Potential Role of Certain Biomarkers Such as Vitamin B12, ROS, Albumin, as Early Predictors for Prognosis of COVID-19 Outcomes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Limitation of the Study
2.3. Samples Collection
2.4. Ethical Consideration
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
References
- Zhu, H.; Wei, L.; Niu, P. The novel coronavirus outbreak in Wuhan, China. Glob. Health Res. Policy 2020, 5, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akula, S.M.; McCubrey, J.A. Where are we with understanding of COVID-19? Adv. Biol. Regul. 2020, 78, 100738. [Google Scholar] [CrossRef] [PubMed]
- Van Eijk, L.E.; Binkhorst, M.; Bourgonje, A.R.; Offringa, A.K.; Mulder, D.J.; Bos, E.M.; Kolundzic, N.; Abdulle, A.E.; van der Voort, P.H.J.; Olde Rikkert, M.G.M.; et al. COVID-19: Immunopathology, pathophysiological mechanisms, and treatment options. J. Pathol. 2021, 254, 307–331. [Google Scholar] [CrossRef] [PubMed]
- Tsang, H.F.; Chan, L.W.C.; Cho, W.C.S.; Yu, A.C.S.; Yim, A.K.Y.; Chan, A.K.C.; Ng, L.P.W.; Wong, Y.K.E.; Pei, X.M.; Li, M.J.W.; et al. An update on COVID-19 pandemic: The epidemiology, pathogenesis, prevention and treatment strategies. Expert Rev. Anti-Infect. Ther. 2020, 19, 1863146. [Google Scholar] [CrossRef] [PubMed]
- Mouffak, S.; Shubbar, Q.; Saleh, E.; El-Awady, R. Recent advances in management of COVID-19: A review. Biomed. Pharmacother. 2021, 143, 112107. [Google Scholar] [CrossRef]
- Bairwa, M.; Kumar, R.; Beniwal, K.; Kalita, D.; Bahurupi, Y. Hematological profile and biochemical markers of COVID-19 non-survivors: A retrospective analysis. Clin. Epidemiol. Glob. Health 2021, 11, 100770. [Google Scholar] [CrossRef]
- Gemcioglu, E.; Davutoglu, M.; Catalbas, R.; Karabuga, B.; Kaptan, E.; Aypak, A.; Kalem, A.K.; Özdemir, M.; Yeşilova, N.Y.; Kalkan, E.A.; et al. Predictive values of biochemical markers as early indicators for severe COVID-19 cases in admission. Future Virol. 2021, 16, 353–367. [Google Scholar] [CrossRef]
- Van Kempen, T.A.T.G.; Deixler, E. SARS-CoV-2: Influence of phosphate and magnesium, moderated by vitamin D, on energy (ATP) metabolism and on severity of COVID-19. Transl. Physiol. 2021, 320, E2–E6. [Google Scholar] [CrossRef]
- Shakoor, H.; Feehan, J.; Mikkelsen, K.; Al Dhaheri, A.S.; Ali, H.I.; Platat, C.; Ismail, L.C.; Stojanovska, L.; Apostolopoulos, V. Be well: A potential role for vitamin B in COVID-19. Maturitas 2021, 144, 108–111. [Google Scholar] [CrossRef]
- Dalbeni, A.; Bevilacqua, M.; Teani, I.; Normelli, I.; Mazzaferri, F.; Chiarioni, G. Excessive vitamin B12 and poor outcome in COVID-19 pneumonia. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 774–775. [Google Scholar] [CrossRef]
- Chernyak, B.V.; Popova, E.N.; Prikhodko, A.S.; Grebenchikov, O.A.; Zinovkina, L.A.; Zinovkin, R.A. COVID-19 and Oxidative Stress. Biochemistry 2020, 85, 1543–1553. [Google Scholar] [CrossRef] [PubMed]
