Acupuncture and Neural Mechanism in the Management of Low Back Pain—An Update
Abstract
:1. Introduction
2. Causes and Risk Factors of Lower Back Pain
2.1. Age and Gender
2.2. Obesity and Smoking
3. Theories of Pain
4. Pain Mechanism
4.1. Nerve Fibres
4.2. Inflammatory Soup
5. Treatment of LBP by Acupuncture
5.1. Acupuncture
5.2. Brief History of Acupuncture
5.3. Theory of Traditional Chinese Medicine
6. Acupuncture Principles
6.1. The Anatomical Structure of Acupuncture Points and Meridians
6.2. Acupuncture Points, Ashi Points, Myofascial Trigger Points (mTrPs) and Referral Pain
7. Qi and Energy Fields
7.1. How to Relate Qi to Molecular Knowledge of Modern Medicine?
7.2. Energy and Information
8. Is Acupuncture a Placebo Intervention?
8.1. In the Wake of Double-Blind Randomised Control Trials (RCTs)
8.2. The Placebo Effect
8.3. Clinical Studies
8.4. Acupuncture Points for Lower Back Pain
8.5. Clinical Relevance
9. Mechanism of Acupuncture
9.1. Deqi
9.2. Needle Grasp
9.3. Afferent Nerve Fibres
9.4. Acupuncture Analgesic
9.5. ATP as Neurotransmitter
9.6. Adenosine-Induced Anti-Nociception
10. Discussion
11. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
5-HT | 5-hydroxytryptamine |
A1R | Adenosine A1 receptor |
ADL | activities of daily life |
ADP | adenosine diphosphate |
AIDS | acquired immune deficiency syndrome |
AMP | adenosine monophosphate |
ATP | adenosine triphosphate |
BCEC | Biologically Closed Electric Circuits |
BMI | body mass index |
cAMP | cyclic adenosine monophosphate |
CGRP | calcitonin gene-related peptide |
CLBP | chronic low back pain |
CNLBP | chronic nociceptive low back pain |
CNS | central nervous system |
CO2 | carbon dioxide |
COPD | chronic obstructive pulmonary disease |
CSP | chronic spinal pain |
CVDs | cardiovascular diseases |
DALYs | disability-adjusted life years |
dCF | deoxycoformycin |
DRG | dorsal root ganglia |
EA | electroacupuncture |
ECG | electrocardiogram |
EEG | electroencephalogram |
EU | European Union |
fMRI | functional magnetic resonance imaging |
GBD | The Global Burden of Disease Study |
GERAD | German Acupuncture Trials |
GIDs | gastrointestinal disorders |
G proteins | guanine nucleotide-binding proteins |
GV | Governing Vessel |
H+ | protons |
H2O | water |
HIV | human immunodeficiency virus |
HM | Heart meridian |
LBP | lower back pain |
MA | manual acupuncture |
MFE | Medium-Frequency Electrotherapy |
mTrPs | Myofascial Trigger Points |
MUS | medically unexplained symptoms |
NGF | nerve growth factor |
NRS | numerical rating scale |
NSAIDs | non-steroidal anti-inflammatory drugs |
NSCLBP | non-specific chronic low back pain |
P2X3 | P2X ligand-gated ion channel 3 receptor |
PAP | prostatic acid phosphatase |
PGI | patient global impression |
PN | primo node |
PPT | pressure pain threshold |
PV | primo vessel |
PVS | primo vascular system |
RCTs | randomised control trials |
ROM | range of motion |
SQID | Superconducting Quantum Interference Device |
TCM | Traditional Chinese Medicine |
TENS | transcutaneous electric nerve stimulation |
TRP | transient receptor potential |
TRPA1 | transient receptor potential ankyrin 1 |
TRPV1 | transient receptor potential vanilloid 1 |
VAS | visual analogue scale |
WHO | World Health Organisation |
YLDs | years lived with disability |
References
- Béatrice Duthey. Background Paper 6.24 Lower Back Pain. 2013. Available online: http://www.who.int/medicines/areas/priority_medicines/BP6_24LBP.pdf (accessed on 5 June 2018).
- Driscoll, T.; Jacklyn, G.; Orchard, J.; Passmore, E.; Vos, T.; Freedman, G.; Lim, S.; Punnett, L. The global burden of occupationally related low back pain: Estimates from the Global Burden of Disease 2010 study. Ann. Rheum. Dis. 2014, 73, 975–981. [Google Scholar] [CrossRef] [PubMed]
- Hoy, D.; March, L.; Brooks, P.; Blyth, F.; Woolf, A.; Bain, C.; Williams, G.; Smith, E.; Vos, T.; Barendregt, J.; et al. The global burden of low back pain: Estimates from the Global Burden of Disease 2010 study. Ann. Rheum. Dis. 2014, 73, 968–974. [Google Scholar] [CrossRef] [PubMed]
- Van Tulder, M.; Koes, B. Low Back Pain. In Wall and Melzack’s Textbook of Pain, 6th ed.; McMahon, S., Koltzenburg, M., Tracey, I., Turk, D., Eds.; Churchill Livingstone: Philadelphia, PA, USA, 2013; Chapter 49. [Google Scholar]
- Van Tulder, M.; Becker, A.; Bekkering, T.; Breen, A.; Hutchinson, A.; Koes, B.; Laerum, E.; Malmivaara, A. Chapter 3 European guidelines for the management of acute nonspecific lower back pain in primary care. Eur. Spine J. 2006, 15 (Suppl. 2), S169–S191. [Google Scholar] [CrossRef] [PubMed]
- Burton, A.K.; Balagué, F.; Cardon, G.; Eriksen, H.R.; Henrotin, Y.; Lahad, A.; Leclerc, A.; Müller, G.; van der Beek, A.J. Chapter 2 European guidelines for prevention in low back pain. Eur. Spine J. 2006, 15 (Suppl. 2), S136–S168. [Google Scholar] [CrossRef] [PubMed]
- Yiengprugsawan, V.; Hoy, D.; Buchbinder, R.; Bain, C.; Seubsman, S.; Sleigh, A.C. Low back pain and limitations of daily living in Asia: Longitudinal findings in the Thai cohort study. BMC Musculoskelet. Disord. 2017, 18, 19. [Google Scholar] [CrossRef] [PubMed]
- Norbye, A.D.; Omdal, A.V.; Nygaard, M.E.; Romild, U.; Eldøen, G.; Midgard, R. Do patients with chronic low back pain benefit from early intervention regarding absence from work? Spine 2016, 41, E1257–E1264. [Google Scholar] [CrossRef] [PubMed]
- Kolu, P.; Tokola, K.; Kankaanpää, M.; Suni, J. Evaluation of the effects of physical activity, cardiorespiratory condition, and neuromuscular fitness on direct healthcare costs and sickness-related absence among nursing personnel with recurrent nonspecific low back pain. Spine 2017, 42, 854–862. [Google Scholar] [CrossRef] [PubMed]
- McPhillips-Tangum, C.A.; Cherkin, D.C.; Rhodes, L.A.; Markham, C. Reasons for repeated medical visits among patients with chronic back pain. J. Gen. Intern Med. 1998, 13, 289–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jöud, A.; Petersson, I.F.; Englund, M. Low back pain: Epidemiology of consultations. Arthritis Care Res. 2012, 64, 1084–1088. [Google Scholar] [CrossRef] [PubMed]
- WHO Methods and Data Sources for Global Burden of Disease Estimates 2000–2011. Available online: http://www.who.int/healthinfo/statistics/GlobalDALYmethods_2000_2011.pdf (accessed on 5 June 2018).
- Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1211–1259.
- Global, regional, and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1260–1344.
- WHO Methods and Data Sources for Global Burden of Disease Estimates 2000–2015. WHO: Geneva, Switzerland, January 2017. Available online: http://www.who.int/healthinfo/global_burden_disease/GlobalDALYmethods_2000_2015.pdf (accessed on 5 June 2018).
- The Institute for Health Metrics and Evaluation (IHME). Available online: http://www.healthdata.org/austria (accessed on 5 June 2018).
