Current and Future Applications of Biomedical Engineering for Proteomic Profiling: Predictive Biomarkers in Neuro-Traumatology
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Prisco, L.; Iscra, F.; Ganau, M.; Berlot, G. Early predictive factors on mortality in head injured patients: A retrospective analysis of 112 traumatic brain injured patients. J. Neurosurg. Sci. 2012, 56, 131–136. [Google Scholar] [PubMed]
- Ganau, M.; Prisco, L. Comment on “neuromonitoring in traumatic brain injury”. Minerva Anestesiol. 2013, 79, 310–311. [Google Scholar] [PubMed]
- Mathers, C.D.; Loncar, D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006, 3, e442. [Google Scholar] [CrossRef] [PubMed]
- Coronado, V.G.; McGuire, L.C.; Sarmiento, K.; Bell, J.; Lionbarger, M.R.; Jones, C.D.; Geller, A.I.; Khoury, N.; Xu, L. Trends in Traumatic Brain Injury in the U.S. and the public health response: 1995–2009. J. Saf. Res. 2012, 43, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Syrmos, N.; Ganau, M.; De Carlo, A.; Prisco, L.; Ganau, L.; Valadakis, V.; Grigoriou, K.; Iliadis, C.; Arvanitakis, D. Dealing with the surgical and medical challenges of penetrating brain injuries. Case Rep. Surg. 2013, 2013, 209750. [Google Scholar] [CrossRef] [PubMed]
- Ganau, L.; Prisco, L.; Ganau, M. High altitude induced bilateral non-traumatic subdural hematoma. Aviat. Space Environ. Med. 2012, 83, 899–901. [Google Scholar] [CrossRef] [PubMed]
- Gilmer, L.K.; Roberts, K.N.; Joy, K.; Sullivan, P.G.; Scheff, S.W. Early mitochondrial dysfunction after cortical contusion injury. J. Neurotrauma 2009, 26, 1271–1280. [Google Scholar] [CrossRef] [PubMed]
- Arun, P.; Abu-Taleb, R.; Oguntayo, S.; Wang, Y.; Valiyaveettil, M.; Long, J.B.; Nambiar, M.P. Acute mitochondrial dysfunction after blast exposure: Potential role of mitochondrial glutamate oxaloacetate transaminase. J. Neurotrauma 2013, 30, 1645–1651. [Google Scholar] [CrossRef] [PubMed]
- Jeter, C.B.; Hergenroeder, G.W.; Ward, N.H., III; Moore, A.N.; Dash, P.K. Human mild traumatic brain injury decreases circulating branched-chain amino acids and their metabolite levels. J. Neurotrauma 2013, 30, 671–679. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manek, R.; Moghieb, A.; Yang, Z.; Kumar, D.; Kobessiy, F.; Sarkis, G.A.; Raghavan, V.; Wang, K.K.W. Protein Biomarkers and Neuroproteomics Characterization of Microvesicles/Exosomes from Human Cerebrospinal Fluid Following Traumatic Brain Injury. Mol. Neurobiol. 2017. [Google Scholar] [CrossRef] [PubMed]
- Di Pietro, V.; Ragusa, M.; Davies, D.; Su, Z.; Hazeldine, J.; Lazzarino, G.; Hill, L.J.; Crombie, N.; Foster, M.; Purrello, M.; et al. MicroRNAs as Novel Biomarkers for the Diagnosis and Prognosis of Mild and Severe Traumatic Brain Injury. J. Neurotrauma 2017, 34, 1948–1956. [Google Scholar] [CrossRef] [PubMed]
- Bhomia, M.; Balakathiresan, N.S.; Wang, K.K.; Papa, L.; Maheshwari, R.K. A Panel of Serum MiRNA Biomarkers for the Diagnosis of Severe to Mild Traumatic Brain Injury in Humans. Sci. Rep. 2016, 6, 28148. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Song, J.; Bu, X.; Wang, C.; Wu, J.; Cai, J.; Wan, S.; Fan, C.; Zhang, C.; Wang, J. Elevated serum miR-93, miR-191, and miR-499 are noninvasive biomarkers for the presence and progression of traumatic brain injury. J. Neurochem. 2016, 137, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Redell, J.B.; Moore, A.N.; Ward, N.H., III; Hergenroeder, G.W.; Dash, P.K. Human traumatic brain injury alters plasma microRNA levels. J. Neurotrauma 2010, 27, 2147–2156. [Google Scholar] [CrossRef] [PubMed]
