ. 2017, 595, 711–722. [Google Scholar] [CrossRef]
- Berta, C.; Tóthmérész, B.; Wojewódka, M.; Augustyniuk, O.; Korponai, J.; Bertalan-Balázs, B.; Nagy, S.A.; Grigorszky, I.; Gyulai, I. Community response of Cladocera to trophic stress by biomanipulation in a shallow oxbow lake. Water 2019, 11, 929. [Google Scholar] [CrossRef] [Green Version]
- Somlyai, I.; Berta, C.; Nagy, S.A.; Dévai, G.; Ács, É.; Szabó, L.J.; Nagy, J.; Grigorszky, I. Heterogeneity and anthropogenic impacts on a small lowland stream. Water 2019, 11, 2002. [Google Scholar] [CrossRef] [Green Version]
- Swartjes, F.A.; Van der Aa, M. Measures to reduce pesticides leaching into groundwater-based drinking water resources: An appeal to national and local governments, water boards and farmers. Sci. Total Environ. 2020, 699, 134186. [Google Scholar] [CrossRef]
- Official Journal of the European Communities. Concerning the Quality Required of Surface Water Intended for the Abstraction of Drinking Water in the Member States (75/440/EEC); Brussels, Belgium, 1975; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31975L0440&from=EN (accessed on 9 April 2021).
- Commission of the European Communities. Drinking Water Directive 80/778/EEC; 1980; Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:1998:330:0032:0054:EN:PDF (accessed on 9 April 2021).
- Risica, S.; Grande, S. Council Directive 98/83/EC on the Quality of Water Intended for Human Consumption: Calculation of Derived Activity Concentrations; Istituto Superiore di Sanità: Roma, Italy, 2000; ISBN 1123-3117. [Google Scholar]
- Köhler, H.-R.; Triebskorn, R. Wildlife Ecotoxicology of Pesticides: Can We Track Effects to the Population Level and Beyond? Science 2013, 341, 759–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yancheva, V.; Velcheva, I.; Georgieva, E.; Mollov, I.; Stoyanova, S. Chlorpyrifos induced changes on the physiology of common carp (Cyprinus carpio Linnaeus, 1785): A Laboratory exposure study. Appl. Ecol. Environ. Res. 2019, 17, 5139–5157. [Google Scholar] [CrossRef]
- Stoyanova, S.; Georgieva, E.; Velcheva, I.; Iliev, I.; Vasileva, T.; Bivolarski, V.; Tomov, S.; Nyeste, K.; Antal, L.; Yancheva, V. Multi-biomarker assessment in common carp (Cyprinus carpio, Linnaeus 1758) liver after acute chlorpyrifos exposure. Water (Switzerland) 2020, 12, 1837. [Google Scholar] [CrossRef]
- Yeşilbudak, B.; Erdem, C. Cadmium accumulation in gill, liver, kidney and muscle tissues of common carp, Cyprinus carpio, and nile tilapia, Oreochromis niloticus. Bull. Environ. Contam. Toxicol. 2014, 92, 546–550. [Google Scholar] [CrossRef]
- Chang, X.; Wang, X.; Feng, J.; Su, X.; Liang, J.; Li, H.; Zhang, J. Impact of chronic exposure to trichlorfon on intestinal barrier, oxidative stress, inflammatory response and intestinal microbiome in common carp (Cyprinus carpio L.). Environ. Pollut. 2020, 259, 113846. [Google Scholar] [CrossRef]
- Bervoets, L.; Van Campenhout, K.; Reynders, H.; Knapen, D.; Covaci, A.; Blust, R. Bioaccumulation of micropollutants and biomarker responses in caged carp (Cyprinus carpio). Ecotoxicol. Environ. Saf. 2009, 72, 720–728. [Google Scholar] [CrossRef]
- Reynders, H.; Bervoets, L.; Gelders, M.; De Coen, W.M.; Blust, R. Accumulation and effects of metals in caged carp and resident roach along a metal pollution gradient. Sci. Total Environ. 2008, 391, 82–95. [Google Scholar] [CrossRef]
- Schoenaers, S.; Vergauwen, L.; Hagenaars, A.; Vanhaecke, L.; AbdElgawad, H.; Asard, H.; Covaci, A.; Bervoets, L.; Knapen, D. Prioritization of contaminated watercourses using an integrated biomarker approach in caged carp. Water Res. 2016, 99, 129–139. [Google Scholar] [CrossRef]
- Delahaut, V.; Daelemans, O.; Sinha, A.K.; De Boeck, G.; Bervoets, L. A multibiomarker approach for evaluating environmental contamination: Common carp (Cyprinus carpio) transplanted along a gradient of metal pollution. Sci. Total Environ. 2019, 669, 481–492. [Google Scholar] [CrossRef] [PubMed]
- Bury, N.R.; Walker, P.A.; Glover, C.N. Nutritive metal uptake in teleost fish. J. Exp. Biol. 2003, 206, 11–23. [Google Scholar] [CrossRef] [Green Version]
- Georgieva, E.; Yancheva, V.; Velcheva, I.; Mollov, I.; Todorova, K.; Tomov, S.; Tsvetanova, V.; Stoyanova, S. Glyphosate-based herbicide alters the histological structure of gills of two economically important cyprinid species (Common carp, Cyprinus carpio and bighead carp, Aristichthys nobilis). Appl. Ecol. Environ. Res. 2018, 16, 2295–2305. [Google Scholar] [CrossRef]