- Hoy, D.; Bain, C.; Williams, G.; March, L.; Brooks, P.; Blyth, F.; Woolf, A.; Vos, T.; Buchbinder, R. A systematic review of the global prevalence of low back pain. Arthritis Rheum. 2012, 64, 2028–2037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frymoyer, J.W.; Cats-Baril, W.L. An overview of the incidences and costs of low back pain. Orthop. Clin. N. Am. 1991, 22, 263–271. [Google Scholar]
- Geusens, P.; De Winter, L.; Quaden, D.; Vanhoof, J.; Vosse, D.; Van den Bergh, J.; Somers, V. The prevalence of vertebral fractures in spondyloarthritis: Relation to disease characteristics, bone mineral density, syndesmophytes and history of back pain and trauma. Arthritis Res. Ther. 2015, 17, 294. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Isu, T.; Chiba, Y.; Iwamoto, N.; Yamazaki, K.; Morimoto, D.; Isobe, M.; Inoue, K. Treatment of low back pain in patients with vertebral compression fractures and superior cluneal nerve entrapment neuropathies. Surg. Neurol. Int. 2015, 6 (Suppl. 24), S619–S621. [Google Scholar] [CrossRef] [PubMed]
- Michailidou, C.; Marston, L.; De Souza, L.H.; Sutherland, I. A systematic review of the prevalence of musculoskeletal pain, back and low back pain in people with spinal cord injury. Disabil. Rehabilit. 2014, 36, 705–715. [Google Scholar] [CrossRef] [PubMed]
- Määttä, J.H.; Wadge, S.; MacGregor, A.; Karppinen, J.; Williams, F.M. ISSLS prize winner: Vertebral endplate (Modic) change is an independent risk factor for episodes of severe and disabling low back pain. Spine 2015, 40, 1187–1193. [Google Scholar] [CrossRef] [PubMed]
- Jensen, O.K.; Nielsen, C.V.; Sørensen, J.S.; Stengaard-Pedersen, K. Back pain was less explained than leg pain: A cross-sectional study using magnetic resonance imaging in low back pain patients with and without radiculopathy. BMC Musculoskelet. Disord. 2015, 16, 374. [Google Scholar] [CrossRef] [PubMed]
- Daghighi, M.H.; Pouriesa, M.; Maleki, M.; Fouladi, D.F.; Pezeshki, M.Z.; Khameneh, R.M.; Bazzazi, A.M. Migration patterns of herniated disc fragments: A study on 1020 patients with extruded lumbar disc herniation. Spine J. 2014, 14, 1970–1977. [Google Scholar] [CrossRef] [PubMed]
- Kuniya, H.; Aota, Y.; Kawai, T.; Kaneko, K.; Konno, T.; Saito, T. Prospective study of superior cluneal nerve disorder as a potential cause of low back pain and leg symptoms. J. Orthop. Surg. Res. 2014, 9, 139. [Google Scholar] [CrossRef] [PubMed]
- Samini, F.; Gharedaghi, M.; Mahdi Khajavi, M.; Samini, M. The etiologies of low back pain in patients with lumbar disk herniation. Iran. Red Crescent Med. J. 2014, 16, E15670. [Google Scholar] [CrossRef] [PubMed]
- Gorth, D.J.; Shapiro, I.M.; Risbud, M.V. Discovery of the drivers of inflammation induced chronic low back pain: From bacteria to diabetes. Discov. Med. 2015, 20, 177–184. [Google Scholar] [PubMed]
- Fisher, T.J.; Osti, O.L. Do bacteria play an important role in the pathogenesis of low back pain? ANZ J. Surg. 2015, 85, 808–814. [Google Scholar] [CrossRef] [PubMed]
- Hassoon, A.; Bydon, M.; Kerezoudis, P.; Maloney, P.R.; Rinaldo, L.; Yeh, H.C. Chronic low-back pain in adult with diabetes: NHANES 2009–2010. J. Diabetes Complicat. 2017, 31, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Piazzolla, A.; Solarino, G.; Bizzoca, D.; Montemurro, V.; Berjano, P.; Lamartina, C.; Martini, C.; Moretti, B. Spinopelvic parameter changes and low back pain improvement due to femoral neck anteversion in patients with severe unilateral primary hip osteoarthritis undergoing total hip replacement. Eur. Spine J. 2018, 27, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.; Suzuki, A.; Takahashi, S.; Yasuda, H.; Koike, T.; Nakamura, H. Severe low back pain in patients with rheumatoid arthritis is associated with Disease Activity Score but not with radiological findings on plain X-rays. Mod. Rheumatol. 2015, 25, 56–61. [Google Scholar] [CrossRef] [PubMed]
- El Barzouhi, A.; Vleggeert-Lankamp, C.L.; van der Kallen, B.F.; Lycklama à Nijeholt, G.J.; van den Hout, W.B.; Koes, B.W.; Peul, W.C. Back pain’s association with vertebral end-plate signal changes in sciatica. Spine J. 2014, 14, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yu, X.; Yan, Y.; Yang, W.; Zhang, S.; Xiang, Y.; Zhang, J.; Wang, W. Tumor necrosis factor-α: A key contributor to intervertebral disc degeneration. Acta Biochim. Biophys. Sin. 2017, 49, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Yu, J.; Liu, N.; Liu, Z.; Wei, X.; Yan, F.; Yu, S. Low back pain among taxi drivers: A cross-sectional study. Occup. Med. 2017, 67, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Snow, C.R.; Gregory, D.E. Perceived risk of low-back injury among four occupations. Hum. Factors 2016, 58, 586–594. [Google Scholar] [CrossRef] [PubMed]
- Esquirol, Y.; Niezborala, M.; Visentin, M.; Leguevel, A.; Gonzalez, I.; Marquié, J.C. Contribution of occupational factors to the incidence and persistence of chronic low back pain among workers: Results from the longitudinal VISAT study. Occup. Environ. Med. 2017, 74, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Rafeemanesh, E.; Omidi Kashani, F.; Parvaneh, R.; Ahmadi, F. A Survey on Low Back Pain Risk Factors in Steel Industry Workers in 2015. Asian Spine J. 2017, 11, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Sundstrup, E.; Andersen, L.L. Hard physical work intensifies the occupational consequence of physician-diagnosed back disorder: Prospective cohort study with register follow-up among 10,000 workers. Int. J. Rheumatol. 2017, 2017, 1037051. [Google Scholar] [CrossRef] [PubMed]
- Heuch, I.; Heuch, I.; Hagen, K.; Zwart, J.A. Physical activity level at work and risk of chronic low back pain: A follow-up in the Nord-Trøndelag Health Study. PLoS ONE 2017, 12, e0175086. [Google Scholar] [CrossRef] [PubMed]
- Trompeter, K.; Fett, D.; Platen, P. Prevalence of back pain in sports: A systematic review of the literature. Sports Med. 2017, 47, 1183–1207. [Google Scholar] [CrossRef] [PubMed]
- Matesan, M.; Behnia, F.; Bermo, M.; Vesselle, H. SPECT/CT bone scintigraphy to evaluate low back pain in young athletes: Common and uncommon etiologies. J. Orthop. Surg. Res. 2016, 11, 76. [Google Scholar] [CrossRef] [PubMed]
- del Pozo-Cruz, B.; Gusi, N.; Adsuar, J.C.; del Pozo-Cruz, J.; Parraca, J.A.; Hernandez-Mocholí, M. Musculoskeletal fitness and health-related quality of life characteristics among sedentary office workers affected by sub-acute, non-specific low back pain: A cross-sectional study. Physiotherapy 2013, 99, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Billy, G.G.; Lemieux, S.K.; Chow, M.X. Lumbar disc changes associated with prolonged sitting. PM R 2014, 6, 790–795. [Google Scholar] [CrossRef] [PubMed]
- Teichtahl, A.J.; Urquhart, D.M.; Wang, Y.; Wluka, A.E.; O’Sullivan, R.; Jones, G.; Cicuttini, F.M. Physical inactivity is associated with narrower lumbar intervertebral discs, high fat content of paraspinal muscles and low back pain and disability. Arthritis Res. Ther. 2015, 17, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krieg, S.M.; Meyer, B. Operative Therapiemöglichkeiten beim Postnukleotomiesyndrom. Orthopäde 2016, 45, 732–737. [Google Scholar] [CrossRef] [PubMed]
- Manchikanti, L.; Manchikanti, K.N.; Gharibo, C.G.; Kaye, A.D. Efficacy of percutaneous adhesiolysis in the treatment of lumbar post surgery syndrome. Anesthesiol. Pain Med. 2016, 6, E26172. [Google Scholar] [CrossRef] [PubMed]
- Kaptan, H.; Kulaksızoğlu, H.; Kasımcan, Ö.; Seçkin, B. The association between urinary incontinence and low back pain and radiculopathy in women. Open Access Maced. J. Med. Sci. 2016, 4, 665–669. [Google Scholar] [CrossRef] [PubMed]
- Ha, I.H.; Lee, J.; Kim, M.R.; Kim, H.; Shin, J.S. The association between the history of cardiovascular diseases and chronic low back pain in South Koreans: A cross-sectional study. PLoS ONE 2014, 9, e93671. [Google Scholar] [CrossRef] [PubMed]
- Heuch, I.; Heuch, I.; Hagen, K.; Zwart, J.A. Does high blood pressure reduce the risk of chronic low back pain? The Nord-Trøndelag Health Study. Eur. J. Pain 2014, 18, 590–598. [Google Scholar] [CrossRef] [PubMed]
- Bohman, T.; Alfredsson, L.; Jensen, I.; Hallqvist, J.; Vingård, E.; Skillgate, E. Does a healthy lifestyle behaviour influence the prognosis of low back pain among men and women in a general population? A population-based cohort study. BMJ Open 2014, 4, e005713. [Google Scholar] [CrossRef] [PubMed]
- Maulik, S.; Iqbal, R.; De, A.; Chandra, A.M. Evaluation of the working posture and prevalence of musculoskeletal symptoms among medical laboratory technicians. J. Back Musculoskelet. Rehabilit. 2014, 27, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Burgel, B.J.; Elshatarat, R.A. Psychosocial work factors and low back pain in taxi drivers. Am. J. Ind. Med. 2017, 60, 734–746. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Haldeman, S.; Lu, M.L.; Baker, D. Low back pain prevalence and related workplace psychosocial risk factors: A study using data from the 2010 National Health Interview Survey. J. Manip. Physiol. Ther. 2016, 39, 459–472. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, A.; Vazini, H.; Alhani, F.; Anoosheh, M. Relationship between low back pain with quality of life, depression, anxiety and stress among emergency medical technicians. Trauma Mon. 2015, 20, E18686. [Google Scholar] [CrossRef] [PubMed]
- Smuck, M.; Kao, M.C.; Brar, N.; Martinez-Ith, A.; Choi, J.; Tomkins-Lane, C.C. Does physical activity influence the relationship between low back pain and obesity? Spine J. 2014, 14, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.T.; Liu, Z.; Liu, Y.L.; Zhao, J.J.; Liu, D.W.; Tian, Q.B. Obesity as a risk factor for low back pain: A meta-analysis. Clin. Spine Surg. 2018, 31, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Großschädl, F.; Freidl, W.; Rásky, E.; Burkert, N.; Muckenhuber, J.; Stronegger, W.J. A 35-year trend analysis for back pain in Austria: The role of obesity. PLoS ONE 2014, 9, e107436. [Google Scholar] [CrossRef] [PubMed]
- Farioli, A.; Mattioli, S.; Quaglieri, A.; Curti, S.; Violante, F.S.; Coggon, D. Musculoskeletal pain in Europe: Role of personal, occupational and social risk factors. Scand. J. Work Environ. Health 2014, 40, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.Y.; Karppinen, J.; Samartzis, D. Low back pain in older adults: Risk factors, management options and future directions. Scoliosis Spinal Disord. 2017, 12, 14. [Google Scholar] [CrossRef] [PubMed]
- Jesus-Moraleida, F.R.; Ferreira, P.H.; Ferreira, M.L.; Silva, J.P.; Maher, C.G.; Enthoven, W.T.; Bierma-Zeinstra, S.M.A.; Koes, B.W.; Luijsterburg, P.A.J.; Pereira, L.S.M. Back complaints in the elders in Brazil and the Netherlands: A cross-sectional comparison. Age Ageing 2017, 46, 476–481. [Google Scholar] [CrossRef] [PubMed]
- Maher, C.; Underwood, M.; Buchbinder, R. Non-specific low back pain. Lancet 2017, 389, 736–747. [Google Scholar] [CrossRef] [Green Version]
- Arrouas, M.; Fiala, W.; Hanna-Klinger, M.; Hartl, F.; Lampl, P.D.D.C.; Plank, V.; Schlegl, C. Update der evidenz- und konsensusbasierten österreichischen Leitlinien für das Management akuter und chronischer unspezifischer Kreuzschmerzen 2011. ÖÄZ 2012, 2324, 30–39. Available online: http://www.aekwien.at/aekmedia/UpdateLeitlinienKreuzschmerz_2011_0212.pdf (accessed on 5 June 2018).