- Bourgonje, A.R.; Abdulle, A.E.; Timens, W.; Hillebrands, J.L.; Navis, G.J.; Gordijn, S.J.; Bolling, M.C.; Dijkstra, G.; Voors, A.A.; Osterhaus, A.D.M.E.; et al. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J. Pathol. 2020, 251, 228–248. [Google Scholar] [CrossRef] [PubMed]
- Beltrán-García, J.; Osca-Verdegal, R.; Pallardó, F.V.; Ferreres, J.; Rodríguez, M.; Mulet, S.; Sanchis-Gomar, F.; Carbonell, N.; García-Giménez, J.L. Oxidative stress and inflammation in COVID-19-associated sepsis: The potential role of anti-oxidant therapy in avoiding disease progression. Antioxidants 2020, 9, 936. [Google Scholar] [CrossRef] [PubMed]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell. Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Norouzi, P.; Aazami, H.; Moosavi-Movahedi, A.A. Review on oxidative stress relation on COVID-19: Biomolecular and bioanalytical approach. Int. J. Biol. Macromol. 2021, 189, 802–818. [Google Scholar] [CrossRef]
- Forcados, G.E.; Muhammad, A.; Oladipo, O.O.; Makama, S.; Meseko, C.A. Metabolic Implications of Oxidative Stress and Inflammatory Process in SARS-CoV-2 Pathogenesis: Therapeutic Potential of Natural Antioxidants. Front. Cell. Infect. Microbiol. 2021, 11, 654813. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, H.; Wang, J.; Li, X.; Xue, C.; Niu, C.; Liao, P. Serum Albumin Levels are a Predictor of COVID-19 Patient Prognosis: Evidence from a Single Cohort in Chongqing, China. Int. J. Gen. Med. 2021, 14, 2785. [Google Scholar] [CrossRef]
- Ciaccio, M.; Agnello, L. Biochemical biomarkers alterations in Coronavirus Disease 2019 (COVID-19). Diagnosis 2020, 7, 365–372. [Google Scholar] [CrossRef]
- Letelier, P.; Encina, N.; Morales, P.; Riffo, A.; Silva, H.; Riquelme, I.; Guzmán, N. Role of biochemical markers in the monitoring of COVID-19 patients. J. Med. Biochem. 2021, 40, 115–128. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Chinn, J.; de Ferrante, M.; Kirby, K.A.; Hohmann, S.F.; Amin, A. Male gender is a predictor of higher mortality in hospitalized adults with COVID-19. PLoS ONE 2021, 16, e0254066. [Google Scholar] [CrossRef]
- Raimondi, F.; Novelli, L.; Ghirardi, A.; Russo, F.M.; Pellegrini, D.; Biza, R.; Trapasso, R.; Giuliani, L.; Anelli, M.; Amoroso, M.; et al. COVID-19 and gender: Lower rate but same mortality of severe disease in women—An observational study. BMC Pulm. Med. 2021, 21, 96. [Google Scholar] [CrossRef] [PubMed]
- Marik, P.E.; Deperrior, S.E.; Ahmad, Q.; Dodani, S. Gender-based disparities in COVID-19 patient outcomes. J. Investig. Med. 2021, 69, 814–818. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi-Haddad-Zavareh, M.; Bayani, M.; Shokri, M.; Ebrahimpour, S.; Babazadeh, A.; Mehraeen, R.; Moudi, E.; Rostami, A.; Barary, M.; Hosseini, A.; et al. C-Reactive Protein as a Prognostic Indicator in COVID-19 Patients. Interdiscip. Perspect. Infect. Dis. 2021, 2021, 5557582. [Google Scholar] [CrossRef]