- Georgieva, E.; Yancheva, V.; Velcheva, I.; Iliev, I.; Vasileva, T.; Bivolarski, V.; Becheva, M.; Stoyanova, S. Histological and biochemical changes in liver of common carp (Cyprinus carpio L.) under metal exposure. North. West. J. Zool. 2016, 12, 261–270. [Google Scholar]
- Stoyanova, S.; Yancheva, V.S.; Velcheva, I.; Uchikova, E.; Georgieva, E. Histological alterations in common carp (Cyprinus carpio Linnaeus, 1758) gills as potential biomarkers for fungicide contamination. Brazilian Arch. Biol. Technol. 2015, 58, 757–764. [Google Scholar] [CrossRef] [Green Version]
- Yancheva, V.S.; Stoyanova, S.G.; Velcheva, I.G.; Georgieva, E.S. Histological Response of Fish Gills to Metal Pollution: Common Carp, Cyprinus carpio L., and Common Rudd, Scardinius erythrophthalmus L., from Topolnitsa Reservoir, Bulgaria. Acta Zool. Bulg. 2016, 68, 103–109. [Google Scholar]
- Altun, S.; Özdemir, S.; Arslan, H. Histopathological effects, responses of oxidative stress, inflammation, apoptosis biomarkers and alteration of gene expressions related to apoptosis, oxidative stress, and reproductive system in chlorpyrifos-exposed common carp (Cyprinus carpio L.). Environ. Pollut. 2017, 230, 432–443. [Google Scholar] [CrossRef]
- Arslan, H.; Özdemir, S.; Altun, S. Cypermethrin toxication leads to histopathological lesions and induces inflammation and apoptosis in common carp (Cyprinus carpio L.). Chemosphere 2017, 180, 491–499. [Google Scholar] [CrossRef]
- de Moura, F.R.; Brentegani, K.R.; Gemelli, A.; Sinhorin, A.P.; Sinhorin, V.D.G. Oxidative stress in the hybrid fish jundiara (Leiarius marmoratus × Pseudoplatystoma reticulatum) exposed to Roundup Original®. Chemosphere 2017, 185, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Modesto, K.A.; Martinez, C.B.R. Roundup® causes oxidative stress in liver and inhibits acetylcholinesterase in muscle and brain of the fish Prochilodus lineatus. Chemosphere 2010, 78, 294–299. [Google Scholar] [CrossRef] [PubMed]
- Santos, T.G.; Martinez, C.B.R. Atrazine promotes biochemical changes and DNA damage in a Neotropical fish species. Chemosphere 2012, 89, 1118–1125. [Google Scholar] [CrossRef] [PubMed]
- Sanches Filho, P.J.; Caldas, J.S.; da Rosa, N.N.; Pereira, F.O.P. Toxicity test and Cd, Cr, Pb and Zn bioccumulation in Phalloceros caudimaculatus. Egypt. J. Basic Appl. Sci. 2017, 4, 206–211. [Google Scholar] [CrossRef] [Green Version]
- Rosseland, B.O.; Massabuau, J.C.; Grimalt, J.; Hofer, R.; Lackner, R.; Raddum, G.; Rognerud, S.; Vives, I. Fish Ecotoxicology: European Mountain Lake Ecosystems Regionalisation, Diagnostic and Socio-Economic Evaluation (EMERGE); Norwegian Institute for Water Research (NIVA): Oslo, Norway, 2003. [Google Scholar]
- Mackay, D.; Fraser, A. Bioaccumulation of persistent organic chemicals: Mechanisms and models. Environ. Pollut. 2000, 110, 375–391. [Google Scholar] [CrossRef]
- Päpke, O.; Fürst, P.; Herrmann, T. Determination of polybrominated diphenylethers (PBDEs) in biological tissues with special emphasis on QC/QA measures. Talanta 2004, 63, 1203–1211. [Google Scholar] [CrossRef]
- Neves, R.A.F.; Nascimento, S.M.; Santos, L.N. Sublethal fish responses to short-term food chain transfer of DSP toxins: The role of somatic condition. J. Exp. Mar. Bio. Ecol. 2020, 524, 151317. [Google Scholar] [CrossRef]
- Gautier, J.-C. Drug Safety Evaluation: Methods and Protocols; Humana Press, Springer: Vitry-sur-Seine, France, 2011; ISBN 1607618494. [Google Scholar]
- Bernet, D.; Schmidt, H.; Meier, W.; Burkhardt-Holm, P.; Wahli, T. Histopathology in fish: Proposal for a protocol to assess aquatic pollution. J. Fish Dis. 1999, 22, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Saraiva, A.; Costa, J.; Serrão, J.; Cruz, C.; Eiras, J.C. A histology-based fish health assessment of farmed seabass (Dicentrarchus labrax L.). Aquaculture 2015, 448, 375–381. [Google Scholar] [CrossRef]
- Zimmerli, S.; Bernet, D.; Burkhardt-Holm, P.; Schmidt-Posthaus, H.; Vonlanthen, P.; Wahli, T.; Segner, H. Assessment of fish health status in four Swiss rivers showing a decline of brown trout catches. Aquat. Sci. 2007, 69, 11–25. [Google Scholar] [CrossRef] [Green Version]