- Krismer, M.; van Tulder, M. Strategies for prevention and management of musculoskeletal conditions. Low back pain (non-specific). Best Pract. Res. Clin. Rheumatol. 2007, 21, 77–91. [Google Scholar] [CrossRef] [PubMed]
- Hoy, D.; Brooks, P.; Blyth, F.; Buchbinder, R. The epidemiology of low back pain. Best Pract. Res. Clin. Rheumatol. 2010, 24, 769–781. [Google Scholar] [CrossRef] [PubMed]
- Salzberg, L.D.; Manusov, E.G. Management options for patients with chronic back pain without an etiology. Health Serv. Insights 2013, 6, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Wáng, Y.X.J.; Wáng, J.Q.; Káplár, Z. Increased low back pain prevalence in females than in males after menopause age: Evidences based on synthetic literature review. Quant. Imaging Med. Surg. 2016, 6, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Schneider, S.; Randoll, D.; Buchner, M. Why do women have back pain more than men? A representative prevalence study in the federal republic of Germany. Clin. J. Pain 2006, 22, 738–747. [Google Scholar] [CrossRef] [PubMed]
- Ochsmann, E.; Rüger, H.; Kraus, T.; Drexler, H.; Letzel, S.; Münster, E. Geschlechtsspezifische Risikofaktoren akuter Rückenschmerzen. Schmerz 2009, 23, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Großschädl, F.; Stolz, E.; Mayerl, H.; Rásky, É.; Freidl, W.; Stronegger, W. Educational inequality as a predictor of rising back pain prevalence in Austria—Sex differences. Eur. J. Public Health 2016, 26, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Kaulagekar, A. Age of menopause and menopausal symptoms among urban women in Pune, Maharashtra. J. Obstet. Gynaecol. India 2011, 61, 323–326. [Google Scholar] [CrossRef] [Green Version]
- Foster, N.E.; Bishop, A.; Bartlam, B.; Ogollah, R.; Barlas, P.; Holden, M.; Ismail, K.; Jowett, S.; Kettle, C.; Kigozi, J.; et al. Evaluating acupuncture and standard care for pregnant women with back pain (EASE Back): A feasibility study and pilot randomised trial. Health Technol. Assess. 2016, 20, 1–236. [Google Scholar] [CrossRef] [PubMed]
- Liddle, S.D.; Pennick, V. Interventions for preventing and treating low-back and pelvic pain during pregnancy. Cochrane Database Syst. Rev. 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhardwaj, A.; Nagandla, K. Musculoskeletal symptoms and orthopaedic complications in pregnancy: Pathophysiology, diagnostic approaches and modern management. Postgrad. Med. J. 2014, 90, 450–460. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.M.; Wang, H.H.; Chiu, M.H.; Hu, H.M. Effects of acupressure on menstrual distress and low back pain in dysmenorrheic young adult women: An experimental study. Pain Manag. Nurs. 2015, 16, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Katz, V.L.; Lentz, G.M.; Lobo, R.A.; Gershenson, D.M. Comprehensive Gynecology, 5th ed.; Mosby Elsevier: Philadelphia, PA, USA, 2007; Chapter 36. [Google Scholar]
- Poomalar, G.K.; Arounassalame, B. The quality of life during and after menopause among rural women. J. Clin. Diagn Res. 2013, 7, 135–139. [Google Scholar]
- Kozinoga, M.; Majchrzycki, M.; Piotrowska, S. Low back pain in women before and after menopause. Prz. Menopauzalny 2015, 14, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Wijnhoven, H.A.; de Vet, H.C.; Smit, H.A.; Picavet, H.S. Hormonal and reproductive factors are associated with chronic low back pain and chronic upper extremity pain in women—The MORGEN study. Spine 2006, 31, 1496–1502. [Google Scholar] [CrossRef] [PubMed]
- Chou, Y.C.; Shih, C.C.; Lin, J.G.; Chen, T.L.; Liao, C.C. Low back pain associated with sociodemographic factors, lifestyle and osteoporosis: A population-based study. J. Rehabil. Med. 2013, 45, 76–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, S.; Song, R. Bone mineral density and perceived menopausal symptoms: Factors influencing low back pain in postmenopausal women. J. Adv. Nurs. 2009, 65, 1228–1236. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.; Hwang, B.; Son, H.; Cheong, I. Low bone mineral density, but not epidural steroid injection, is associated with fracture in postmenopausal women with low back pain. Pain Physician 2012, 15, 441–449. [Google Scholar] [PubMed]
- Kitahara, H.; Ye, Z.; Aoyagi, K.; Ross, P.D.; Abe, Y.; Honda, S.; Kanagae, M.; Mizukami, S.; Kusano, Y.; Tomita, M.; et al. Associations of vertebral deformities and osteoarthritis with back pain among Japanese women: The Hizen-Oshima study. Osteoporos. Int. 2013, 24, 907–915. [Google Scholar] [CrossRef] [PubMed]
- Heuch, I.; Heuch, I.; Hagen, K.; Zwart, J.A. Body mass index as a risk factor for developing chronic low back pain: A follow-up in the Nord-Trøndelag Health Study. Spine 2013, 38, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Kulie, T.; Slattengren, A.; Redmer, J.; Counts, H.; Eglash, A.; Schrager, S. Obesity and women’s health: An evidence-based review. J. Am. Board Fam. Med. 2011, 24, 75–85. [Google Scholar] [CrossRef] [PubMed]
- WHO. Obesity and Overweight. Available online: http://www.who.int/mediacentre/factsheets/fs311/en/ (accessed on 5 June 2018).
- Bouchard, C.; Katzmarzyk, P.T. Physical Activity and Obesity, 2nd ed.; Human Kinetics: Champaign, IL, USA, 2010; Chapter 78. [Google Scholar]
- Shemory, S.T.; Pfefferle, K.J.; Gradisar, I.M. Modifiable risk factors in patients with low back pain. Orthopedics 2016, 39, e413–e416. [Google Scholar] [CrossRef] [PubMed]
- Kwon, M.A.; Shim, W.S.; Kim, M.H.; Gwak, M.S.; Hahm, T.S.; Kim, G.S.; Kim, C.S.; Choi, Y.H.; Park, J.H.; Cho, H.S.; et al. A correlation between low back pain and associated factors: A study involving 772 patients who had undergone general physical examination. J. Korean Med. Sci. 2006, 21, 1086–1091. [Google Scholar] [CrossRef] [PubMed]
- Hayes, M.H.S.; Patterson, D.G. Experimental development of the graphic rating method. Psychol. Bull. 1921, 18, 98–99. [Google Scholar]
- Siegfried, M.; Gerwin, R.D. Muscle Pain: Understanding the Mechanisms; Springer: Heiderberg, Germany, 2010; Chapter 1. [Google Scholar]
- Merskey, H.; Bogduk, N. Classification of Chronic Pain, 2nd ed.; IASP Press: Seattle, WA, USA, 1994. [Google Scholar]
- Sherrington, C. The Integrative Action of the Nervous System; Yale University Press: New Haven, CT, USA, 1906. [Google Scholar]
- Melzack, R.; Wall, P.D. Pain mechanisms: A new theory. Science 1965, 150, 971–979. [Google Scholar] [CrossRef] [PubMed]
- Khadilkar, A.; Odebiyi, D.O.; Brosseau, L.; Wells, G.A. Transcutaneous electrical nerve stimulation (TENS) versus placebo for chronic low-back pain. Cochrane Database Syst. Rev. 2008. [Google Scholar] [CrossRef] [PubMed]
- Pert, C.B.; Snyder, S.H. Opiate receptor: Demonstration in nervous tissue. Science 1973, 179, 1011–1014. [Google Scholar] [CrossRef] [PubMed]
- Hughes, J.; Kosterlitz, H.W.; Smith, T.W.; Fothergill, L.A.; Morgan, B.A.; Morris, H.R. Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature 1975, 258, 577–580. [Google Scholar] [CrossRef] [PubMed]
- Hughes, J.; Kosterlitz, H.W.; Smith, T.W. The distribution of methionine-enkephalin and leucine-enkephalin in the brain and peripheral tissues. Br. J. Pharmacol. 1977, 61, 639–647. [Google Scholar] [CrossRef] [PubMed]
- Nicoll, R.A.; Siggins, G.R.; Ling, N.; Bloom, F.E.; Guillemin, R. Neuronal actions of endorphins and enkephalins among brain regions: A comparative microiontophoretic study. Proc. Natl. Acad. Sci. USA 1977, 74, 2584–2588. [Google Scholar] [CrossRef] [PubMed]
- Simantov, R.; Kuhar, M.J.; Uhl, G.R.; Snyder, S.H. Opioid peptide enkephalin: Immunohistochemical mapping in rat central nervous system. Proc. Natl. Acad. Sci. USA 1977, 74, 2167–2171. [Google Scholar] [CrossRef] [PubMed]
- Tran, V.T.; Chang, R.S.; Snyder, S.H. Histamine H1 receptors identified in mammalian brain membranes with [3H]mepyramine. Proc. Natl. Acad. Sci. USA 1978, 75, 6290–6294. [Google Scholar] [CrossRef] [PubMed]
- Loeser, J.D.; Treede, R.D. The Kyoto protocol of IASP basic pain terminology. Pain 2008, 137, 473–477. [Google Scholar] [CrossRef] [PubMed]
- Purves, D.; Augustine, G.J.; Fitzpatrick, D.; Hall, W.C.; LaMantia, A.S.; McNamara, J.O.; Williams, S.M. Neuroscience, 3rd ed.; Sinauer Associates, Inc.: Sunderland, MA, USA, 2004; Chapter 9. [Google Scholar]
- Dobkin, B.H. The Clinical Science of Neurologic Rehabilitation, 2nd ed.; Oxford University Press: Oxford, UK, 2003; Chapter 8. [Google Scholar]
- Usunoff, K.G.; Popratiloff, A.; Schmitt, O.; Wree, A. Functional Neuroanatomy of Pain; Springer: Berlin, Germany, 2006; Chapter 1. [Google Scholar]
- Lautenbacher, S.; Fillingim, R.B. Pathophysiology of Pain Perception; Springer: New York, NY, USA, 2004; Chapter 1. [Google Scholar]
- Macintyre, P.E.; Schug, S.A.; Scott, D.A.; Visser, E.J.; Walker, S.M. Acute Pain Management: Scientific Evidence, 3rd ed.; Working Group of the Australian and New Zealand College of Anaesthetists and Faculty of Pain Medicine, ANZCA & FPM: Melbourne, Australia, 2010; Chapter 1. [Google Scholar]
- Archer, P.; Nelson, L. Applied Anatomy & Physiology for Manual Therapists; Lippincott, Williams & Wilkins: Philadelphia, PA, USA, 2013; Chapter 7. [Google Scholar]
- Livingston, W.K. Pain Mechanisms; Plenum Press: New York, NY, USA, 1976; Chapter 1. [Google Scholar]
- Basbaum, A.I.; Bautista, D.M.; Scherrer, G.; Julius, D. Cellular and molecular mechanisms of pain. Cell 2009, 139, 267–284. [Google Scholar] [CrossRef] [PubMed]
- Kagitani, F.; Uchida, S.; Hotta, H. Afferent nerve fibers and acupuncture. Auton. Neurosci. 2010, 157, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Palastanga, N.; Soames, R. Anatomy and Human Movement, 6th ed.; Churchill Livingstone: Edinburg, UK, 2012; Chapter 1. [Google Scholar]
- Zhao, Z.Q. Neural mechanism underlying acupuncture analgesia. Prog. Neurobiol. 2008, 85, 355–375. [Google Scholar] [CrossRef] [PubMed]
- Qaseem, A.; Wilt, T.J.; McLean, R.M.; Forciea, M.A. Clinical Guidelines Committee of the American College of Physicians. Noninvasive treatments for acute, subacute, and chronic low back pain: A clinical practice guideline from the American College of Physicians. Ann. Intern Med. 2017, 166, 514–530. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, I.A.; Malik, Q.; Carville, S.; Ward, S. Low back pain and sciatica: Summary of NICE guidance. BMJ 2017, 356, i6748. [Google Scholar] [CrossRef] [PubMed]
- Nunn, M.L.; Hayden, J.A.; Magee, K. Current management practices for patients presenting with low back pain to a large emergency department in Canada. BMC Musculoskelet. Disord. 2017, 18, 92. [Google Scholar] [CrossRef] [PubMed]
- Australian Acute Musculoskeletal Pain Guidelines Group. Evidence-Based Management of Acute Musculoskeletal Pain; Australian Academic Press: Brisbane, Australia, 2003; Chapter 4. Available online: https://www.nhmrc.gov.au/_files_nhmrc/publications/attachments/cp94_evidence_based_management_acute_musculoskeletal_pain_131223.pdf (accessed on 5 June 2018).