- Connor, D.E., Jr.; Chaitanya, G.V.; Chittiboina, P.; McCarthy, P.; Scott, L.K.; Schrott, L.; Minagar, A.; Nanda, A.; Alexander, J.S. Variations in the cerebrospinal fluid proteome following traumatic brain injury and subarachnoid hemorrhage. Pathophysiology 2017, 24, 169–183. [Google Scholar] [CrossRef] [PubMed]
- Rubenstein, R.; Chang, B.; Yue, J.K.; Chiu, A.; Winkler, E.A.; Puccio, A.M.; Diaz-Arrastia, R.; Yuh, E.L.; Mukherjee, P.; Valadka, A.B.; et al. Comparing Plasma Phospho Tau, Total Tau, and Phospho Tau-Total Tau Ratio as Acute and Chronic Traumatic Brain Injury Biomarkers. JAMA Neurol. 2017, 74, 1063–1072. [Google Scholar] [CrossRef] [PubMed]
- Núñez Galindo, A.; Kussmann, M.; Dayon, L. Proteomics of Cerebrospinal Fluid: Throughput and Robustness Using a Scalable Automated Analysis Pipeline for Biomarker Discovery. Anal. Chem. 2015, 87, 10755–10761. [Google Scholar] [CrossRef] [PubMed]
- Sajja, V.S.S.S.; Jablonska, A.; Haughey, N.; Bulte, J.W.M.; Stevens, R.D.; Long, J.B.; Walczak, P.; Janowski, M. Sphingolipids and microRNA Changes in Blood following Blast Traumatic Brain Injury: An Exploratory Study. J. Neurotrauma 2017. [Google Scholar] [CrossRef] [PubMed]
- Chandran, R.; Sharma, A.; Bhomia, M.; Balakathiresan, N.S.; Knollmann-Ritschel, B.E.; Maheshwari, R.K. Differential expression of microRNAs in the brains of mice subjected to increasing grade of mild traumatic brain injury. Brain Inj. 2017, 31, 106–119. [Google Scholar] [CrossRef] [PubMed]
- Wofford, K.L.; Harris, J.P.; Browne, K.D.; Brown, D.P.; Grovola, M.R.; Mietus, C.J.; Wolf, J.A.; Duda, J.E.; Putt, M.E.; Spiller, K.L.; et al. Rapid neuroinflammatory response localized to injured neurons after diffuse traumatic brain injury in swine. Exp. Neurol. 2017, 290, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Kobeissy, F.H.; Guingab-Cagmat, J.D.; Zhang, Z.; Moghieb, A.; Glushakova, O.Y.; Mondello, S.; Boutté, A.M.; Anagli, J.; Rubenstein, R.; Bahmad, H.; et al. Neuroproteomics and Systems Biology Approach to Identify Temporal Biomarker Changes Post Experimental Traumatic Brain Injury in Rats. Front. Neurol. 2016, 7, 198. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zhu, S.; Li, Y.; Zhao, M.; Liu, M.; Gao, J.; Ding, S.; Li, J. Quantitative proteomics analysis to identify diffuse axonal injury biomarkers in rats using iTRAQ coupled LC-MS/MS. J. Proteom. 2016, 133, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Haselwood, B.A.; La Belle, J.T. Development of electrochemical methods to enzymatically detect traumatic brain injury biomarkers. Biosens. Bioelectron. 2015, 67, 752–756. [Google Scholar] [CrossRef] [PubMed]
- Evans, T.M.; Van Remmen, H.; Purkar, A.; Mahesula, S.; Gelfond, J.A.; Sabia, M.; Qi, W.; Lin, A.L.; Jaramillo, C.A.; Haskins, W.E. Microwave & Magnetic (M2) Proteomics of a Mouse Model of Mild Traumatic Brain Injury. Transl. Proteom. 2014, 3, 10–21. [Google Scholar] [PubMed]
- Balakathiresan, N.; Bhomia, M.; Chandran, R.; Chavko, M.; McCarron, R.M.; Maheshwari, R.K. MicroRNA let-7i is a promising serum biomarker for blast-induced traumatic brain injury. J. Neurotrauma 2012, 29, 1379–1387. [Google Scholar] [CrossRef] [PubMed]
- Ganau, M. Tackling gliomas with nanoformulated antineoplastic drugs: Suitability of hyaluronic acid nanoparticles. Clin. Transl. Oncol. 2014, 16, 220–223. [Google Scholar] [CrossRef] [PubMed]
- Ganau, M.; Bosco, A.; Palma, A.; Corvaglia, S.; Parisse, P.; Fruk, L.; Beltrami, A.P.; Cesselli, D.; Casalis, L.; Scoles, G. A DNA-based nano-immunoassay for the label-free detection of glial fibrillary acidic protein in multicell lysates. Nanomedicine 2015, 11, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Lequin, R.M. Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin. Chem. 2005, 51, 2415–2418. [Google Scholar] [CrossRef] [PubMed]
- Engvall, E.; Perlmann, P. Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry 1971, 8, 871–874. [Google Scholar] [CrossRef]