- Beutler, E. Red Cell Metabolism: A Manual of Biochemical Methods; Grune & Stratton Inc.: Orlando, FL, USA, 1984. [Google Scholar]
- Zhou, J.; Kang, H.M.; Lee, Y.H.; Jeong, C.B.; Park, J.C.; Lee, J.S. Adverse effects of a synthetic pyrethroid insecticide cypermethrin on life parameters and antioxidant responses in the marine copepods Paracyclopina nana and Tigriopus japonicus. Chemosphere 2019, 217, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Wendel, A. Enzymatic Basis of Detoxication; Academic Press Inc.: New York, NY, USA, 1980. [Google Scholar]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Laurent, P. 2 Gill Internal Morphology. Fish Physiol. 1984, 10, 73–183. [Google Scholar] [CrossRef]
- Hundet, A.; Prabhat, B.K. Histopathological alterations in hepatopancreas of a carp fish, C. carpio due to endosulfan toxicity. CIBTech J. Zool. 2014, 3, 7–11. [Google Scholar]
- Edwardst, R.; Millburn, P.; Hutson, D.H. The toxicity and metabolism of the pyrethroids cis-and trans-cypermethrin in rainbow trout, Salrno gairdneri. Xenobiotica 1987, 17, 1175–1193. [Google Scholar] [CrossRef]
- Lutnicka, H.; Bogacka, T.; Wolska, L. Degradation of pyrethroids in an aquatic ecosystem model. Water Res. 1999, 33, 3441–3446. [Google Scholar] [CrossRef]
- Michelangeli, F.; Robson, M.J.; East, J.M.; Lee, A.G. The conformation of pyrethroids bound to lipid bilayers. Biochim. Biophys. Acta 1990, 1028, 49–57. [Google Scholar] [CrossRef]
- Glickman, A.H.; Lech, J.J. Differential toxicity of trans-permethrin in rainbow trout and mice: II. Role of target organ sensitivity. Toxicol. Appl. Pharmacol. 1982, 66, 162–171. [Google Scholar] [CrossRef]
- Olisah, C.; Okoh, O.O.; Okoh, A.I. Distribution of organochlorine pesticides in fresh fish carcasses from selected estuaries in Eastern Cape Province, South Africa, and the associated health risk assessment. Mar. Pollut. Bull. 2019, 149, 110605. [Google Scholar] [CrossRef]
- Tashla, T.; Žuža, M.; Kenjveš, T.; Prodanović, R.; Soleša, D.; Bursić, V.; Petrović, A.; Pelić, D.L.; Bošković, J.; Puvača, N. Fish as an important bio-indicator of environmental pollution with persistent organic pollutants and heavy metals. Technol. Eng. Manag. 2018, 1, 52–56. [Google Scholar]
- Datta, M.; Kaviraj, A. Ascorbic acid supplementation of diet for reduction of deltamethrin induced stress in freshwater catfish Clarias gariepinus. Chemosphere 2003, 53, 883–888. [Google Scholar] [CrossRef]
- Viran, R.; Erkoç, F.Ü.; Polat, H.; Koçak, O. Investigation of acute toxicity of deltamethrin on guppies (Poecilia reticulata). Ecotoxicol. Environ. Saf. 2003, 55, 82–85. [Google Scholar] [CrossRef]
- Antonious, G.F.; Turley, E.T.; Abubakari, M.; Snyder, J.C. Dissipation, half-lives, and mass spectrometric identification of chlorpyrifos and its two metabolites on field-grown collard and kale. J. Environ. Sci. Heal. Part B Pestic. Food Contam. Agric. Wastes 2017, 52, 251–255. [Google Scholar] [CrossRef]
- Das, S.; Hageman, K.J.; Taylor, M.; Michelsen-Heath, S.; Stewart, I. Fate of the organophosphate insecticide, chlorpyrifos, in leaves, soil, and air following application. Chemosphere 2020, 243, 125194. [Google Scholar] [CrossRef] [PubMed]
- Wassenaar, P.N.H.; Verbruggen, E.M.J.; Cieraad, E.; Peijnenburg, W.J.G.M.; Vijver, M.G. Variability in fish bioconcentration factors: Influences of study design and consequences for regulation. Chemosphere 2020, 239, 124731. [Google Scholar] [CrossRef]
- Nikanorov, A.M.; Zhulidov, A.V.; Pokarzhevskii, A.D. Biomonitoring of Heavy Metals in Freshwater Ecosystems; Hidrometeoizdat: Leningrad, Russia, 1985. [Google Scholar]
- Iovanna, R.; Griffiths, C. Clean water, ecological benefits, and benefits transfer: A work in progress at the US EPA. Ecol. Econ. 2006, 60, 473–482. [Google Scholar] [CrossRef]
- Racke, K.D. Environmental fate of chlorpyrifos. Rev. Environ. Contam. Toxicol. 1993, 1–150. [Google Scholar] [CrossRef]
- Canadian Council of Ministers of the Environmment Canadian water quality guidelines for the protection of aquatic life. In Canadian Environmental Quality Guidelines; Canadian Council of Ministers of the Environment: Winnipeg, Canada, 1999.
- Subsecretaria de Recursos Hídricos de la Nación República Argentina. Niveles Guia Nacionales de Calidad de Agua Ambiente. 2007. Available online: https://www.argentina.gob.ar/sites/default/files/documento22.pdf (accessed on 9 April 2021).