- Kissin, I. The development of new analgesics over the past 50 years: A lack of real breakthrough drugs. Anesth. Analg. 2010, 110, 780–789. [Google Scholar] [CrossRef] [PubMed]
- Marcus, D.A. Chronic Pain; Human Press: Totowa, NJ, USA, 2005; Chapter 2. [Google Scholar]
- Maoying, Q.; Mi, W. Acupuncture Analgesia in Clinical Practice. In Acupuncture Therapy for Neurological Diseases; Xia, Y., Cao, X.D., Wu, G.C., Cheng, J.S., Eds.; Tsinghua University Press: Beijing, China; Springer: Berlin, Germany, 2010; Chapter 7. [Google Scholar]
- World Health Organization. WHO Global Atlas of Traditional, Complementary and Alternative Medicine. WHO Centre for Health Development: Kobe, Japan, 2005. Available online: http://apps.who.int/iris/bitstream/10665/43108/1/9241562862_map.pdf (accessed on 5 June 2018).
- Cui, J.; Wang, S.B.; Ren, J.H.; Zhang, J.; Jing, J. Use of acupuncture in the USA: Changes over a decade (2002–2012). Acupunct. Med. 2017, 35, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Von Ammon, K.; Frei-Erb, M.; Cardini, F.; Daig, U.; Dragan, S.; Hegyi, G.; Roberti di Sarsina, P.; Sörensen, J.; Lewith, G. Complementary and alternative medicine provision in Europe—First results approaching reality in an unclear field of practices. Forsch. Komplementmed. 2012, 19 (Suppl. 2), 37–43. [Google Scholar] [CrossRef] [PubMed]
- Breuer, J.; Reinsperger, I.; Piso, B. Akupunktur. Einsatzgebiete, Evidenzlage und gesicherte Indikationen. HTA Projektbericht Nr. 78; Ludwig Boltzmann Institut für Health Technology Assessment: Wien, Austria, 2014. [Google Scholar]
- Bundesgesetz über die Gesundheit Österreich GmbH (GÖGG) 132/2006. In Legal Status and Regulation of CAM in Europe. Available online: http://www.cam-europe.eu/dms/files/CAMbrella_Reports/CAMbrella-WP2-part_1final.pdf (accessed on 5 June 2018).
- World Health Organization. WHO Traditional Medicine Strategy: 2014–2023. World Health Organization, 2013. Available online: http://apps.who.int/iris/bitstream/10665/92455/1/9789241506090_eng.pdf (accessed on 5 June 2018).
- Unschuld, P.U.; Tessenow, H.; Zheng, J. Huang Di Nei Jing Su Wen: An Annotated Translation of Huang Di’s Inner Classic—Basic Questions; University of California Press: Berkeley, CA, USA, 2011. [Google Scholar]
- Huang Di Nei Jing Ling Shu; Unschuld, P.U., Translator; University of California Press: Oakland, CA, USA, 2016.
- Nan-Ching (The Classic of Difficult Issues); Translated and annotated by Unschuld, P.U.; University of California Press: Berkeley, CA, USA, 1986.
- Zhen Jiu Jia Yi Jing (The Systematic Classic of Acupuncture and Moxibustion) by Huangfu Mi; Yang, S.; Chace, C., Translators; Blue Poppy Press: Boulder, CO, USA, 2004.
- Unschuld, P.U. Approaches to Traditional Chinese Medical Literature: Proceedings of an International Symposium on Translation Methodologies and Terminologies; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1989. [Google Scholar]
- Kiple, K.F. The Cambridge World History of Human Disease; Cambridge University Press: Cambridge, UK, 1993; Chapter 1. [Google Scholar]
- Ma, K.W. Acupuncture: Its place in the history of Chinese medicine. Acupunct. Med. 2000, 18, 88–99. [Google Scholar] [CrossRef]
- White, A.; Ernst, E. A brief history of acupuncture. Rheumatology 2004, 43, 662–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bivins, R.E. Acupuncture, Expertise and Cross-Cultural Medicine; Palgrave Macmillan: Basingstoke, UK, 2000. [Google Scholar]
- Reston, J. Now, About My Operation in Peking; New York Times: New York, NY, USA, 1971; Volume 1, p. 6. Available online: http://www.nytimes.com/1971/07/26/archives/now-about-my-operation-in-peking-now-let-me-tell-you-about-my.html (accessed on 5 June 2018).
- Chaves, J.F.; Barber, T.X. Acupuncture Analgesia: A Six-Factor Theory. In Pain; Weisenberg, M., Tursky, B., Eds.; Plenum Press: New York, NY, USA, 1976; Chapter 4. [Google Scholar]
- Dimond, E.G. Acupuncture anesthesia. Western medicine and Chinese traditional medicine. JAMA 1971, 218, 1558–1563. [Google Scholar] [CrossRef] [PubMed]
- SpoereL, W.E. Acupuncture: Canadian anesthetists report on visit to China. Can. Med. Assoc. J. 1974, 111, 1123. [Google Scholar]
- Bonica, J.J. Acupuncture anesthesia in the People’s Republic of China. Implications for American medicine. JAMA 1974, 229, 1317–1325. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, S.G. Anesthesia by acupuncture. Br. Med. J. 1972, 4, 232–233. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. The Contribution of Traditional Chinese Medicine to Sustainable Development: Keynote Address at the International Conference on the Modernization of Traditional Chinese Medicine. WHO: Singapore, October 2016. Available online: http://www.who.int/dg/speeches/2016/chinese-medicine-sustainable/en/ (accessed on 5 June 2018).
- Lozano, F. Basic Theories of Traditional Chinese Medicine. In Acupuncture for Pain Management; Lin, Y., Hsu, E.S., Eds.; Springer: Heidelberg, Germany, 2014; Chapter 2. [Google Scholar]
- Sun, P. The Treatment of Pain with Chinese Herbs and Acupuncture, 2nd ed.; Churchill Livingstone: Edinburg, UK, 2011; Chapter 1. [Google Scholar]
- Maciocia, G. The Practice of Chinese Medicine: The Treatment of Diseases with Acupuncture and Chinese Herbs, 2nd ed.; Churchill Livingstone: Edinburg, UK, 2008; Chapter 39. [Google Scholar]
- Du, G.H.; Yuan, T.Y.; Du, L.D.; Zhang, Y.X. The potential of traditional Chinese medicine in the treatment and modulation of pain. Adv. Pharmacol. 2016, 75, 325–361. [Google Scholar] [PubMed]
- Newberg, A.B.; Lee, B.Y.; LaRiccia, P.J. Acupuncture in theory and practice part I: Theoretical basis and physiologic effects. Hosp. Physician 2004, 40, 11–18. [Google Scholar]
- British Medical Association. Acupuncture: Efficacy, Safety and Practice; Harwood Academic Publishers: Amsterdam, The Netherlands, 2005; Chapter 2. [Google Scholar]
- Beijing College of Traditional Chinese Medicine. Essentials of Chinese Acupuncture; Foreign Languages Press: Beijing, China, 1980. [Google Scholar]
- World Health Organization. WHO Standard Acupuncture Point Locations; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Focks, C. Atlas of Acupuncture; Churchill Livingstone: Munich, Germany, 2008. [Google Scholar]
- Deadman, P.; Al-Khafaji, M.; Baker, K. A Manual of Acupuncture. J. Chin. Med. Publ. 2001. Available online: https://www.naturmed.de/produkt/a-manual-of-acupuncture-deadman-p-al-khafaji-m-baker-k/ (accessed on 5 June 2018).