- Chen, G.; Wu, D.; Guo, W.; Cao, Y.; Huang, D.; Wang, H.; Wang, T.; Zhang, X.; Chen, H.; Yu, H.; et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Investig. 2020, 130, 2620–2629. [Google Scholar] [CrossRef] [Green Version]
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Knovich, M.A.; Coffman, L.G.; Torti, F.M.; Torti, S.V. Serum ferritin: Past, present and future. Biochim. Biophys. Acta Gen. Subj. 2010, 1800, 760–769. [Google Scholar] [CrossRef] [Green Version]
- Andrès, E.; Serraj, K.; Zhu, J.; Vermorken, A.J.M. The pathophysiology of elevated vitamin B12 in clinical practice. QJM 2013, 106, 505–515. [Google Scholar] [CrossRef] [Green Version]
- Parlakpinar, H.; Gunata, M. SARS-CoV-2 (COVID-19): Cellular and biochemical properties and pharmacological insights into new therapeutic developments. Cell Biochem. Funct. 2021, 39, 10–28. [Google Scholar] [CrossRef]
- Poprac, P.; Jomova, K.; Simunkova, M.; Kollar, V.; Rhodes, C.J.; Valko, M. Targeting Free Radicals in Oxidative Stress-Related Human Diseases. Trends Pharmacol. Sci. 2017, 38, 592–607. [Google Scholar] [CrossRef]
- Wang, W.; Shen, M.; Tao, Y.; Fairley, C.K.; Zhong, Q.; Li, Z.; Chen, H.; Ong, J.J.; Zhang, D.; Zhang, K.; et al. Elevated glucose level leads to rapid COVID-19 progression and high fatality. BMC Pulm. Med. 2021, 21, 64. [Google Scholar] [CrossRef]
- Chen, J.; Wu, C.; Wang, X.; Yu, J.; Sun, Z. The Impact of COVID-19 on Blood Glucose: A Systematic Review and Meta-Analysis. Front. Endocrinol. 2020, 11, 732. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.L.; Claggett, B.L.; Cohen, A.J.; Nayor, J.; Saltzman, J.R. Association between an increase in blood urea nitrogen at 24 hours and worse outcomes in acute nonvariceal upper GI bleeding. Gastrointest. Endosc. 2017, 86, 1022–1027.e1. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Luo, R.; Wang, K.; Zhang, M.; Wang, Z.; Dong, L.; Li, J.; Yao, Y.; Ge, S.; Xu, G. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 2020, 97, 829–838. [Google Scholar] [CrossRef] [PubMed]
- Naicker, S.; Yang, C.W.; Hwang, S.J.; Liu, B.C.; Chen, J.H.; Jha, V. The Novel Coronavirus 2019 epidemic and kidneys. Kidney Int. 2020, 97, 824–828. [Google Scholar] [CrossRef]
- Ng, J.H.; Hirsch, J.S.; Hazzan, A.; Wanchoo, R.; Shah, H.H.; Malieckal, D.A.; Ross, D.W.; Sharma, P.; Sakhiya, V.; Fishbane, S.; et al. Outcomes Among Patients Hospitalized With COVID-19 and Acute Kidney Injury. Am. J. Kidney Dis. 2021, 77, 204–215.e1. [Google Scholar] [CrossRef]
- Ronco, C.; Reis, T.; Husain-Syed, F. Management of acute kidney injury in patients with COVID-19. Lancet Respir. Med. 2020, 8, 738–742. [Google Scholar] [CrossRef]
- Noori, M.; Nejadghaderi, S.A.; Sullman, M.J.M.; Carson-Chahhoud, K.; Kolahi, A.A.; Safiri, S. Epidemiology, prognosis and management of potassium disorders in COVID-19. Rev. Med. Virol. 2022, 32, e2262. [Google Scholar] [CrossRef]