- Çaliskan, M.; Erkmen, B.; Yerli, S.V. The effects of zeta cypermethrin on the gills of common guppy Lebistes reticulatus. Environ. Toxicol. Pharmacol. 2003, 14, 117–120. [Google Scholar] [CrossRef]
- Das, B.K.; Mukherjee, C. Toxicity of cypermethrin in Labeo rohita fingerlings: Biochemical, enzymatic and haematological consequences. Comp. Biochem. Physiol. Part C 2003, 134, 109–121. [Google Scholar] [CrossRef]
- Deb, N.; Das, S. Chlorpyrifos toxicity in fish: A Review. Curr. World Environ. J. 2013, 8, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Wendelaar Bonga, S.E.; Lock, R.A.C. Toxicants and osmoregulation in fish. Neth. J. Zool. 1992, 42, 478–493. [Google Scholar]
- Camargo, M.M.P.; Martinez, C.B.R. Histopathology of gills, kidney and liver of a Neotropical fish caged in an urban stream. Neotrop. Ichthyol. 2007, 5, 327–336. [Google Scholar] [CrossRef] [Green Version]
- Macirella, R.; Madeo, G.; Sesti, S.; Tripepi, M.; Bernabò, I.; Godbert, N.; La Russa, D.; Brunelli, E. Exposure and post-exposure effects of chlorpyrifos on Carassius auratus gills: An ultrastructural and morphofunctional investigation. Chemosphere 2020, 251, 126434. [Google Scholar] [CrossRef]
- Fiaz Khan, M.; Tabassum, S.; Sadique, H.; Sajid, M.; Ghayyur, S.; Dil Badshah, K.; Khan, N.; Ullah, I. Hematological, Biochemical and Histopathological Alterations in Common Carp during Acute Toxicity of Endosulfan. Int. J. Agric. Biol. 2019, 22, 703–709. [Google Scholar] [CrossRef]
- Schwaiger, J.; Ferling, H.; Mallow, U.; Wintermayr, H.; Negele, R.D. Toxic effects of the non-steroidal anti-inflammatory drug diclofenac. Part I: Histopathological alterations and bioaccumulation in rainbow trout. Aquat. Toxicol. 2004, 68, 141–150. [Google Scholar] [CrossRef]
- Theurkar, S.V.; Gaikwad, A.N.; Ghadage, M.K.; Patil, S.B. Impact of Monocrotophos on the Histopathological Changes in the Gills of Mosquito Fish, Gambusia affinis. Res. J. Recent Sci. 2014, 3, 29–32. [Google Scholar]
- Rose, O.; Bright Chika, I.; Chris, I. Gill Damage in Clarias gariepinus Exposed to Cypermethrin. Adv. Life Sci. Technol. 2015, 38, 75–79. [Google Scholar]
- Arellano, J.M.; Storch, V.; Sarasquete, C. Ultrastructural and histochemical study on gills and skin of the Senegal sole, Solea senegalensis. J. Appl. Ichthyol. 2004, 20, 452–460. [Google Scholar] [CrossRef]
- Cengiz, E.I. Gill and kidney histopathology in the freshwater fish Cyprinus carpio after acute exposure to deltamethrin. Environ. Toxicol. Pharmacol. 2006, 22, 200–204. [Google Scholar] [CrossRef] [PubMed]
- Ayandiran, T.A.; Fawole, O.O.; Adewoye, S.O.; Ogundiran, M.A. Bioconcentration of metals in the body muscle and gut of Clarias gariepinus exposed to sublethal concentrations of soap and detergent effluent. J. Cell Anim. Biol. 2009, 3, 113–118. [Google Scholar] [CrossRef]
- Butchiram, M.S.; Tilak, K.S.; Raju, P.W. Studies on histopathological changes in the gill, liver and kidney of Channa punctatus (Bloch) exposed to Alachlor. J. Environ. Biol. 2009, 30, 303–306. [Google Scholar]
- Thayappan, K.; Maghil, D.; Remy, A.R.A.; Narayanasamy, S. Effect of cypermethrin toxicity in the gills of the fish Oreochromis mossambicus. J. Mod. Biotechnol. 2014, 3, 35–41. [Google Scholar]
- Boran, H.; Altinok, I.; Capkin, E. Histopathological changes induced by maneb and carbaryl on some tissues of rainbow trout, Oncorhynchus mykiss. Tissue Cell 2010, 42, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Nataraj, B.; Hemalatha, D.; Rangasamy, B.; Maharajan, K.; Ramesh, M. Hepatic oxidative stress, genotoxicity and histopathological alteration in fresh water fish Labeo rohita exposed to organophosphorus pesticide profenofos. Biocatal. Agric. Biotechnol. 2017, 12, 185–190. [Google Scholar] [CrossRef]
- Ghayyur, S.; Khan, M.F.; Tabassum, S.; Ahmad, M.S.; Sajid, M.; Badshah, K.; Khan, M.A.; Saira; Ghayyur, S.; Khan, N.A.; et al. A comparative study on the effects of selected pesticides on hemato-biochemistry and tissue histology of freshwater fish Cirrhinus mrigala (Hamilton, 1822). Saudi J. Biol. Sci. 2021, 28, 603–611. [Google Scholar] [CrossRef]
- Oliveira Ribeiro, C.A.; Vollaire, Y.; Sanchez-Chardi, A.; Roche, H. Bioaccumulation and the effects of organochlorine pesticides, PAH and heavy metals in the Eel (Anguilla anguilla) at the Camargue Nature Reserve, France. Aquat. Toxicol. 2005, 74, 53–69. [Google Scholar] [CrossRef] [PubMed]