- Kim, B.H. On the Kyungrak System. J. Acad. Med. Sci. DPR Korea 1963, 90, 1–35. [Google Scholar]
- Soh, K.S.; Kang, K.A.; Ryu, Y.H. 50 years of Bong-Han theory and 10 years of primo vascular system. Evid. Based Complement. Alternat. Med. 2013, 2013, 587827. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.S.; Soh, K.S. Electrical method to detect a Bonghan duct inside blood vessels. New Phys. 2002, 45, 376–378. [Google Scholar]
- Stefanov, M.; Potroz, M.; Kim, J.; Lim, J.; Cha, R.; Nam, M.H. The primo vascular system as a new anatomical system. J. Acupunct. Meridian Stud. 2013, 6, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Ciszek, M.; Szopinski, J.; Skrzypulec, V. Investigations of morphological structure of acupuncture points and meridians. J. Tradit. Chin. Med. 1985, 5, 289–292. [Google Scholar] [PubMed]
- Lazorthes, Y.; Esquerré, J.P.; Simon, J.; Guiraud, G.; Guiraud, R. Acupuncture meridians and radiotracers. Pain 1990, 40, 109–112. [Google Scholar] [CrossRef]
- Darras, J.; Albarède, P.; de Vernejoul, P. Nuclear medicine investigation of transmission of acupuncture information. Acupunct. Med. 1993, 11, 22–28. [Google Scholar] [CrossRef]
- Langevin, H.M.; Yandow, J.A. Relationship of acupuncture points and meridians to connective tissue planes. Anat. Rec. 2002, 269, 257–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heine, H. Anatomical structure of acupoints. J. Tradit. Chin. Med. 1988, 8, 207–212. [Google Scholar] [PubMed]
- Li, A.H.; Zhang, J.M.; Xie, Y.K. Human acupuncture points mapped in rats are associated with excitable muscle/skin-nerve complexes with enriched nerve endings. Brain Res. 2004, 1012, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Ahn, A.C.; Wu, J.; Badger, G.J.; Hammerschlag, R.; Langevin, H.M. Electrical impedance along connective tissue planes associated with acupuncture meridians. BMC Complement. Altern. Med. 2005, 5, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, A.C.; Park, M.; Shaw, J.R.; McManus, C.A.; Kaptchuk, T.J.; Langevin, H.M. Electrical impedance of acupuncture meridians: The relevance of subcutaneous collagenous bands. PLoS ONE 2010, 5, e11907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Litscher, G.; Wang, L. Biomedical engineering meets acupuncture—Development of a miniaturized 48-channel skin impedance measurement system for needle and laser acupuncture. Biomed. Eng. Online 2010, 9, 78. [Google Scholar] [CrossRef] [PubMed]
- Stux, G.; Pomeranz, B. Acupuncture: Textbook and Atlas; Springer: Berlin, Germany, 1987; Chapter 1. [Google Scholar]
- Kramer, S.; Winterhalter, K.; Schober, G.; Becker, U.; Wiegele, B.; Kutz, D.F.; Kolb, F.P.; Zaps, D.; Lang, P.M.; Irnich, D. Characteristics of electrical skin resistance at acupuncture points in healthy humans. J. Altern. Complement. Med. 2009, 15, 495–500. [Google Scholar] [CrossRef] [PubMed]
- Litscher, G.; Wang, L.; Gao, X.Y.; Gaischek, I. Electrodermal mapping: A new technology. World J. Methodol. 2011, 1, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Huang, D.K.; Xia, Y. Neuroanatomic Basis of Acupuncture Points. In Acupuncture Therapy for Neurological Diseases; Tsinghua University Press: Beijing, China; Springer: Berlin, Germany, 2010; Chapter 2. [Google Scholar]
- Yao, W.; Yang, H.W.; Yin, N.; Ding, G.H. Mast cell-nerve cell interaction at acupoint: Modeling mechanotransduction pathway induced by acupuncture. Int. J. Biol. Sci. 2014, 10, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Ding, G.; Shen, X.; Yao, W.; Zhang, Z.; Zhang, Y.; Lin, J.; Gu, Q. Role of mast cells in acupuncture effect: A pilot study. Explore 2008, 4, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Marcelli, S. Gross anatomy and acupuncture: A comparative approach to reappraise the meridian system. Med. Acupunct. 2013, 25, 5–22. [Google Scholar] [CrossRef]
- Peuker, E.; Cummings, M. Anatomy for the acupuncturist—Facts & fiction 1: The head and neck region. Acupunct. Med. 2003, 21, 2–8. [Google Scholar] [PubMed]
- Peuker, E.; Cummings, M. Anatomy for the acupuncturist—Facts & fiction 2: The chest, abdomen, and back. Acupunct. Med. 2003, 21, 72–79. [Google Scholar] [PubMed]
- Cheng, K.J. Neuroanatomical characteristics of acupuncture points: Relationship between their anatomical locations and traditional clinical indications. Acupunct. Med. 2011, 29, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Shaw, V.; McLennan, A.K. Was acupuncture developed by Han Dynasty Chinese anatomists? Anat. Rec. 2016, 299, 643–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, N.G. Interactive Medical Acupuncture Anatomy; Tenton NewMedia: Jackson, MS, USA, 2016; Section 3, Channel 1. [Google Scholar]
- Zhang, W.; Tao, Q.; Guo, Z.; Fu, Y.; Chen, X.; Shar, P.A.; Shahen, M.; Zhu, J.; Xue, J.; Bai, Y.; et al. Systems pharmacology dissection of the integrated treatment for cardiovascular and gastrointestinal disorders by Traditional Chinese Medicine. Sci. Rep. 2016, 6, 32400. [Google Scholar] [CrossRef] [PubMed]
- Myers, T. Anatomy Trains, 2nd ed.; Churchill Livingstone: Edinburg, UK, 2009. [Google Scholar]
- Finando, S.; Finando, D. Fascia and the mechanism of acupuncture. J. Bodyw. Mov. Ther. 2011, 15, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Kellgren, J.H. A preliminary account of referred pains arising from muscle. Br. Med. J. 1938, 1, 325–327. [Google Scholar] [CrossRef] [PubMed]
- Travell, J.; Rinzler, S.; Herman, M. Pain and disability of the shoulder and arm: Treatment by intramuscular infiltration with procaine hydrochloride. J. Am. Med. Assoc. 1942, 120, 417–422. [Google Scholar] [CrossRef]
- Travell, J.; Simons, D. Myofascial Pain and Dysfunction: The Trigger Point Manual (Volume 1: Upper Extremities), 2nd ed.; Williams & Wilkins: Baltimore, MD, USA, 1998. [Google Scholar]
- Travell, J.; Simons, D. Myofascial Pain and Dysfunction: The Trigger Point Manual (Volume 2: Lower Extremities); Lippincott Williams & Wilkins: Philadelphia, PA, USA, 1983. [Google Scholar]
- Dorsher, P.T. Myofascial referred-pain data provide physiologic evidence of acupuncture meridians. J. Pain 2009, 10, 723–731. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Zhao, J.S. The historical source of “Trigger Points”: Classical ashi points. World J. Acupunct. Moxibustion 2016, 26, 11–14. [Google Scholar] [CrossRef]
- Nugent-Head, A. Ashi points in clinical practice. J. Chin. Med. 2013, 101, 5–12. [Google Scholar]
- Focks, C.; Hosbach, I.; März, U. Leitfaden Akupunktur, 2. Auflage; Elsevier: München, Germany, 2014. [Google Scholar]
- Tortora, G.J.; Derrickson, B. Principles of Anatomy & Physiology, 14th ed.; Wiley: Hoboken, NJ, USA, 2014. [Google Scholar]
- Wilson-Pauwels, L.; Stewart, P.; Akesson, E. Autonomic Nerves; BC Decker: London, UK, 1997; Chapter 3. [Google Scholar]
- Rong, P.; Zhu, B. Mechanism of relation among heart meridian, referred cardiac pain and heart. Sci. China C Life Sci. 2002, 45, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J. Anatomical Atlas of Chinese Acupuncture Points; Shandong Science and Technology Press: Jinan China, 1982. [Google Scholar]
- Maciocia, G. The Foundations of Chinese Medicine, 3rd ed.; Elsevier: Edinburg, UK, 2015; Chapter 32. [Google Scholar]
- Liu, Z.; Liu, L. Essential of Chinese Medicine; Springer: Heidelberg, Germany, 2009; Chapter 5; Volume 2. [Google Scholar]
- O’Brien, K.A. Alternative perspectives: How Chinese medicine understands hypercholesterolemia. Cholesterol 2010, 2010, 723289. [Google Scholar] [CrossRef] [PubMed]
- Goldman, N.; Chen, M.; Fujita, T.; Xu, Q.; Peng, W.; Liu, W.; Jebsebm, T.K.; Pei, Y.; Wang, F.; Han, X.; et al. Adenosine A1 receptors mediate local anti-nociceptive effects of acupuncture. Nat. Neurosci. 2010, 13, 883–888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takano, T.; Chen, X.; Luo, F.; Goldman, N.; Zhao, Y.; Markman, J.D.; Nedergaard, M. Traditional acupuncture triggers a local increase in adenosine in human subjects. J. Pain 2012, 13, 1215–1223. [Google Scholar] [CrossRef] [PubMed]
- Goldman, N.; Chandler-Militello, D.; Langevin, H.M.; Nedergaard, M.; Takano, T. Purine receptor mediated actin cytoskeleton remodeling of human fibroblasts. Cell Calcium 2013, 53, 297–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, W.; Tu, W.Z.; Jiang, S.H.; Cheng, R.D.; Du, Y.P. Electroacupuncture improves neuropathic pain: Adenosine, adenosine 5’-triphosphate disodium and their receptors perhaps change simultaneously. Neural Regen Res. 2012, 7, 2618–2623. [Google Scholar] [PubMed]
- Zylka, M.J. Needling adenosine receptors for pain relief. Nat. Neurosci. 2010, 13, 783–784. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Sikora, J.; Hu, L.; Shen, X.Y.; Grygorczyk, R.; Schwarz, W. ATP release from mast cells by physical stimulation: A putative early step in activation of acupuncture points. Evid. Based Complement. Alternat. Med. 2013, 2013, 350949. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; De La Pena, I.; Lin, L.L.; Zhou, S.F.; Borlongan, C.V.; Cao, C.H. The neuroprotective role of acupuncture and activation of the BDNF signalling pathway. Int. J. Mol. Sci. 2014, 15, 3234–3252. [Google Scholar] [CrossRef] [PubMed]
- Szent-Györgyi, A. Introduction to a Submolecular Biology; Academic Press: New York, NY, USA, 1960. [Google Scholar]
- Szent-Györgyi, A. The Development of Bioenergetics. In Membrane Structure and Mechanisms of Biological Energy Transduction; Plenum Press: London, UK, 1973. [Google Scholar]
- Szent-Györgyi, A. Bioenergetics; Academic Press: New York, NY, USA, 1957. [Google Scholar]
- Szent-Györgyi, A. Bioelectronics; Academic Press: New York, NY, USA, 1968. [Google Scholar]
- Drury, A.N.; Szent-Györgyi, A. The physiological activity of adenine compounds with special reference to their action upon mammalian heart. J. Physiol. 1929, 68, 213–237. [Google Scholar] [CrossRef] [PubMed]
- Oschman, J.L. Energy Medicine: The Scientific Basis, 2nd ed.; Elsevier: Edinburg, UK, 2016. [Google Scholar]
- Sengupta, B.; Stemmler, M.; Laughlin, S.B.; Niven, J.E. Action potential energy efficiency varies among neuron types in vertebrates and invertebrates. PLoS Comput. Biol. 2010, 6, E1000840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, G.S.; Wang, J.; Deng, B.; Hong, S.H.; Wei, X.L.; Chen, Y.Y. Action potential threshold of wide dynamic range neurons in rat spinal dorsal horn evoked by manual acupuncture at ST36. Neurocomputing 2015, 166, 201–209. [Google Scholar] [CrossRef]
