Ionic Liquid as Reaction Media for the Production of Cellulose-Derived Polymers from Cellulosic Biomass
Abstract
:1. Introduction
2. Dissolution of Cellulose in ILs
2.1. ILs
2.2. Mechanism of Cellulose Dissolution
2.3. Hydrogen Bond Basicity of Cellulose Dissolving ILs
2.4. Viscosity of Concentrated Cellulose Solutions in ILs
2.5. Water Effect on the Anion Interaction with Cellulose
3. Industrial Cellulose Derivative Production Methods
3.1. Esterification
3.2. Etherification
4. Cellulose Precipitation
5. Recycling of ILs after Cellulose Processing
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
[Amim]Cl | 1-Allyl-3-methylimidazolium chloride |
[Bmim]BF4 | 1-Butyl-3-methylimidazolium tetrafluoroborate |
[Emim]HCO2 | 1-Ethyl-3-methylimidazolium formate |
[Bmim]PF6 | 1-Butyl-3-methylimidazolium hexafluorophosphate |
[Prmim]HCO2 | 1-Propyl-3-methylimidazolium formate |
[Emim]MeOSO3 | 1-ethyl-3-methylimidazolium methylsulfate |
[Amim]HCO2 | 1-Allyl-3-methylimidazolium formate |
[Emim]MeSO3 | 1-Ethyl-3-methylimidazolium methanesulfonate |
[Bmim]OAc | 1-Butyl-3-methylimidazolium acetate |
[Emim]CF3CO2 | 1-Ethyl-3-methylimidazolium trifluoroacetate |
[Bmim]Cl] | 1-Butyl-3-methylimidazolium chloride |
[Emim]SCN | 1-Ethyl-3-methylimidazolium thiocyanate |
[Bmim]HCO2 | 1-Butyl-3-methylimidazolium formate |
[Emim]BF4 | 1-Ethyl-3-methylimidazolium tetrafluoroborate |
[Emim](MeO)2PO2 | 1-Ethyl-3-methylimidazolium dimethylphosphate |
[Emim]N(CN)2 | 1-Ethyl-3-methylimidazolium dicyanamide |
[Emim](MeO)HPO2 | 1-Ethyl-3-methylimidazolium methylphosphonate |
[Emim]I | 1-Ethyl-3-methylimidazolium iodide |
[Emim](MeO)MePO2 | 1-Ethyl-3-methylimidazolium methyl methylphosphonate |
[Emim]PF6 | 1-Ethyl-3-methylimidazolium hexafluorophosphate |
[Emim](EtO)2PO2 | 1-Ethyl-3-methylimidazolium diethylphosphate |
[Bmim]CH3SO3 | 1-Butyl-3-methylimidazolium methanesulfonate |
[Emim]Cl | 1-Ethyl-3-methylimidazolium chloride |
[Bmim]Br | 1-Butyl-3-methylimidazolium bromide |
[Emim]H2PO2 | 1-Ethyl-3-methylimidazolium dyhidrogenphosphate |
[Amim](MeO)HPO2 | 1-Allyl-3-methylimidazolium methylphosphonate |
[Prmim](MeO)HPO2 | 1-Propyl-3-methylimidazolium methylphosphonate |
[Bmim](MeO)HPO2 | 1-Butyl-3-methylimidazolium methylphosphonate |
[Emim]OAc | 1-Ethyl-3-methylimidazolium acetate |
ECOENG 41M | 1-Butyl-3-methylimidazolium 2-(2-methoxyethoxy)-ethylsulfate |
[Emim]CH3SO3 | 1-Ethyl-3-methylimidazolium methanesulfonate |
[Emim]CF3SO3 | 1-Ethyl-3-methylimidazolium: trifluoromethanesulfonate |
[Emim]Tos | 1-Ethyl-3-methylimidazolium tosylate |
[Emim]EtSO4 | 1-Ethyl-3-methylimidazolium ethylsulfate |
[Empy]EtSO4 | 1-Ethyl-3-methylpyridinium ethylsulfate |
[Epy]EtSO4 | 1-Ethylpyridinium ethylsulfate |
[EEpy]EtSO4 | 1,2-Diethylpyridinium ethylsulfate |
[Mpy]CH3SO4 | 1-methylpyridinium methylsulfate |
[MMpy]CH3SO4 | 1,3-Dimethylpyridinium methylsulfate |
[EMpy]CH3SO4 | 2-ethyl-1-methylpyridinium methylsulfate |
[Bmpyr]OAc | 1-Butyl-1-methylpyrrolidinium acetate |
[Bmpyr]CF3SO3 | 1-Butyl-1-methylpyrrolidinium trifluoromethanesulfonate |
[Bmpyr](BtO)HPO2 | 1-Butyl-1-methylpyrrolidinium butylphosphonate |
[Empyr](EtO)HPO2 | 1-Ethyl-1-methylpyrrolidinium ethylphosphonate |
[DBNH]OAc | 1,5-diaza-bicyclo[4.3.0]non-5-enium acetate |
[Emim]DEP | 1-Ethyl-3-methylimidazolium diethylphosphate |
[Bdmim]Cl | 1-Butyl-2,3-methylimidazolium chloride |
[Admim]Br | 1-Allyl-2,3-methylimidazolium bromide |
[Bmim]OPr | 1-butyl-3-methylimidazolium propionate |
References
- Lenzing. Focus Sustainability. Available online: http://www.lenzing.com/fileadmin/template/pdf/konzern/nachhaltigkeit/Sustainability_Brochure_2008_EN.pdf (accessed on 10 May 2016).