- Gheorghe, G.; Ilie, M.; Bungau, S.; Stoian, A.M.P.; Bacalbasa, N.; Diaconu, C.C. Is There a Relationship between COVID-19 and Hyponatremia? Medicina 2021, 57, 55. [Google Scholar] [CrossRef]
- Ali, A.M.; Kunugi, H. Hypoproteinemia predicts disease severity and mortality in COVID-19: A call for action. Diagn. Pathol. 2021, 16, 31. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, L.; Weng, H.; Yang, F.; Jin, H.; Fan, F.; Zheng, X.; Yang, H.; Li, H.; Zhang, Y.; et al. Association Between Average Plasma Potassium Levels and 30-day Mortality During Hospitalization in Patients with COVID-19 in Wuhan, China. Int. J. Med. Sci. 2021, 18, 736. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, D.; Wang, L.; Zhao, Y.; Wei, L.; Chen, Z.; Yang, B. Low serum calcium: A new, important indicator of COVID-19 patients from mild/moderate to severe/critical. Biosci. Rep. 2020, 40, 20202690. [Google Scholar] [CrossRef] [PubMed]
- Schoeneck, M.; Iggman, D. The effects of foods on LDL cholesterol levels: A systematic review of the accumulated evidence from systematic reviews and meta-analyses of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 1325–1338. [Google Scholar] [CrossRef] [PubMed]
- Masana, L.; Correig, E.; Ibarretxe, D.; Anoro, E.; Arroyo, J.A.; Jericó, C.; Guerrero, C.; Miret, M.L.; Näf, S.; Pardo, A.; et al. Low HDL and high triglycerides predict COVID-19 severity. Sci. Rep. 2021, 11, 7217. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Ahn, J.H.; Park, H.H.; Kim, H.N.; Kim, H.; Yoo, Y.; Shin, H.; Hong, K.S.; Jang, J.G.; Park, C.G.; et al. COVID-19-activated SREBP2 disturbs cholesterol biosynthesis and leads to cytokine storm. Signal Transduct. Target. Ther. 2020, 5, 186–197. [Google Scholar] [CrossRef] [PubMed]
- Trinder, M.; Boyd, J.H.; Brunham, L.R. Molecular regulation of plasma lipid levels during systemic inflammation and sepsis. Curr. Opin. Lipidol. 2019, 30, 108–116. [Google Scholar] [CrossRef]
- Saballs, M.; Parra, S.; Sahun, P.; Pellejà, J.; Feliu, M.; Vasco, C.; Gumà, J.; Borràs, J.L.; Masana, L.; Castro, A. HDL-c levels predict the presence of pleural effusion and the clinical outcome of community-acquired pneumonia. Springerplus 2016, 5, 1491–1500. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; Zeng, W.; Su, J.; Wan, H.; Yu, X.; Cao, X.; Tan, W.; Wang, H. Hypolipidemia is associated with the severity of COVID-19. J. Clin. Lipidol. 2020, 14, 297–304. [Google Scholar] [CrossRef]
Non COVID | COVID | ||||
---|---|---|---|---|---|
Healthy (CRP < 5 mg/L) | Group A (CRP < 6 mg/L) | Group B (CRP: 6–30 mg/L) | Group C (CRP: 30–100 mg/L) | Group D (CRP > 100 mg/L) | |
Male | 24 | 5 (41.6%) | 18 (43.9%) | 26 (60.4%) | 30 (69.7%) |
Female | 36 | 7 (58.4%) | 23 (56.1%) | 17 (39.6%) | 13 (30.3%) |
Age | 9–89 | 29–78 | 28–93 | 33–90 | 24–91 |
Total participants | 60 | 12 | 41 | 43 | 43 |
BMI (kg/m2) | 30.1 | 29.5 | 30.3 | 30.4 | 31.1 |
Biochemical Test | Method | Analyzers |
---|---|---|