- Becker, R.; Selden, G. The Body Electric; William Marrow: New York, NY, USA, 1985; Chapter 13. [Google Scholar]
- Nordenström, B. Biologically Closed Electric Circuits; Nordic Medical Publications: Stockholm, Sweden, 1983; Chapter 18. [Google Scholar]
- Cohen, D.; Palti, Y.; Cuffin, B.N.; Schmid, S.J. Magnetic fields produced by steady currents in the body. Proc. Natl. Acad. Sci. USA 1980, 77, 1447–1451. [Google Scholar] [CrossRef] [PubMed]
- McCraty, R. Science of the Heart; HeartMath Institute: Boulder Creek, CA, USA, 2015; Volume 2, Chapter 6. [Google Scholar]
- Russek, L.; Schwartz, G. Energy cardiology: A dynamical energy systems approach for integrating conventional and alternative medicine. Advances 1996, 12, 4–24. [Google Scholar]
- Adams, J.; Parker, K. Extracellular and Intracellular Signalling; Royal Society of Chemistry: Cambridge, UK, 2011; Chapter 1. [Google Scholar]
- Adams, J.; Lien, E. Traditional Chinese Medicine: Scientific Basis for Its Use; Royal Society of Chemistry: Cambridge, UK, 2013; Chapter 1. [Google Scholar]
- Deng, S.; Zhao, X.; Du, R.; He, S.; Wen, Y.; Huang, L.; Tian, G.; Zhang, C.; Meng, Z.; Shi, X. Is acupuncture no more than a placebo? Extensive discussion required about possible bias. Exp. Ther. Med. 2015, 10, 1247–1252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pach, D.; Yang-Strobel, X.; Lüdtke, R.; Roll, S.; Icke, K.; Brinkhaus, B.; Witt, C.M. Standardized versus individualized acupuncture for chronic low back pain: A randomized controlled trial. Evid. Based Complement. Alternat. Med. 2013, 2013, 125937. [Google Scholar] [CrossRef] [PubMed]
- Molsberger, A.F.; Mau, J.; Pawelec, D.B.; Winkler, J. Does acupuncture improve the orthopedic management of chronic low back pain—A randomized, blinded, controlled trial with 3 months follow up. Pain 2002, 99, 579–587. [Google Scholar] [CrossRef]
- Weiss, J.; Quante, S.; Xue, F.; Muche, R.; Reuss-Borst, M. Effectiveness and acceptance of acupuncture in patients with chronic low back pain: Results of a prospective, randomized, controlled trial. J. Altern. Complement. Med. 2013, 19, 935–941. [Google Scholar] [CrossRef] [PubMed]
- Inoue, M.; Kitakoji, H.; Ishizaki, N.; Tawa, M.; Yano, T.; Katsumi, Y.; Kawakita, K. Relief of low back pain immediately after acupuncture treatment—A randomised, placebo controlled trial. Acupunct. Med. 2006, 24, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Giles, L.; Muller, R. Chronic spinal pain: A randomized clinical trial comparing medication, acupuncture, and spinal manipulation. Spine 2003, 28, 1490–1502. [Google Scholar] [CrossRef] [PubMed]
- Haake, M.; Müller, H.H.; Schade-Brittinger, C.; Basler, H.D.; Schäfer, H.; Maier, C.; Endres, H.G.; Trampisch, H.J.; Wolsberger, A. German Acupuncture Trials (GERAC) for chronic low back pain: Randomized, multicenter, blinded, parallel-group trial with 3 groups. Arch. Intern Med. 2007, 167, 1892–1898. [Google Scholar] [CrossRef] [PubMed]
- Brinkhaus, B.; Witt, C.M.; Jena, S.; Linde, K.; Streng, A.; Wagenpfeil, S.; Irnich, D.; Walther, H.-U.; Melchart, D.; Willich, S.N. Acupuncture in patients with chronic low back pain: A randomized controlled trial. Arch. Intern Med. 2006, 166, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.J.; Song, Y.K.; Cha, Y.Y.; Shin, B.C.; Shin, I.H.; Park, H.J.; Lee, H.-S.; Kim, K.-W.; Cho, J.-H.; Chuang, W.S.; et al. Acupuncture for chronic low back pain: A multicenter, randomized, patient-assessor blind, sham-controlled clinical trial. Spine 2013, 38, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Cherkin, D.C.; Eisenberg, D.; Sherman, K.J.; Barlow, W.; Kaptchuk, T.J.; Street, J.; Deyo, R.A. Randomized trial comparing traditional Chinese medical acupuncture, therapeutic massage, and self-care education for chronic low back pain. Arch. Intern Med. 2001, 161, 1081–1088. [Google Scholar] [CrossRef] [PubMed]
- Cherkin, D.C.; Sherman, K.J.; Avins, A.L.; Erro, J.H.; Ichikawa, L.; Barlow, W.E.; Delney, K.; Hawkes, R.; Hamilton, L.; Pressman, A.; et al. A randomized trial comparing acupuncture, simulated acupuncture, and usual care for chronic low back pain. Arch. Intern Med. 2009, 169, 858–866. [Google Scholar] [CrossRef] [PubMed]
- Mingdong, Y.; Na, X.; Mingyang, G.; Jun, Z.; Defang, L.; Yong, L.; Lingling, G.; Jiao, Y. Acupuncture at the back-pain-acupoints for chronic low back pain of peacekeepers in Lebanon: A randomized controlled trial. J. Muscoskelet. Pain 2012, 20, 107–115. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Wang, Z.; Wang, C.; Ding, W.; Liu, Z. A randomized clinical trial comparing the effectiveness of electroacupuncture versus medium-frequency electrotherapy for discogenic sciatica. Evid. Based Complement. Alternat. Med. 2017, 2017, 9502718. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.; Lundberg, T. Importance of modes of acupuncture in the treatment of chronic nociceptive low back pain. Acta Anaesthesiol. Scand. 1994, 38, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Glazov, G.; Yelland, M.; Emery, J. Low-dose laser acupuncture for non-specific chronic low back pain: A double-blind randomised controlled trial. Acupunct. Med. 2014, 32, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.Y.; Ku, B.; Kim, J.U.; Lee, Y.J.; Kang, J.H.; Heo, H.; Choi, H.-J.; Lee, J-H. Short-term effect of laser acupuncture on lower back pain: A randomized, placebo-controlled, double-blind trial. Evid. Based Complement. Alternat Med. 2015, 2015, 808425. [Google Scholar] [CrossRef] [PubMed]
- Bothwell, L.E.; Greene, J.A.; Podolsky, S.H.; Jones, D.S. Assessing the gold standard—Lessons from the history of RCTs. N. Engl. J. Med. 2016, 374, 2175–2181. [Google Scholar] [CrossRef] [PubMed]
- Hill, A.B. Principles of Medical Statistics, 6th ed.; Oxford University Press: New York, NY, USA, 1955; Chapter 1. [Google Scholar]
- Brown, W. The Placebo Effect in Clinical Practice; Oxford University Press: Oxford, UK, 2013; Chapters 2–4. [Google Scholar]
- Kaptchuk, T.J. The double-blind, randomized, placebo-controlled trial: Gold standard or golden calf? J. Clin. Epidemiol. 2001, 54, 541–549. [Google Scholar] [CrossRef]
- Moerman, D. Meaning, Medicine, and the “Placebo Effect”; Cambridge University Press: Cambridge, UK, 2002; Chapter 1. [Google Scholar]
- Benedetti, F.; Mayberg, H.S.; Wager, T.D.; Stohler, C.S.; Zubieta, J.K. Neurobiological mechanisms of the placebo effect. J. Neurosci. 2005, 25, 10390–10402. [Google Scholar] [CrossRef] [PubMed]
- Price, D.D.; Finniss, D.G.; Benedetti, F. A comprehensive review of the placebo effect: Recent advances and current thought. Annu. Rev. Psychol. 2008, 59, 565–590. [Google Scholar] [CrossRef] [PubMed]
- Finniss, D.G.; Kaptchuk, T.J.; Miller, F.; Benedetti, F. Biological, clinical, and ethical advances of placebo effects. Lancet 2010, 375, 686–695. [Google Scholar] [CrossRef] [Green Version]
- Bausell, R.B.; Lao, L.; Bergman, S.; Lee, W.L.; Berman, B.M. Is acupuncture analgesia an expectancy effect? Preliminary evidence based on participants’ perceived assignments in two placebo-controlled trials. Eval. Health Prof. 2005, 28, 9–26. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, F. What do you expect from this treatment? Changing our mind about clinical trials. Pain 2007, 128, 193–194. [Google Scholar] [CrossRef] [PubMed]
- Linde, K.; Witt, C.M.; Streng, A.; Weidenhammer, W.; Wagenpfeil, S.; Brinkhaus, B.; Willich, S.N.; Melchart, D. The impact of patient expectations on outcomes in four randomized controlled trials of acupuncture in patients with chronic pain. Pain 2007, 128, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Myers, S.S.; Phillips, R.S.; Davis, R.B.; Cherkin, D.C.; Legedza, A.; Kaptchuk, T.J.; Hrbek, A.; Buring, J.E.; Post, D.; Connelly, M.T.; et al. Patient expectations as predictors of outcome in patients with acute low back pain. J. Gen. Intern Med. 2008, 23, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Pariente, J.; White, P.; Frackowiak, R.S.; Lewith, G. Expectancy and belief modulate the neuronal substrates of pain treated by acupuncture. Neuroimage 2005, 25, 1161–1167. [Google Scholar] [CrossRef] [PubMed]
- Colagiuri, B. Participant expectancies in double-blind randomized placebo-controlled trials: Potential limitations to trial validity. Clin. Trials 2010, 7, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Perlis, R.H.; Ostacher, M.; Fava, M.; Nierenberg, A.A.; Sachs, G.S.; Rosenbaum, J.F. Assuring that double-blind is blind. Am. J. Psychiatry 2010, 167, 250–252. [Google Scholar] [CrossRef] [PubMed]
- Hertzman, M.; Adler, L. Clinical Trials in Psychopharmacology, 2nd ed.; Wiley-Blackwell: Oxford, UK, 2010; Chapter 18. [Google Scholar]
- Hertzman, M.; Feltner, D. The Handbook of Psychopharmacology Trial; New York University Press: New York, NY, USA, 1997; Chapter 6. [Google Scholar]
- Vickers, A.; Goyal, N.; Harland, R.; Rees, R. Do certain countries produce only positive results? A systematic review of controlled trials. Control Clin. Trials 1998, 19, 159–166. [Google Scholar] [CrossRef]
- Molsberger, A.; Zhou, J.; Boewing, L.; Arndt, D.; Karst, M.; Teske, W.; Drabik, A. An international expert survey on acupuncture in randomized controlled trials for low back pain and a validation of the low back pain acupuncture score. Eur. J. Med. Res. 2011, 16, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, A.K. Etiological factors in placebo effect. JAMA 1964, 187, 712–714. [Google Scholar] [CrossRef] [PubMed]
- Miller, F.G.; Kaptchuk, T.J. The power of context: Reconceptualizing the placebo effect. J. R. Soc. Med. 2008, 101, 222–225. [Google Scholar] [CrossRef] [PubMed]
- Katz, J. The Silent World of Doctor and Patient; The Free Press: New York, NY, USA, 1984; Chapter 8. [Google Scholar]
- Kerr, C.E.; Shaw, J.R.; Conboy, L.A.; Kelley, J.M.; Jacobson, E.; Kaptchuk, T.J. Placebo acupuncture as a form of ritual touch healing: A neurophenomenological model. Conscious. Cogn. 2011, 20, 784–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beecher, H.K. The powerful placebo. JAMA 1955, 159, 1602–1606. [Google Scholar] [CrossRef]
- Tragende Gründe zum Beschluss des Gemeinsamen Bundesausschusses zur Akupunktur. Press Release by Gemeinsamen Bundesausschusses, Dated 18.04.2006. Available online: https://www.g-ba.de/informationen/beschluesse/295/ (accessed on 5 June 2018).