- Vieira, C.E.D.; Costa, P.G.; Caldas, S.S.; Tesser, M.E.; Risso, W.E.; Escarrone, A.L.V.; Primel, E.G.; Bianchini, A.; dos Reis Martinez, C.B. An integrated approach in subtropical agro-ecosystems: Active biomonitoring, environmental contaminants, bioaccumulation, and multiple biomarkers in fish. Sci. Total Environ. 2019, 666, 508–524. [Google Scholar] [CrossRef] [PubMed]
- Braz-Mota, S.; Sadauskas-Henrique, H.; Duarte, R.M.; Val, A.L.; Almeida-Val, V.M.F. Roundup® exposure promotes gills and liver impairments, DNA damage and inhibition of brain cholinergic activity in the Amazon teleost fish Colossoma macropomum. Chemosphere 2015, 135, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Ranjbar, A.; Pasalar, P.; Sedighi, A.; Abdollahi, M. Induction of oxidative stress in paraquat formulating workers. Toxicol. Lett. 2002, 131, 191–194. [Google Scholar] [CrossRef]
- Ilyushina, N.; Goumenou, M.; Stivaktakis, P.D.; Vardavas, A.I.; Masaltsev, G.; Averianova, N.; Dmitricheva, O.; Revazova, Y.; Tsatsakis, A.M.; Rakitskii, V. Maximum tolerated doses and erythropoiesis effects in the mouse bone marrow by 79 pesticides’ technical materials assessed with the micronucleus assay. Toxicol. Reports 2019, 6, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Liu, Y.; Jiang, W.D.; Jiang, J.; Zhao, J.; Zhang, Y.A.; Zhou, X.Q.; Feng, L. A comparative study on antioxidant system in fish hepatopancreas and intestine affected by choline deficiency: Different change patterns of varied antioxidant enzyme genes and nrf2 signaling factors. PLoS ONE 2017, 12, e0169888. [Google Scholar] [CrossRef] [PubMed]
- Üner, N.; Oruç, E.; Sevgiler, Y. Oxidative stress-related and ATPase effects of etoxazole in different tissues of Oreochromis niloticus. Environ. Toxicol. Pharmacol. 2005, 20, 99–106. [Google Scholar] [CrossRef]
- dos Santos Carvalho, C.; Bernusso, V.A.; de Araújo, H.S.S.; Espíndola, E.L.G.; Fernandes, M.N. Biomarker responses as indication of contaminant effects in Oreochromis niloticus. Chemosphere 2012, 89, 60–69. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M.C. Oxygen free radicals and iron in relation to biology and medicine: Some problems and concepts. Arch. Biochem. Biophys. 1986, 246, 501–514. [Google Scholar] [CrossRef]
- Liu, S.; Zhou, Q.; Wang, Y. Ecotoxicological responses of the earthworm Eisenia fetida exposed to soil contaminated with HHCB. Chemosphere 2011, 83, 1080–1086. [Google Scholar] [CrossRef]
- Lin, Y.; Miao, L.H.; Pan, W.J.; Huang, X.; Dengu, J.M.; Zhang, W.X.; Ge, X.P.; Liu, B.; Ren, M.C.; Zhou, Q.L.; et al. Effect of nitrite exposure on the antioxidant enzymes and glutathione system in the liver of bighead carp, Aristichthys nobilis. Fish Shellfish Immunol. 2018, 76, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Tekman, B.; Ozdemir, H.; Senturk, M.; Ciftci, M. Purification and characterization of glutathione reductase from rainbow trout (Oncorhynchus mykiss) liver and inhibition effects of metal ions on enzyme activity. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2008, 148, 117–121. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine; Oxford University Press: New York, NY, USA, 2015. [Google Scholar]
- Elia, A.C.; Anastasi, V.; Dörr, A.J.M. Hepatic antioxidant enzymes and total glutathione of Cyprinus carpio exposed to three disinfectants, chlorine dioxide, sodium hypochlorite and peracetic acid, for superficial water potabilization. Chemosphere 2006, 64, 1633–1641. [Google Scholar] [CrossRef] [PubMed]
- Gabbianelli, R.; Falcioni, G.; Nasuti, C.; Cantalamessa, F. Cypermethrin-induced plasma membrane perturbation on erythrocytes from rats: Reduction of fluidity in the hydrophobic core and in glutathione peroxidase activity. Toxicology 2002, 175, 91–101. [Google Scholar] [CrossRef]
- Pandey, S.; Parvez, S.; Sayeed, I.; Haque, R.; Bin-Hafeez, B.; Raisuddin, S. Biomarkers of oxidative stress: A comparative study of river Yamuna fish Wallago attu (Bl. & Schn.). Sci. Total Environ. 2003, 309, 105–115. [Google Scholar] [CrossRef]