CRP | Latex indirect agglutination test/or turbidimetric | ABBOT-Architect 16000 |
B12 | Chemiluminescent microparticle Immunoassay | BECKMANCOULTER-DxI 800 |
Ferritin | Chemiluminescent microparticle Immunoassay | BECKMANCOULTER-DxI 800 |
sALT | Kinetic colorimetric by IFCC | ABBOT-Architect 16000 |
sAST | Kinetic colorimetric by IFCC | ABBOT-Architect 16000 |
Glucose | Enzymatic, Colorimetric/Hexokinase (HΚ/G-6-PDH) | ABBOT-Architect 16000 |
Urea | Enzymatic, Colorimetric /Urease/GLDH | ABBOT-Architect 16000 |
Creatinine | Sodium Picrate, Colorimetric, kinetic (Jaffe) | ABBOT-Architect 16000 |
Calcium | Arsenazo ΙΙΙ | ABBOT-Architect 16000 |
Phosphorus | Phosphomolybdate UV | ABBOT-Architect 16000 |
Potassium | Potentiometric (ISE direct) | ABBOT-Architect 16000 |
Sodium | Potentiometric (ISE direct) | ABBOT-Architect 16000 |
Total Protein | Βiuret method, colorimetric | ABBOT-Architect 16000 |
Albumin | Green of Bromocresol/BCG, colorimetric | ABBOT-Architect 16000 |
T. Cholesterol | Cholesterol oxidase (CHOD/POD) | ABBOT-Architect 16000 |
Triglycerides | Enzymatic, colorimetric (GPO/POD) | ABBOT-Architect 16000 |
ROS | Fluorometric | Fluorometer TEKAN |
Parameters | Normal Values | Average Values COVID − | Average Values COVID + | p Values |
---|---|---|---|---|
CRP | <6 mg/L | 1.7 | 80.47 | <0.0001 |
Ferritin | 10–290 mg/L | 137 | 663.82 | <0.0001 |
B12 | 187–883 pg/mL | 334 | 501.85 | 0.0029 |
sAST | 5–35 U/L | 25 | 40.73 | 0.0007 |
sALT | 5–35 U/L | 27 | 43.51 | 0.0005 |
Glucose | 55–110 mg/dL | 110 | 124.68 | 0.089 |
Urea | 15–43 mg/dL | 40 | 53.31 | 0.005 |
Creatinine | 0.5–1.1 mg/dL | 1.15 | 1.22 | 0.35 |
Ca | 8.8–10.6 mg/dL | 9.21 | 8.19 | <0.0001 |
P | 2.5–4.5 mg/dL | 3.9 | 3.67 | 0.13 |
Κ | 3.5–5.1 mmol/L | 4.67 | 4.36 | 0.014 |
Νa | 136–145 mmol/L | 140 | 140.02 | 0.385 |
Τ.P | 6.0–8.3 g/dL | 7 | 6.1 | <0.0001 |
Albumin | 3.4–5.4 g/dL | 4.2 | 3.39 | <0.0001 |
T. Cholesterol | <200 mg/dL | 183 | 151.61 | 0.0005 |
Triglycerides | 40–140 mg/dL | 115 | 140.43 | 0.05 |
ROS | (A.U) | 8602 | 14,201 | <0.0001 |
(a) | |||||
Biochemical Parameters | Normal Values | Av. Values Group A (CRP < 6 mg/L) | Av. Value Group Β (CRP 6–30 mg/L) | Av. Value Group C (CRP 30–100 mg/L) | Av. Value Group D (CRP >100 mg/L) |
CRP | <6 mg/L | 2.45 | 20.38 | 57.8 | 182.2 |
Ferritin | 10–290 mg/L | 208.34 | 385.02 | 716.88 | 1011.79 |
B12 | 187–883 pg/mL | 431.83 | 424.58 | 593.16 | 503.76 |
sAST | 5–35 U/L | 25.58 | 32.56 | 45.46 | 48.02 |
sALT | 5–35 U/L | 48 | 38.09 | 42.53 | 48.41 |
Glucose | 55–110 mg/dL | 100.91 | 105.36 | 137.27 | 137.13 |
Urea | 15–43 mg/dL | 53.91 | 45.58 | 54.65 | 59.18 |
Creatinine | 0.5–1.1 mg/dL | 1.43 | 1.07 | 1.113 | 1.42 |
Ca | 8.8–10.6 mg/dL | 8.75 | 8.47 | 8.05 | 7.91 |
P | 2.5–4.5 mg/dL | 4.288 | 3.42 | 3.57 | 3.84 |
Κ | 3.5–5.1 mmol/L | 4.283 | 4.35 | 4.39 | 4.37 |
Νa | 136–145 mmol/L | 139.08 | 139.8 | 140.04 | 140.48 |
Τ.P | 6.0–8.3 g/dL | 6.66 | 6.16 | 5.89 | 6.08 |