- Lee, I.S.; Lee, S.H.; Kim, S.Y.; Lee, H.J.; Park, H.J.; Chae, Y.Y. Visualization of the meridian system based on biomedical information about acupuncture treatment. Evid. Based Complement. Alternat. Med. 2013, 2013, 872142. [Google Scholar] [CrossRef] [PubMed]
- Early Acupuncture, by Mark Parisi. Available online: https://www.offthemark.com/search/?q=early%20acupuncture (accessed on 5 June 2018).
- Dellon, A.L.; Höke, A.; Williams, E.H.; Williams, C.G.; Zhang, Z.; Rosson, G.D. The sympathetic innervation of the human foot. Plast. Reconstr. Surg. 2012, 129, 905–909. [Google Scholar] [CrossRef] [PubMed]
- Langevin, H.M.; Konofagou, E.E.; Badger, G.J.; Churchill, D.L.; Fox, J.R.; Ophir, J.; Garra, B.S. Tissue displacements during acupuncture using ultrasound elastography techniques. Ultrasound Med. Biol. 2004, 30, 1173–1183. [Google Scholar] [CrossRef] [PubMed]
- Langevin, H.M.; Bouffard, N.A.; Badger, G.J.; Churchill, D.L.; Howe, A.K. Subcutaneous tissue fibroblast cytoskeletal remodeling induced by acupuncture: Evidence for a mechanotransduction-based mechanism. J. Cell Physiol. 2006, 207, 767–774. [Google Scholar] [CrossRef] [PubMed]
- Langevin, H.M.; Bouffard, N.A.; Churchill, D.L.; Badger, G.J. Connective tissue fibroblast response to acupuncture: Dose-dependent effect of bidirectional needle rotation. J. Altern. Complement. Med. 2007, 13, 355–360. [Google Scholar] [CrossRef] [PubMed]
- Fox, J.R.; Gray, W.; Koptiuch, C.; Badger, G.J.; Langevin, H.M. Anisotropic tissue motion induced by acupuncture needling along intermuscular connective tissue planes. J. Altern. Complement. Med. 2014, 20, 290–294. [Google Scholar] [CrossRef] [PubMed]
- Burnstock, G. Physiology and pathophysiology of purinergic neurotransmission. Physiol. Rev. 2007, 87, 659–797. [Google Scholar] [CrossRef] [PubMed]
- Abbracchio, M.P.; Burnstock, G.; Verkhratsky, A.; Zimmermann, H. Purinergic signalling in the nervous system: An overview. Trends Neurosci. 2009, 32, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Zhao, C.; Luo, X. The effects of electroacupuncture on the extracellular signal-regulated kinase 1/2/P2X3 signal pathway in the spinal cord of rats with chronic constriction injury. Anesth. Analg. 2013, 116, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Yin, H.Y.; Rubini, P.; Illes, P. Acupuncture-induced analgesia: A neurobiological basis in purinergic signaling. Neuroscientist 2016, 22, 563–578. [Google Scholar] [CrossRef] [PubMed]
- Zylka, M.J. Pain-relieving prospects for adenosine receptors and ectonucleotidases. Trends Mol. Med. 2011, 17, 188–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, W.; Benharash, P. Significance of “Deqi” response in acupuncture treatment: Myth or reality. J. Acupunct. Meridian Stud. 2014, 7, 186–189. [Google Scholar] [CrossRef] [PubMed]
- Kong, J.; Gollub, R.; Huang, T.; Polich, G.; Napadow, V.; Hui, K.; Vangel, M.; Rosen, B.; Kaptchuk, T.J. Acupuncture de qi, from qualitative history to quantitative measurement. J. Altern. Complement. Med. 2007, 13, 1059–1070. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X. Chinese Acupuncture and Moxibustion, revised ed.; Foreign Languages Press: Beijing, China, 1999; Chapter 14. [Google Scholar]
- Essentials of Chinese Acupuncture; Beijing College of Traditional Chinese Medicine; Shanghai College of Traditional Chinese Medicine; Nanjing College of Traditional Chinese Medicine; The Acupuncture Institute of the Academy of Traditional Chinese Medicine. (Compiler) Foreign Languages Press: Beijing, China, 1980; Part 3, Chapter 1.
- Stux, G.; Berman, B.; Pomeranz, B. Basics of Acupuncture, 5th ed.; Springer: Berlin, Germany, 2003; Chapter 5. [Google Scholar]
- Napadow, V.; Dhond, R.P.; Kim, J.; LaCount, L.; Vangel, M.; Harris, R.E.; Kettner, N.; Park, K. Brain encoding of acupuncture sensation—Coupling on-line rating with fMRI. Neuroimage 2009, 47, 1055–1065. [Google Scholar] [CrossRef] [PubMed]
- Kong, J.; Fufa, D.T.; Gerber, A.J.; Rosman, I.S.; Vangel, M.G.; Gracely, R.H.; Gollub, R.L. Psychophysical outcomes from a randomized pilot study of manual, electro, and sham acupuncture treatment on experimentally induced thermal pain. J. Pain 2005, 6, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Spaeth, R.B.; Camhi, S.; Hashmi, J.A.; Vangel, M.; Wasan, A.D.; Kong, J.; Edwards, R.R.; Gollub, R.L.; Kong, J. A longitudinal study of the reliability of acupuncture deqi sensations in knee osteoarthritis. Evid. Based Complement. Alternat. Med. 2013, 2013, 204259. [Google Scholar] [CrossRef] [PubMed]
- White, P.; Prescott, P.; Lewith, G. Does needling sensation (de qi) affect treatment outcome in pain? Analysis of data from a larger single-blind, randomised controlled trial. Acupunct. Med. 2010, 28, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Langevin, H.M.; Churchill, D.L.; Cipolla, M.J. Mechanical signaling through connective tissue: A mechanism for the therapeutic effect of acupuncture. FASEB J. 2001, 15, 2275–2282. [Google Scholar] [CrossRef] [PubMed]
- Langevin, H.M.; Churchill, D.L.; Fox, J.R.; Badger, G.J.; Garra, B.S.; Krag, M.H. Biomechanical response to acupuncture needling in humans. J. Appl. Physiol. 2001, 91, 2471–2478. [Google Scholar] [CrossRef] [PubMed]
- Langevin, H.M.; Churchill, D.L.; Wu, J.; Badger, G.J.; Yandow, J.A.; Fox, J.R.; Krag, M.H. Evidence of connective tissue involvement in acupuncture. FASEB J. 2002, 16, 872–874. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Kennedy, D.N.; Cao, X. Neural Transmission of Acupuncture Signal. In Acupuncture Therapy for Neurological Diseases; Xia, Y., Cao, X.D., Wu, G.C., Cheng, J.S., Eds.; Tsinghua University Press: Beijing, China; Springer: Berlin, Germany, 2010; Chapter 3. [Google Scholar]
- Hui, K.K.; Liu, J.; Marina, O.; Napadow, V.; Haselgrove, C.; Kwong, K.K.; Kennedy, D.N.; Markris, N. The integrated response of the human cerebro-cerebellar and limbic systems to acupuncture stimulation at ST 36 as evidenced by fMRI. Neuroimage 2005, 27, 479–496. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.J.; Li, J.; Zhang, J.H.; Yi, T.; Wang, S.W.; Dong, J.C. Acupuncture treatment of chronic low back pain reverses an abnormal brain default mode network in correlation with clinical pain relief. Acupunct. Med. 2013, 1–7. [Google Scholar] [CrossRef]
- Chen, X.; Spaeth, R.B.; Retzepi, K.; Ott, D.; Kong, J. Acupuncture modulates cortical thickness and functional connectivity in knee osteoarthritis patients. Sci. Rep. 2014, 4, 6482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, Y.; Liu, Z.; Zhang, S.; Li, Q.; Guo, S.; Yang, J.; Wu, W. Brain network response to acupuncture stimuli in experimental acute low back pain: An fMRI study. Evid. Based Complement. Alternat. Med. 2015, 2015, 210120. [Google Scholar] [CrossRef] [PubMed]
- Kandel, E.; Schwartz, J.; Jessel, T.; Siegelbaum, S.; Hudspeth, A.J. Principles of Neural Science, 5th ed.; McGraw-Hill: New York, NY, USA, 2013; Chapter 22. [Google Scholar]
- Pomeranz, B.; Chiu, D. Naloxone blockade of acupuncture analgesia: Endorphin implicated. Life Sci. 1976, 19, 1757–1762. [Google Scholar] [CrossRef]
- Lee, A.D.; Hsu, E.S. Mechanisms of Acupuncture Analgesia. In Acupuncture for Pain Management; Lin, Y., Hsu, E.S., Eds.; Springer: Heidelberg, Germany, 2014; Chapter 4. [Google Scholar]
- Li, P.; Chiang, C.Y. The Analgesic Effects of Acupuncture. In The Mechanism of Acupuncture Therapy and Clinical Case Studies; Cheung, L., Li, P., Wong, C., Eds.; Taylor & Francis: London, UK, 2001; Chapter 4. [Google Scholar]
- Melzack, R. Akupunktur und Schmerzbeeinflussung. Anaesthesist 1976, 25, 204–207. [Google Scholar] [PubMed]
- Pomeranz, B.; Berman, B. Scientific Basis of Acupuncture. In Basics of Acupuncture, 5th ed.; Stux, G., Berman, B., Pomeranz, B., Eds.; Springer: Berlin, Germany, 2003; Chapter 2. [Google Scholar]
- Dung, H. Acupuncture: An Anatomical Approach, 2nd ed.; CRC Press: London, UK, 2014; Chapter 9. [Google Scholar]
- Grissa, M.H.; Baccouche, H.; Boubaker, H.; Beltaief, K.; Bzeouich, N.; Fredj, N.; Msolli, M.A.; Boukef, R.; Bouida, W.; et al. Acupuncture vs intravenous morphine in the management of acute pain in the, ED. Am. J. Emerg. Med. 2016, 34, 2112–2116. [Google Scholar] [CrossRef] [PubMed]
- Lohmann, K. Über die Pyrophosphatfraktion im Muskel. Naturwissenschaften 1929, 17, 624–625. [Google Scholar]
- Holton, F.A.; Holton, P. The capillary dilator substances in dry powders of spinal roots; a possible role of adenosine triphosphate in chemical transmission from nerve endings. J. Physiol. 1954, 126, 124–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burnstock, G. Purinergic nerves. Pharmacol. Rev. 1972, 24, 509–581. [Google Scholar] [PubMed]
- Burnstock, G. Acupuncture: A novel hypothesis for the involvement of purinergic signalling. Med. Hypotheses 2009, 73, 470–472. [Google Scholar] [CrossRef] [PubMed]
- Burnstock, G. P2X receptors in sensory neurones. Br. J. Anaesth. 2000, 84, 476–488. [Google Scholar] [CrossRef] [PubMed]
- Burnstock, G. Pathophysiology and therapeutic potential of purinergic signaling. Pharmacol. Rev. 2006, 58, 58–86. [Google Scholar] [CrossRef] [PubMed]
- Burnstock, G.; Verkhratsky, A. Purinergic Signalling and the Nervous System; Springer: Berlin, Germany, 2012; Chapter 8. [Google Scholar]
- Masino, S.; Boison, D. Adenosine: A Key Link between Metabolism and Brain Activity; Springer: Heidelberg, Germany, 2013. [Google Scholar]
- Sawynok, J.; Liu, X.J. Adenosine in the spinal cord and periphery: Release and regulation of pain. Prog. Neurobiol. 2003, 69, 313–340. [Google Scholar] [CrossRef]
- Bours, M.J.; Swennen, E.L.; Di Virgilio, F.; Cronstein, B.N.; Dagnelie, P.C. Adenosine 5′-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol. Ther. 2006, 112, 358–404. [Google Scholar] [CrossRef] [PubMed]
- Hurt, J.K.; Zylka, M.J. PAPupuncture has localized and long-lasting antinociceptive effects in mouse models of acute and chronic pain. Mol. Pain 2012, 8, 28. [Google Scholar] [CrossRef] [PubMed]
- Fujita, T.; Feng, C.; Takano, T. Presence of caffeine reversibly interferes with efficacy of acupuncture-induced analgesia. Sci. Rep. 2017, 7, 3397. [Google Scholar] [CrossRef] [PubMed]
- Montes, L.A.; Valenzuela, M.J. Effectiveness of low back pain treatment with acupuncture. Biomedica 2017, 38, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Leem, J.; Kim, H.; Jo, H.G.; Jeon, S.R.; Hong, Y.; Park, Y.; Seo, B.; Cho, Y.; Kang, J.W.; Kim, E.J.; et al. Efficacy and safety of thread embedding acupuncture combined with conventional acupuncture for chronic low back pain: A study protocol for a randomized, controlled, assessor-blinded, multicenter clinical trial. Medicine 2018, 97, e10790. [Google Scholar] [CrossRef] [PubMed]
- Vitoula, K.; Venneri, A.; Varrassi, G.; Paladini, A.; Sykioti, P.; Adewusi, J.; Zis, P. Behavioral therapy approaches for the management of low back pain: An up-to-date systematic review. Pain Ther. 2018, 16. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X. Acupuncture: Review and Analysis of Controlled Clinical Trials; World Health Organization: Geneva, Switzerland, 2002. Available online: http: www.iama.edu/OtherArticles/acupuncture WHO full report.pdf (accessed on 5 June 2018).