- Van Der Oost, R.; Beyer, J.; Vermeulen, N.P.E. Fish bioaccumulation and biomarkers in environmental risk assessment: A review. Environ. Toxicol. Pharmacol. 2003, 13, 57–149. [Google Scholar] [CrossRef]
- Monteiro, D.A.; de Almeida, J.A.; Rantin, F.T.; Kalinin, A.L. Oxidative stress biomarkers in the freshwater characid fish, Brycon cephalus, exposed to organophosphorus insecticide Folisuper 600 (methyl parathion). Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2006, 143, 141–149. [Google Scholar] [CrossRef]
- John, S.; Kale, M.; Rathore, N.; Bhatnagar, D. Protective effect of vitamin E in dimethoate and malathion induced oxidative stress in rat erythrocytes. J. Nutr. Biochem. 2001, 12, 500–504. [Google Scholar] [CrossRef]
- Łukaszewicz-Hussain, A.; Moniuszko-Jakoniuk, J. Liver Catalase, Glutathione Peroxidase and Reductase Activity, Reduced Glutathione and Hydrogen Peroxide Levels in Acute Intoxication with Chlorfenvinphos, an Organophosphate Insecticide. Polish J. Environ. Stud. 2004, 13, 303–309. [Google Scholar]
- Wang, H.; Cai, D.; Liang, A.; Chen, L.; Huo, Y. Effects of dietary Mn supplementation on superoxide dismutase (SOD) activity in prawn Caridina denticulata sinensis exposed to cypermethrin. Fish. Sci. 2009, 28, 139–141. [Google Scholar]
- Dawar, F.U.; Zuberi, A.; Azizullah, A.; Khan Khattak, M.N. Effects of cypermethrin on survival, morphological and biochemical aspects of rohu (Labeo rohita) during early development. Chemosphere 2016, 144, 697–705. [Google Scholar] [CrossRef] [PubMed]
- Khazri, A.; Sellami, B.; Dellali, M.; Corcellas, C.; Eljarrat, E.; Barceló, D.; Mahmoudi, E. Acute toxicity of cypermethrin on the freshwater mussel Unio gibbus. Ecotoxicol. Environ. Saf. 2015, 115, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Livingstone, D.R. Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Mar. Pollut. Bull. 2001, 42, 656–666. [Google Scholar] [CrossRef]
- Narra, M.R. Single and cartel effect of pesticides on biochemical and haematological status of Clarias batrachus: A long-term monitoring. Chemosphere 2016, 144, 966–974. [Google Scholar] [CrossRef] [PubMed]
- Cheung, C.C.C.; Siu, W.H.L.; Richardson, B.J.; De Luca-Abbott, S.B.; Lam, P.K.S. Antioxidant responses to benzo[a]pyrene and Aroclor 1254 exposure in the green-lipped mussel, Perna viridis. Environ. Pollut. 2004, 128, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Slaninova, A.; Smutna, M.; Modra, H.; Svobodova, Z.; Slaninová, M.A. A review: Oxidative stress in fish induced by pesticides. Neuroendocrinol. Lett. 2009, 30, 2–12. [Google Scholar]
- Zhang, J.; Shen, H.; Wang, X.; Wu, J.; Xue, Y. Effects of chronic exposure of 2,4-dichlorophenol on the antioxidant system in liver of freshwater fish Carassius auratus. Chemosphere 2004, 55, 167–174. [Google Scholar] [CrossRef]
- Flohé, L. Glutathione peroxidase. In Oxygen Radicals in Biology and Medicine; Simic, M.G., Taylor, K.A., Ward, J.F., von Sonntag, C., Eds.; Springer: Boston, MS, USA, 1988; pp. 663–668. [Google Scholar]
- Kaplowitz, N.; Tsukamoto, H. Oxidative stress and liver disease. Prog. Liver Dis. 1996, 14, 131–159. [Google Scholar]
- Spolarics, Z.; Wu, J.-X. Role of glutathione and catalase in H 2 O 2 detoxification in LPS-activated hepatic endothelial and Kupffer cells. Am. J. Physiol. Liver Physiol. 1997, 273, 1304–1311. [Google Scholar] [CrossRef] [Green Version]
- De Bleser, P.J.; Xu, G.; Rombouts, K.; Rogiers, V.; Geerts, A. Glutathione Levels Discriminate between Oxidative Stress and Transforming Growth Factor-β Signaling in Activated Rat Hepatic Stellate Cells. J. Biol. Chem. 1999, 274, 33881–33887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mérad-Saïdoune, M.; Boitier, E.; Nicole, A.; Marsac, C.; Claude Martinou, J.; Sola, B.; Sinet, P.-M.; Ceballos-Picot, I. Overproduction of Cu/Zn-Superoxide Dismutase or Bcl-2 Prevents the Brain Mitochondrial Respiratory Dysfunction Induced by Glutathione Depletion. Exp. Neurol. 1999, 158, 428–436. [Google Scholar] [CrossRef] [PubMed]
- Başer, S.; Erkoç, F.; Selvi, M.; Koçak, O. Investigation of acute toxicity of permethrin on guppies Poecilia reticulata. Chemosphere 2003, 51, 469–474. [Google Scholar] [CrossRef]
- Singh, D.; Singh, A. Influence of alphamethrin on oxidative metabolism of the freshwater fish Catla catla. Bull. Environ. Contam. Toxicol. 2004, 73, 161–166. [Google Scholar] [CrossRef]