Albumin | 3.4–5.4 g/dL | 3.9 | 3.43 | 3.27 | 3.35 |
T. Cholesterol | <200 mg/dL | 149 | 139 | 164.54 | 144.45 |
Triglycerides | 40–140 mg/dL | 112.4 | 98 | 163.72 | 144.91 |
ROS | (A.U) | 7634 | 13929 | 13380 | 16868 |
(b) | |||||
Biochemical Parameters | p Value A–Β | p Value B–C | p Value C–D | ||
Ferritin | 0.134 | 0.007 | 0.069 | ||
B12 | 0.478 | 0.035 | 0.178 | ||
sAST | 0.121 | 0.069 | 0.389 | ||
sALT | 0.189 | 0.294 | 0.232 | ||
Glucose | 0.357 | 0.012 | 0.496 | ||
Urea | 0.165 | 0.096 | 0.271 | ||
Creatinine | 0.152 | 0.378 | 0.077 | ||
Ca | 0.151 | 0.005 | 0.197 | ||
P | 0.024 | 0.253 | 0.189 | ||
Κ | 0.354 | 0.362 | 0.423 | ||
Νa | 0.203 | 0.371 | 0.312 | ||
Τ.P | 0.015 | 0.052 | 0.215 | ||
Albumin | 0.001 | 0.046 | 0.215 | ||
T. Cholesterol | 0.231 | 0.120 | 0.105 | ||
Triglycerides | 0.347 | 0.071 | 0.269 | ||
ROS | 0.042 | 0.402 | 0.060 |
Test | Non-COVID | COVID | |||
---|---|---|---|---|---|
ROS (r +/−) | B12 (r +/−) | ROS (r +/−) | B12 (r +/−) | CRP (r +/−) | |
Ferritin | 0.168 | 0.377 | 0.272 | 0.067 | 0.415 |
Β12 | −0.004 | 1.000 | 0.062 | 1.000 | 0.038 |
sAST | 0.054 | 0.266 | 0.241 | 0.131 | 0.197 |
sALT | 0.037 | 0.340 | 0.031 | 0.136 | 0.074 |
Glucose | 0.021 | 0.166 | −0.028 | −0.0004 | 0.112 |
Urea | 0.206 | 0.396 | 0.166 | 0.086 | 0.130 |
Creatinine | 0.157 | 0.048 | −0.008 | 0.111 | 0.050 |
CRP | 0.039 | 0.105 | 0.324 | 0.038 | 1.000 |
Ca | −0.0001 | 0.038 | −0.279 | −0.166 | −0.299 |
P | 0.202 | 0.028 | 0.054 | 0.131 | 0.058 |
Potassium | −0.441 | −0.040 | −0.028 | −0.110 | 0.056 |
Sodium | −0.044 | 0.007 | 0.203 | 0.123 | 0.145 |
T.P | 0.019 | −0.173 | −0.307 | −0.082 | −0.154 |
Albumin | −0.157 | −0.302 | −0.457 | −0.230 | −0.169 |
T. Cholesterol | 0.043 | −0.054 | −0.480 | −0.070 | −0.193 |
Triglycerides | 0.115 | 0.229 | −0.116 | −0.185 | −0.002 |
ROS | −0.004 | 0.062 | 0.324 |
(a) | |||||
Biochemical Parameters | Normal Values | Av. Value Group A (CRP < 6 mg/L) | Av. Value Group Β (CRP 6–30 mg/L) | Av. Value Group C (CRP 30–100 mg/L) | Av. Value Group D (CRP >100 mg/L) |
CRP | <6 mg/L | 2.0 | 22.7 | 53.4 | 162.2 |
Ferritin | 10–290 mg/L | 111.6 | 258.4 | 522.5 | 634.2 |
B12 | 187–883 pg/mL | 573.4 | 418.2 | 716.7 | 583.2 |
sAST | 5–35 U/L | 18.1 | 31.8 | 40.2 | 47.0 |
sALT | 5–35 U/L | 35.0 | 34.2 | 35.5 | 49.2 |
Glucose | 55–110 mg/dL | 93.0 | 101.39 | 124.0 | 145.5 |
Urea | 15–43 mg/dL | 56.7 | 42.1 | 45.5 | 53.7 |
Creatinine | 0.5–1.1 mg/dL | 1.7 | 1.1 | 0.9 | 1.4 |
Ca | 8.8–10.6 mg/dL | 8.8 | 8.5 | 8.0 | 8.2 |
P | 2.5–4.5 mg/dL | 4.9 | 3.3 | 3.8 | 3.9 |
Κ | 3.5–5.1 mmol/L | 4.2 | 4.2 | 4.0 | 4.2 |
Νa | 136–145 mmol/L | 138.4 | 139.2 | 141.1 | 140.3 |
Τ.P | 6.0–8.3 g/dL | 6.7 | 6.0 | 5.8 | 6.5 |
Albumin | 3.4–5.4 g/dL | 3.9 | 3.4 | 3.2 | 3.4 |
T. Cholesterol | <200 mg/dL | 149.0 | 142.5 | 167.0 | 126.5 |
Triglycerides | 40–140 mg/dL | 112.4 | 117.0 | 162.3 | 108.0 |
ROS | (A.U) | 5380.0 | 14,082.7 | 13,373.6 | 17,067.8 |
(b) | |||||