- Manheimer, E.; White, A.; Berman, B.; Forys, K.; Ernst, E. Meta-analysis: Acupuncture for low back pain. Ann. Intern Med. 2005, 142, 651–663. [Google Scholar] [CrossRef] [PubMed]
- Taylor, P.; Pezzullo, L.; Grant, S.J.; Bensoussan, A. Cost-effectiveness of acupuncture for chronic nonspecific low back pain. Pain Pract. 2014, 14, 599–606. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Hu, Y.; Zhu, Y.; Yin, P.; Litscher, G.; Xu, S. Systematic review of adverse effects: A further step towards modernization of acupuncture in China. Evid. Based Complement. Alternat. Med. 2015, 432467. [Google Scholar] [CrossRef] [PubMed]
Authors | Diagnosis | Intervention Group | Control Group | Outcome Measure | Result |
---|---|---|---|---|---|
Pach et al. (2013) [218] | CLBP | n = 73, standardized manual acupuncture; n = 66, individualized manual acupuncture | NA | VAS | Both intervention groups showed improvement in pain scale but there were no relevant difference between them |
Molsberger et al. (2002) [219] | LBP | n = 65, manual acupuncture + conventional orthopaedic therapy | n = 61, sham acupuncture + conventional orthopaedic therapy; n = 60, conventional orthopaedic therapy | VAS | Acupuncture + conventional orthopaedic therapy were better than sham and conventional orthopaedic therapy alone |
Weiß et al. (2013) [220] | CLBP | n = 74, manual acupuncture + inpatient rehabilitation program | n = 69, inpatient rehabilitation program | SF-36 | Intervention group showed better results judging from SF-36 questionnaires |
Inoue et al. (2006) [221] | LBP | n = 15, manual acupuncture | n = 16, sham acupuncture | VAS, Schober test | Both groups showed reduction in pain but intervention group showed better result than control group |
Giles et al. (2003) [222] | CSP | n = 36, manual acupuncture; n = 36, spinal manipulation | n = 40, medication | ODI, NDI, SF-36, VAS | Manipulation achieved the best overall results, however, on the VAS for neck pain, acupuncture showed a better result than manipulation (50% vs. 42%) |
Haake et al. (2007) [223] | CLBP | n = 387, manual acupuncture | n = 387, sham acupuncture; n = 388, conventional therapy (physiotherapy, exercise) | CPGS, HFAQ | Effectiveness of acupuncture, both verum and sham, was almost twice that of conventional therapy |
Brinkhaus et a (2006) [224] | CLBP | n = 146, manual acupuncture; n = 73, minimal manual acupuncture | n = 79, waiting list | SF-36, VAS | Acupuncture was better than no acupuncture, but no significant differences between acupuncture and minimal acupuncture |
Cho et al. (2013) [225] | CLBP | n = 57, manual acupuncture | n = 59, sham acupuncture | VAS | Acupuncture was better than sham acupuncture |
Cherkin et al. (2001) [226] | CLBP | n = 94, manual acupuncture | n = 78, massage; n = 90, self-care | SBS, RDS | Massage was better than acupuncture and self-care |
Cherkin et al. (2009) [227] | CLBP | n = 158, standardized manual acupuncture; n = 157, individualized manual acupuncture; n = 162, simulated acupuncture (using toothpick) | n = 161, usual care (medications, physiotherap) | RMDQ | All intervention groups showed better outcome than usual care, but no significant differences among the acupuncture groups |
Yun et al. (2012) [228] | CLBP | n = 82, standardized manual acupuncture; n = 80, individualized manual acupuncture | n = 74, usual care (massage, physiotherapy, medications) | RMDQ, VAS | Intervention groups showed better results than control; but individualized acupuncture is more effective than standardized acupuncture |
Zhang et al. (2017) [229] | DiscogenicSciatica | n = 50, 50 Hz electroacupuncture | n = 50, MFE | NRS, ODI, PGI | The effect of electroacupuncture was superior to that of MFE |
Thomas et al. (1994) [230] | CNLBP | n = 7, manual acupuncture; n = 9, 2 Hz low frequency electroacupuncture; n = 11, 80 Hz high frequency electroacupuncture | n = 10, waiting list | ADL related to pain, ROM | All intervention groups showed reduction of pain, more so in low frequency electroacupuncture group in long term |
Glazov et al. (2014) [231] | NSCLBP | 840 nm laser acupuncture: n = 48, 0.8 Joules high dose; n = 48, 0.2 Joules low dose | n = 48, 0 Joules sham laser acupuncture (without switching on the laser) | NPRS, ODI | Treatment groups showed better result but no difference between sham and laser groups |
Shin et al. (2015) [232] | LBP | 660 nm laser acupuncture: n = 28 | n = 27, sham laser acupuncture (without switching on the laser) | VAS, PPT | Both groups showed improvement in pain but no significant difference outcomes between the two groups |
Authors | Local Points | Distant Points | Other Points |
---|---|---|---|
Pach et al. (2013) [218] | BL 23, 24, 25 | BL 40, 60; GB 34; K 3 | - |
Molsberger et al. (2002) [219] | BL 23, 25; GB 30 | BL 40, 60; GB 34 | 4 Ashi Points of maximum pain |
Weiß et al. (2013) [220] | NA | NA | - |
Inoue et al. (2006) [221] | - | - | Single Ashi Point at the most painful point |
Giles et al. (2003) [222] | 8 to 10 needles were placed in local paraspinal intramuscular maximum pain areas | Approximately 5 needles were placed in distal acupuncture point | - |
Haake et al. (2007) [223] | 14 to 20 needles were inserted but exact locations were not mentioned | ||
Brinkhaus et al. (2006) [224] | At least 4 local points: BL 20 to 34; BL 50 to 54; GB 30; GV 3, 4, 5, 6 | At least 2 distant points: SI 3; BL 40, 60, 62; K 3, 7; GB 31, 34, 41; LR 3; GV 14, 20 | Extraordinary Points: Huatojiaji & Shiqizhuixia |
Cho et al. (2013) [225] | Points were chosen according to 3 types of meridian patterns: 1. Gallbladder Meridian: 12, 26, 30, 34, 41 2. Bladder Meridian: 23, 24, 25, 37, 40 3. Mixed Meridian: ST 4, 36; SP 13, 14; GV 3, 4, 5, 24, 26 | ||
Cherkin et al. (2001) [226] | NA | NA | - |
Cherkin et al. (2009) [227] | 1. Individualized Acupuncture: Averaged of 10.8 needles, chosen from 74 points, half from Bladder meridian 2. Standardized Acupuncture: 8 acupuncture points commonly used for chronic low back pain (GV 3, BL 23 *, BL 40 *, K 3 *, Low Back Ashi Point) 3. Simulated Acupuncture: Using toothpick on acupuncture points | ||
Yun et al. (2012) [228] | GV 3; BL 23 | BL 40; K 3 | Low Back Ashi Points, Back-Pain Points ^ |
Zhang et al. (2017) [229] | BL 25 | - | Extraordinary Points: JiaJi * (Ex-B2) |
Thomas et al. (1994) [230] | BL 23, 25, 26, 32; GB 30, 34 | BL 40, 60; SI 6; ST 36 | - |
Glazov et al. (2014) [231] | An average of 9 points were used: GV 13%, BL 37%, GB 13%, other meridians 16%, Ashi Points 14%, Extraordinary Points 7% | ||
Shin et al. (2015) [232] | GV 3, 4, 5; BL 23 *, 24 *, 25 *; GB 30 * | BL 40 * | - |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, T.-K.; Ma, Y.; Berger, F.; Litscher, G. Acupuncture and Neural Mechanism in the Management of Low Back Pain—An Update. Medicines 2018, 5, 63. https://doi.org/10.3390/medicines5030063
Lim T-K, Ma Y, Berger F, Litscher G. Acupuncture and Neural Mechanism in the Management of Low Back Pain—An Update. Medicines. 2018; 5(3):63. https://doi.org/10.3390/medicines5030063
Chicago/Turabian StyleLim, Tiaw-Kee, Yan Ma, Frederic Berger, and Gerhard Litscher. 2018. "Acupuncture and Neural Mechanism in the Management of Low Back Pain—An Update" Medicines 5, no. 3: 63. https://doi.org/10.3390/medicines5030063