- Borges, A.; Scotti, L.V.; Siqueira, D.R.; Zanini, R.; do Amaral, F.; Jurinitz, D.F.; Wassermann, G.F. Changes in hematological and serum biochemical values in jundiá Rhamdia quelen due to sub-lethal toxicity of cypermethrin. Chemosphere 2007, 69, 920–926. [Google Scholar] [CrossRef]
- Babu, V.; Mariadoss, S.; Ipek, C.E.; Serbest, B.; Ali, S. Surface structures of gill, scale and erythrocyte of Anabas testudineus exposed to sublethal concentration of cypermethrin. Environ. Toxicol. Pharmacol. 2014, 37, 1109–1115. [Google Scholar] [CrossRef]
- Vardavas, A.I.; Stivaktakis, P.D.; Tzatzarakis, M.N.; Fragkiadaki, P.; Vasilaki, F.; Tzardi, M.; Datseri, G.; Tsiaoussis, J.; Alegakis, A.K.; Tsitsimpikou, C.; et al. Long-term exposure to cypermethrin and piperonyl butoxide cause liver and kidney inflammation and induce genotoxicity in New Zealand white male rabbits. Food Chem. Toxicol. 2016, 94, 250–259. [Google Scholar] [CrossRef]
Concentration of CPF (µg/L) | Concentration of CYP (µg/L) | ||||||
---|---|---|---|---|---|---|---|
Parameters | Control | 0.03 | 0.05 | 0.10 | 0.0002 | 0.0003 | 0.0006 |
Conductivity (μS/cm) | 509.33 | 525.03 | 513.00 | 530.03 | 487.13 | 529.25 | 543.75 |
Dissolved oxygen (mg/L) | 9.05 | 9.10 | 9.20 | 9.10 | 8.83 | 8.75 | 9.08 |
pH | 7.73 | 7.42 | 7.21 | 7.03 | 7.52 | 7.57 | 7.50 |
T (°C) | 12.07 | 11.59 | 11.68 | 11.70 | 11.32 | 11.25 | 11.59 |
Total Concentration of CPF, µg (for 50 L Tanks) | ||||
Control | 1.5 | 2.5 | 5 | |
Water | n.d. | 0.76 ± 0.25 c | 1.69 ± 0.19 b | 2.76 ± 0.17 a |
Gills | n.d. | 0.202 ± 0.03 b | 0.21 ± 0.03 b | 0.276 ± 0.61 a |
Liver | n.d. | 0.184 ± 0.03 b | 0.19 ± 0.02 b | 0.27 ± 0.06 a |
BCF, gills | - | 3.76 * | 8.05 * | 10 * |
BCF, liver | - | 4.1 * | 8.9 * | 10.2 * |
Total Concentration of CYP, µg (for 50 L Tanks) | ||||
Control | 0.01 | 0.015 | 0.03 | |
Water | n.d. | 0.0009 ± 0.0002 c | 0.008 ± 0.001 b | 0.017 ± 0.004 a |
Gills | n.d. | 0.063 ± 0.02 a | 0.878 ± 0.025 a | 0.092 ± 0.034 a |
Liver | n.d. | 0.055 ± 0.02 b | 0.079 ± 0.029 a,b | 0.084 ± 0.025 a |
BCF, gills | - | 0.14 | 0.009 | 1.85 |
BCF, liver | - | 0.02 | 0.1 | 2.02 * |
Reaction Pattern | Functional Unit of the Tissue | Alteration | Importance Factor | Score Value— Concentrations of CPF (μg/L) | Index for Each Group (0.03; 0.05; 0.1 μg/L) | |||
---|---|---|---|---|---|---|---|---|
Control | 0.03 | 0.05 | 0.10 | |||||
Circulatory disturbances | Gills Blood vessels of secondary lamellae | Vasodilation | WGC1 = 1 | 0 | 0 | 0 | 1 | IGC = 2 IGC = 2 IGC = 3 |
Gills Blood vessels of primary lamellae | Vasodilation | WGC4 = 2 | 0 | 1 | 1 | 1 | ||
Regressive lesions | Gills Epithelium | Degeneration (necrosis) | WGR1 = 3 | 0 | 0 | 1 | 1 | IGR = 0 IGR = 3 IGR = 3 |
Progressive lesions | Gill epithelium (secondary lamellae) | Lamellar lifting | WGP1 = 1 | 0 | 3 | 3 | 3 | IGP = 17 IGP = 18 IGP = 22 |
Proliferation | WGP1 = 2 | 0 | 2 | 2 | 1 | |||
Gill epithelium (primary lamellae) | Edema | WGP2 = 1 | 0 | 1 | 1 | 1 | ||
Proliferation of stratified epithelium | WGP3 = 2 | 0 | 3 | 2 | 2 | |||
Proliferation of glandular cells | WGP4 = 1 | 0 | 0 | 0 | 0 | |||
Fusion | WGP5 = 3 | 0 | 1 | 2 | 4 | |||
Index organ | IC = 0 | I0.03 = 19 | I0.05 = 23 | I0.1 = 28 | ||||
Reaction Pattern | Functional Unit of the Tissue | Alteration | Importance Factor | Score Value— Concentrations of CYP (μg/L) | Index for Each Group (0.0002; 0.0003; 0.0006 μg/L) | |||
Control | 0.0002 | 0.0003 | 0.0006 | |||||
Circulatory disturbances | Gills Blood vessels of secondary lamellae | Vasodilation | WGC1 = 1 | 0 | 1 | 1 | 1 | IGC = 3 IGC = 3 IGC = 5 |
Gills Blood vessels of primary lamellae | Vasodilation | WGC4 = 2 | 0 | 1 | 1 | 2 | ||
Regressive lesions | Gills Epithelium | Degeneration (necrosis) | WGR1 = 3 | 0 | 1 | 2 | 2 | IGR = 3 IGR = 6 IGR = 6 |
Progressive lesions | Gill epithelium (secondary lamellae) | Lamellar lifting | WGP1 = 1 | 0 | 1 | 1 | 1 | IGP = 19 IGP = 19 IGP = 19 |
Proliferation | WGP1 = 2 | 0 | 2 | 2 | 2 | |||
Gill epithelium (primary lamellae) | Edema | WGP2 = 1 | 0 | 1 | 1 | 1 | ||
Proliferation of stratified epithelium | WGP3 = 2 | 0 | 2 | 2 | 2 | |||
Proliferation of glandular cells | WGP4 = 1 | 0 | 0 | 0 | 0 | |||
Fusion | WGP5 = 3 | 0 | 3 | 3 | 3 | |||