- Koppelman, S.J.; Lakemond, C.M.; Vlooswijk, R.; Hefle, S.L. Detection of soy proteins in processed foods: Literature overview and new experimental work. J. AOAC Int. 2004, 87, 1398–1407. [Google Scholar] [PubMed]
- Rissin, D.M.; Kan, C.W.; Campbell, T.G.; Howes, S.C.; Fournier, D.R.; Song, L.; Piech, T.; Patel, P.P.; Chang, L.; Rivnak, A.J.; et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat. Biotechnol. 2010, 28, 595–599. [Google Scholar] [CrossRef] [PubMed]
- Wilson, D.H.; Rissin, D.M.; Kan, C.W.; Fournier, D.R.; Piech, T.; Campbell, T.G.; Meyer, R.E.; Fishburn, M.W.; Cabrera, C.; Patel, P.P.; et al. The Simoa HD-1 Analyzer: A Novel Fully Automated Digital Immunoassay Analyzer with Single-Molecule Sensitivity and Multiplexing. J. Lab. Autom. 2016, 21, 533–547. [Google Scholar] [CrossRef] [PubMed]
- Waybright, T.J. Preparation of human cerebrospinal fluid for proteomics biomarker analysis. Methods Mol. Biol. 2013, 1002, 61–70. [Google Scholar] [PubMed]
- Raphael, I.; Mahesula, S.; Kalsaria, K.; Kotagiri, V.; Purkar, A.B.; Anjanappa, M.; Shah, D.; Pericherla, V.; Jadhav, Y.L.; Raghunathan, R.; et al. Microwave and magnetic (M(2)) proteomics of the experimental autoimmune encephalomyelitis animal model of multiple sclerosis. Electrophoresis 2012, 33, 3810–3819. [Google Scholar] [CrossRef] [PubMed]
- Munson, P.; Shukla, A. Exosomes: Potential in Cancer Diagnosis and Therapy. Medicines 2015, 2, 310–327. [Google Scholar] [CrossRef] [PubMed]
- Taylor, D.D.; Gercel-Taylor, C. Exosome platform for diagnosis and monitoring of traumatic brain injury. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014, 369, 1652. [Google Scholar] [CrossRef] [PubMed]
- Thelin, E.P.; Zeiler, F.A.; Ercole, A.; Mondello, S.; Büki, A.; Bellander, B.M.; Helmy, A.; Menon, D.K.; Nelson, D.W. Serial Sampling of Serum Protein Biomarkers for Monitoring Human Traumatic Brain Injury Dynamics: A Systematic Review. Front. Neurol. 2017, 8, 300. [Google Scholar] [CrossRef] [PubMed]
- Hill, L.J.; Di Pietro, V.; Hazeldine, J.; Davies, D.; Tomman, E.; Logan, A.; Belli, A. Cystatin D (CST5): An ultra-early inflammatory biomarker of traumatic brain injury. Sci. Rep. 2017, 7, 5002. [Google Scholar] [CrossRef] [PubMed]
- Satyarthee, G.D. Biomarker-Based Targeted Therapy of Traumatic Brain Injury: From Prehospital Care to In-Hospital Care to Rehabilitation. World Neurosurg. 2017, 103, 939–941. [Google Scholar] [CrossRef] [PubMed]
- Wolahan, S.M.; Hirt, D.; Braas, D.; Glenn, T.C. Role of Metabolomics in Traumatic Brain Injury Research. Neurosurg. Clin. N. Am. 2016, 27, 465–472. [Google Scholar] [CrossRef] [PubMed]
- Butterfield, D.A.; Reed, T.T. Lipid peroxidation and tyrosine nitration in traumatic brain injury: Insights into secondary injury from redox proteomics. Proteom. Clin. Appl. 2016, 10, 1191–1204. [Google Scholar] [CrossRef] [PubMed]
- Shan, R.; Szmydynger-Chodobska, J.; Warren, O.U.; Mohammad, F.; Zink, B.J.; Chodobski, A. A New Panel of Blood Biomarkers for the Diagnosis of Mild Traumatic Brain Injury/Concussion in Adults. J. Neurotrauma 2016, 33, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Stefani, M.A.; Modkovski, R.; Hansel, G.; Zimmer, E.R.; Kopczynski, A.; Muller, A.P.; Strogulski, N.R.; Rodolphi, M.S.; Carteri, R.K.; Schmidt, A.P.; et al. Elevated glutamate and lactate predict brain death after severe head trauma. Ann. Clin. Transl. Neurol. 2017, 4, 392–402. [Google Scholar] [CrossRef] [PubMed]
- Lewis, L.M.; Schloemann, D.T.; Papa, L.; Fucetola, R.P.; Bazarian, J.; Lindburg, M.; Welch, R.D. Utility of Serum Biomarkers in the Diagnosis and Stratification of Mild Traumatic Brain Injury. Acad. Emerg. Med. 2017, 24, 710–720. [Google Scholar] [CrossRef] [PubMed]