CRP | <6 mg/L | 3.1 | 17.3 | 60.7 | 190.9 |
Ferritin | 10–290 mg/L | 343.6 | 546.7 | 844.0 | 1181.1 |
B12 | 187–883 pg/mL | 233.6 | 432.7 | 512.4 | 469.4 |
sAST | 5–35 U/L | 36.0 | 33.5 | 48.8 | 48.5 |
sALT | 5–35 U/L | 66.2 | 43.1 | 47.1 | 48.0 |
Glucose | 55–110 mg/dL | 112.0 | 110.4 | 145.9 | 133.5 |
Urea | 15–43 mg/dL | 50.0 | 50.0 | 60.7 | 61.5 |
Creatinine | 0.5–1.1 mg/dL | 0.9 | 1.1 | 1.2 | 1.5 |
Ca | 8.8–10.6 mg/dL | 8.6 | 8.4 | 8.1 | 7.8 |
P | 2.5–4.5 mg/dL | 3.5 | 3.6 | 3.4 | 3.7 |
Κ | 3.5–5.1 mmol/L | 4.3 | 4.6 | 4.6 | 4.4 |
Νa | 136–145 mmol/L | 140.0 | 140.6 | 139.3 | 140.6 |
Τ.P | 6.0–8.3 g/dL | 6.5 | 6.3 | 5.6 | 6.1 |
Albumin | 3.4–5.4 g/dL | 3.8 | 3.5 | 3.3 | 3.3 |
T. Cholesterol | <200 mg/dL | 141.0 | 135.5 | 163.6 | 148.4 |
Triglycerides | 40–140 mg/dL | 101.0 | 79.0 | 164.3 | 157.2 |
ROS | (A.U) | 10,701.0 | 13,698.1 | 13,384.9 | 16,831.4 |
(c) | |||||
Parameters | Normal Values | Average Values COVID-MALE | Average Values COVID-FEMALE | ||
CRP | <6 mg/L | 1.4 | 1.9 | ||
Ferritin | 10–290 mg/L | 144.6 | 132.4 | ||
B12 | 187–883 pg/mL | 357.9 | 319.4 | ||
sAST | 5–35 U/L | 24.3 | 25.6 | ||
sALT | 5–35 U/L | 27.7 | 26.8 | ||
Glucose | 55–110 mg/dL | 106.0 | 112.9 | ||
Urea | 15–43 mg/dL | 40.2 | 40.5 | ||
Creatinine | 0.5–1.1 mg/dL | 1.0 | 1.2 | ||
Ca | 8.8–10.6 mg/dL | 9.2 | 9.2 | ||
P | 2.5–4.5 mg/dL | 3.6 | 4.1 | ||
Κ | 3.5–5.1 mmol/L | 4.9 | 4.6 | ||
Νa | 136–145 mmol/L | 140.8 | 139.8 | ||
Τ.P | 6.0–8.3 g/dL | 7.1 | 6.9 | ||
Albumin | 3.4–5.4 g/dL | 4.3 | 4.1 | ||
T. Cholesterol | <200 mg/dL | 158.7 | 199.4 | ||
Triglycerides | 40–140 mg/dL | 112.1 | 116.3 | ||
ROS | (A.U) | 8337.5 | 8778.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lymperaki, E.; Kazeli, K.; Variti, G.; Gerothanasi, M.; Gkinoudis, A.; Tsamesidis, I.; Vagdatli, E. Potential Role of Certain Biomarkers Such as Vitamin B12, ROS, Albumin, as Early Predictors for Prognosis of COVID-19 Outcomes. Medicines 2022, 9, 36. https://doi.org/10.3390/medicines9060036
Lymperaki E, Kazeli K, Variti G, Gerothanasi M, Gkinoudis A, Tsamesidis I, Vagdatli E. Potential Role of Certain Biomarkers Such as Vitamin B12, ROS, Albumin, as Early Predictors for Prognosis of COVID-19 Outcomes. Medicines. 2022; 9(6):36. https://doi.org/10.3390/medicines9060036
Chicago/Turabian StyleLymperaki, Evgenia, Konstantina Kazeli, Georgia Variti, Magda Gerothanasi, Argyrios Gkinoudis, Ioannis Tsamesidis, and Eleni Vagdatli. 2022. "Potential Role of Certain Biomarkers Such as Vitamin B12, ROS, Albumin, as Early Predictors for Prognosis of COVID-19 Outcomes" Medicines 9, no. 6: 36. https://doi.org/10.3390/medicines9060036
APA StyleLymperaki, E., Kazeli, K., Variti, G., Gerothanasi, M., Gkinoudis, A., Tsamesidis, I., & Vagdatli, E. (2022). Potential Role of Certain Biomarkers Such as Vitamin B12, ROS, Albumin, as Early Predictors for Prognosis of COVID-19 Outcomes. Medicines, 9(6), 36. https://doi.org/10.3390/medicines9060036