Index organ | IC = 0 | I0.0002 = 25 | I0.0003 = 28 | I0.0006 = 30 |
Reaction Pattern | Functional Unit of the Tissue | Alteration | Importance Factor | Score Value— Concentrations of CPF (μg/L) | Index for Each Group (0.03; 0.05; 0.1 μg/L) | |||
---|---|---|---|---|---|---|---|---|
Control | 0.03 | 0.05 | 0.1 | |||||
Circulatory disturbances | Liver | Hyperemia | WLC1 = 1 | 0 | 1 | 2 | 2 | ILC = 1 ILC = 2 ILC = 2 |
Intercellular edema | 0 | 0 | 0 | 0 | ||||
Regressive lesions | Liver | Granular degeneration | WLR1 = 1 | 1 | 2 | 3 | 3 | ILR = 8 ILR = 15 ILR = 22 |
Deposits (lipids) | WLR3 = 1 | 0 | 0 | 1 | 1 | |||
Nuclear alterations | WLR4 = 2 | 0 | 1 | 1 | 2 | |||
Necrosis | WLR5 = 3 | 0 | 0 | 1 | 2 | |||
Vacuolar degeneration | WLR6 = 2 | 0 | 2 | 3 | 4 | |||
Interstitial tissue | Architectural and structural alterations | WLR7 = 1 | 0 | 0 | 0 | 0 | ||
Deposits | WLR8 = 1 | 0 | 0 | 0 | 0 | |||
Nuclear alterations | WLR9 = 2 | 0 | 0 | 0 | 0 | |||
Necrosis | WLR10 = 3 | 0 | 0 | 0 | 0 | |||
Progressive lesions | Liver | Hypertrophy | WLP1 = 1 | 0 | 1 | 1 | 2 | ILP = 1 ILP = 1 ILP = 2 |
Interstitial tissue | Hypertrophy | WLP2 = 1 | 0 | 0 | 0 | 0 | ||
Inflammation | Liver | Activation of RES | WLI1 = 1 | 0 | 0 | 0 | 0 | ILI = 0 ILI = 1 ILI = 2 |
Infiltration | WLI2 = 2 | 0 | 1 | 1 | 1 | |||
Index organ | IC = 1 | I0.03 = 10 | I0.05 = 19 | I0.1 = 28 | ||||
Reaction Pattern | Functional Unit of the Tissue | Alteration | Importance Factor | Score Value— Concentrations of CYP (μg/L) | Index for Each Group (0.0002; 0.0003; 0.0006 μg/L) | |||
Control | 0.0002 | 0.0003 | 0.0006 | |||||
Circulatory disturbances | Liver | Hyperemia | WLC1 = 1 | 0 | 1 | 3 | 3 | ILC = 1 ILC = 3 ILC = 3 |
Intercellular edema | 0 | 0 | 0 | 0 | ||||
Regressive lesions | Liver | Granular degeneration | WLR1 = 1 | 1 | 3 | 2 | 2 | ILR = 11 ILR = 14 ILR = 20 |
Deposits (lipids) | WLR3 = 1 | 0 | 1 | 1 | 2 | |||
Nuclear alterations | WLR4 = 2 | 0 | 1 | 1 | 2 | |||
Necrosis | WLR5 = 3 | 0 | 1 | 1 | 2 | |||
Vacuolar degeneration | WLR6 = 2 | 0 | 1 | 3 | 3 | |||
Interstitial tissue | Architectural and structural alterations | WLR7 = 1 | 0 | 0 | 0 | 0 | ||
Deposits | WLR8 = 1 | 0 | 0 | 0 | 0 | |||
Nuclear alterations | WLR9 = 2 | 0 | 0 | 0 | 0 | |||
Necrosis | WLR10 = 3 | 0 | 0 | 0 | 0 | |||
Progressive lesions | Liver | Hypertrophy | WLP1 = 1 | 0 | 1 | 2 | 2 | ILP = 1 ILP = 2 ILP = 2 |
Interstitial tissue | Hypertrophy | WLP2 = 1 | 0 | 0 | 0 | 0 | ||
Inflammation | Liver | Activation of RES | WLI1 =1 | 0 | 0 | 0 | 0 | ILI = 2 ILI = 4 ILI = 6 |
Infiltration | WLI2 = 2 | 0 | 1 | 2 | 3 | |||
Index organ | IC = 1 | I0.0002 = 15 | I0.0003 = 23 | I0.0006 = 31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Georgieva, E.; Yancheva, V.; Stoyanova, S.; Velcheva, I.; Iliev, I.; Vasileva, T.; Bivolarski, V.; Petkova, E.; László, B.; Nyeste, K.; et al. Which Is More Toxic? Evaluation of the Short-Term Toxic Effects of Chlorpyrifos and Cypermethrin on Selected Biomarkers in Common Carp (Cyprinus carpio, Linnaeus 1758). Toxics 2021, 9, 125. https://doi.org/10.3390/toxics9060125
Georgieva E, Yancheva V, Stoyanova S, Velcheva I, Iliev I, Vasileva T, Bivolarski V, Petkova E, László B, Nyeste K, et al. Which Is More Toxic? Evaluation of the Short-Term Toxic Effects of Chlorpyrifos and Cypermethrin on Selected Biomarkers in Common Carp (Cyprinus carpio, Linnaeus 1758). Toxics. 2021; 9(6):125. https://doi.org/10.3390/toxics9060125
Chicago/Turabian StyleGeorgieva, Elenka, Vesela Yancheva, Stela Stoyanova, Iliana Velcheva, Ilia Iliev, Tonka Vasileva, Veselin Bivolarski, Eleonora Petkova, Brigitta László, Krisztián Nyeste, and et al. 2021. "Which Is More Toxic? Evaluation of the Short-Term Toxic Effects of Chlorpyrifos and Cypermethrin on Selected Biomarkers in Common Carp (Cyprinus carpio, Linnaeus 1758)" Toxics 9, no. 6: 125. https://doi.org/10.3390/toxics9060125
APA StyleGeorgieva, E., Yancheva, V., Stoyanova, S., Velcheva, I., Iliev, I., Vasileva, T., Bivolarski, V., Petkova, E., László, B., Nyeste, K., & Antal, L. (2021). Which Is More Toxic? Evaluation of the Short-Term Toxic Effects of Chlorpyrifos and Cypermethrin on Selected Biomarkers in Common Carp (Cyprinus carpio, Linnaeus 1758). Toxics, 9(6), 125. https://doi.org/10.3390/toxics9060125