Methodologies and References | Findings |
---|---|
Microvescicles/Exosome | |
Manek, R., et al., 2017 [11] | Using targeted immunoblotting approach, several known TBI biomarkers such as αII-spectrin breakdown products, GFAP, and UCH-L1 were found in higher concentrations in microvescicles/exosomes from TBI CSF than their counterparts from control CSF. |
MicroRNA | |
Di Pietro, V., et al., 2017 [12] | Using a real time PCR/MicroRNA assay, early downregulation of miR-425-5p and miR-502 in moderate TBI, and upregulation of miR-21 and miR-335 in patients with severe TBI, were demonstrated. In addition, miR-425-5p and miR-21 were demonstrated to be strong predictors of the 6-month outcome at ultra-early (T0-1 h) and early time points (T4-12 h). |
Bhomia, M., et al., 2016 [13] | Using a real time PCR/Micro RNA assay, accurate biomarkers of TBI were identified: miR-195, miR-451, miR-92a, miR-486, miR-505, miR-362, and miR-20a. The computational analysis of the 30 genes identified as direct targets for the miRNA candidates listed above revealed involvement of important neurological pathways (i.e., G protein-coupled receptor signaling, GABA receptor signaling, neuropathic pain signaling, etc.). |
Yang, T., et al., 2016 [14] | Using a real time PCR/Micro RNA assay miR-93, miR-191, and miR-499 emerged as plasma biomarkers to distinguish mild TBI patients from healthy controls. |
Redell, J.B., et al., 2010 [15] | Using a real time PCR/Micro RNA assay miR-16, miR-92a, and miR-765 were identified as good markers of severe TBI. |
MALDI Mass Spectrometry | |
Connor, D.E., Jr.; et al., 2017 [16] | Using a MALDI MS approach, a consistent CSF elevation of carbonic anhydrase-I (CA-I) and peroxiredoxin-2 (Prx-2), both α and β chains of hemoglobin, with concurrent depletion of serotransferrin (Tf) and N-terminal haptoglobin (Hp), emerged as a useful combination of biomarkers for the prediction of severity and prognosis following TBI. |
Multiplexing and Immunoassays | |
Rubenstein, R., et al., 2017 [17] | Using an ultra-high sensitivity, laser-based, immunoassay, multi-arrayed fiberoptics conjugated with rolling circle amplification, this study demonstrated that plasma P-tau levels and the P-tau/T-tau ratio outperformed T-tau level as diagnostic and prognostic biomarkers for acute TBI. On the other hand, compared with T-tau levels alone, P-tau levels and P-tau/T-tau ratios show more robust and sustained elevations among patients with chronic TBI. |
Núñez Galindo, A., et al., 2015 [18] | Using a scalable automated proteomic pipeline known as ASAP(2) for the sample preparation and proteomic analysis of CSF and plasma in TBI patients, this study showed increased throughput and robustness for biomarker discovery, enabling proteome coverage consistency (up to 387 proteins screened), quantitative accuracy, and detection of individual protein variability. |
Reference | Model of TBI | Findings |
---|---|---|
Sajja, V.S.S.S., et al., 2017 [19] | Murine model of mild to moderate blunt TBI | Plasma levels of miR-127, as well as lipid profiling with decreased C18 fatty acid chains of sphingomyelins and increased ceramide levels in TBI models compared to controls. |
Chandran, R., et al., 2017 [20] | Mice models of mild TBI | Axon guidance, calcium signaling, and various synaptic pathways such as dopaminergic, GABAergic, glutamatergic, and cholinergic synapse pathways appear significantly affected by the miRNAs modulated at both 24 h and 7 days post-injury (miR-27a, miR-150, miR-155, miR-222, miR-223 and miR-449a, miR-744, and miR-874). |
Wofford, K.L., et al., 2017 [21] | Swine model of mild to severe TBI | Single cell quantitative analysis showed that neuronal trauma rapidly activates microglia in a highly localized manner, being restrained to regions proximal to individual injured neurons (trauma-induced plasma membrane disruption) erve as epicenters of acute reactivity. |
Kobeissy, F.H., et al., 2017 [22] | Rat models of moderate to severe TBI | Gene ontology analysis of the proteomic data allowed us to categorize the proteins by molecular function, biological process, and cellular localization, showing alterations in several proteins related to inflammatory responses and oxidative stress in both acute (1 day) and subacute (7 days) periods post-TBI. Moreover, a differential upregulation of neuroprotective proteins involved in cellular functions such as neurite growth, regeneration, and axonal guidance was shown at 7 days post-TBI. |
Zhang, P., et al., 2016 [23] | Rat models of diffuse axonal injury | Among biomarkers for diffuse axonal injury, identified by iTRAQ coupled liquid chromatography/mass spectroscopy, four proteins (citrate synthase, synaptosomal-associated protein 25 (Snap25), microtubule-associated protein 1B (MAP1B), and Rho-associated protein kinase 2 (Rock2)) were successfully validated by subsequent Western blot and immunohistochemistry analyses. |
Haselwood, B.A., et al., 2015 [24] | Rabbit models of mild to moderate TBI | Using electrochemical impedance techniques for point-of-care TBI diagnosis, it was possible to detect sustained blood elevation of norepinephrine concentrations, known to negatively relate to long-term outcomes in TBI, with lower limit of detection in the range of pg/mL. |
Evans, T.M., et al., 2014 [25] | Mouse models of mild TBI | M2 proteomic analysis revealed statistically significant changes in the expression of myelin basic protein (MBP) and myelin-associated glycoprotein (MAG), both well know biomarkers of neuronal damage, at 1, 7, and 30 days post-TBI. MAG, αII-spectrin (SPNA2) and neurofilament light (NEFL) expression at 30 days post-TBI resulted related to functional outcome. |
Balakathiresan, N., et al., 2012 [26] | Rat models of moderate blunt TBI | Elevated plasma and CSF levels of miRNA let-7i appear immediately after blast wave exposure. Of note, miR-let-7i seems associated with the expression of proteins and inflammatory cytokines, including S100β and UCH-L1, already investigated as biomarkers for TBI. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ganau, M.; Syrmos, N.; Paris, M.; Ganau, L.; Ligarotti, G.K.I.; Moghaddamjou, A.; Chibbaro, S.; Soddu, A.; Ambu, R.; Prisco, L. Current and Future Applications of Biomedical Engineering for Proteomic Profiling: Predictive Biomarkers in Neuro-Traumatology. Medicines 2018, 5, 19. https://doi.org/10.3390/medicines5010019
Ganau M, Syrmos N, Paris M, Ganau L, Ligarotti GKI, Moghaddamjou A, Chibbaro S, Soddu A, Ambu R, Prisco L. Current and Future Applications of Biomedical Engineering for Proteomic Profiling: Predictive Biomarkers in Neuro-Traumatology. Medicines. 2018; 5(1):19. https://doi.org/10.3390/medicines5010019
Chicago/Turabian StyleGanau, Mario, Nikolaos Syrmos, Marco Paris, Laura Ganau, Gianfranco K.I. Ligarotti, Ali Moghaddamjou, Salvatore Chibbaro, Andrea Soddu, Rossano Ambu, and Lara Prisco. 2018. "Current and Future Applications of Biomedical Engineering for Proteomic Profiling: Predictive Biomarkers in Neuro-Traumatology" Medicines 5, no. 1: 19. https://doi.org/10.3390/medicines5010019
APA StyleGanau, M., Syrmos, N., Paris, M., Ganau, L., Ligarotti, G. K. I., Moghaddamjou, A., Chibbaro, S., Soddu, A., Ambu, R., & Prisco, L. (2018). Current and Future Applications of Biomedical Engineering for Proteomic Profiling: Predictive Biomarkers in Neuro-Traumatology. Medicines, 5(1), 19. https://doi.org/10.3390/medicines5010019