- Gardner, K.H.; Blackwell, J. The structure of native cellulose. Biopolymers 1974, 13, 1975–2001. [Google Scholar] [CrossRef]
- Nishiyama, Y.; Sugiyama, J.; Chanzy, H.; Langan, P. Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 2003, 125, 14300–14306. [Google Scholar] [CrossRef] [PubMed]
- Thygesen, A.; Oddershede, J.; Lilholt, H.; Thomsen, B.A.; Ståhl, K. On the determination of crystallinity and cellulose content in plant fibers. Cellulose 2005, 12, 563–576. [Google Scholar] [CrossRef]
- Chandra, R.P.; Bura, R.; Mabee, W.E.; Berlin, A.; Pan, X.; Saddler, J.N. Substrate pretreatment: The key to effective enzymatic hydrolysis of lignocellulosics? In Biofuels; Olsson, L., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 67–93. [Google Scholar]
- Searle, S.; Malins, C. Availability of Cellulosic Residues in the EU. Available online: http://theicct.org/sites/default/files/publications/ICCT_EUcellulosic-waste-residues_20131022.pdf (accessed on 10 May 2016).
- Klemm, D.; Heublein, B.; Fink, H.-P.; Bohn, A. Cellulose: Fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 2005, 44, 3358–3393. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Pei, Z.; Wang, D. Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: A review. Bioresour. Technol. 2016, 199, 21–33. [Google Scholar] [CrossRef] [PubMed]
- The European Bioeconomy in 2030. Available online: http://www.epsoweb.org/file/560 (accessed on 10 May 2016).
- Bagheri, M.; Rodríguez, H.; Swatloski, R.P.; Spear, S.K.; Daly, D.T.; Rogers, R.D. Ionic liquid-based preparation of cellulose−dendrimer films as solid supports for enzyme immobilization. Biomacromolecules. 2008, 9, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Brennan, T.C.R.; Datta, S.; Blanch, H.W.; Simmons, B.A.; Holmes, B.M. Recovery of sugars from ionic liquid biomass liquor by solvent extraction. Bioenergy Res. 2010, 3, 123–133. [Google Scholar] [CrossRef]
- Dibble, D.C.; Cheng, A.; George, A. Novel Compositions and Methods Useful for Ionic Liquid Treatment of Biomass. U.S. Patent 9,403,915, 2 August 2016. [Google Scholar]
- Mikkola, J.-P.; Kirilin, A.; Tuuf, J.-C.; Pranovich, A.; Holmbom, B.; Kustov, L.M.; Murzin, D.Y.; Salmi, T. Ultrasound enhancement of cellulose processing in ionic liquids: From dissolution towards functionalization. Green Chem. 2007, 9, 1229–1237. [Google Scholar] [CrossRef]
- Welton, T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 1999, 99, 2071–2084. [Google Scholar] [CrossRef] [PubMed]
- Earle, M.; Seddon, K. Ionic liquids. Green solvents for the future. In Workshop on Sustainable Chemistry; Pure and Applied Chemistry: Venice, Italy, 2000; Volume 72, pp. 1391–1398. [Google Scholar]
- Poole, C.F.; Poole, S.K. Extraction of organic compounds with room temperature ionic liquids. J. Chromatogr. A 2010, 1217, 2268–2286. [Google Scholar] [CrossRef] [PubMed]
- Marsh, K.N.; Boxall, J.A.; Lichtenthaler, R. Room temperature ionic liquids and their mixtures—A review. Fluid Phase Equilib. 2004, 219, 93–98. [Google Scholar] [CrossRef]
- Galiński, M.; Lewandowski, A.; Stępniak, I. Ionic liquids as electrolytes. Electrochim. Acta 2006, 51, 5567–5580. [Google Scholar] [CrossRef]
- Welton, T. Ionic liquids in catalysis. Coord. Chem. Rev. 2004, 248, 2459–2477. [Google Scholar] [CrossRef]
- Torimoto, T.; Tsuda, T.; Okazaki, K.-I.; Kuwabata, S. New frontiers in materials science opened by ionic liquids. Adv. Mater. 2010, 22, 1196–1221. [Google Scholar] [CrossRef] [PubMed]
- Van Osch, D.J.G.P.; Kollau, L.J.B.M.; van den Bruinhorst, A.; Asikainen, S.; Rocha, M.A.A.; Kroon, M.C. Ionic liquids and deep eutectic solvents for lignocellulosic biomass fractionation. Phys. Chem. Chem. Phys. 2017, 19, 2636–2665. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Wu, M.; Kou, Y.; Min, E. Ionic liquids: Applications in catalysis. Catal. Today 2002, 74, 157–189. [Google Scholar] [CrossRef]
- Zhang, Z.; Song, J.; Han, B. Catalytic transformation of lignocellulose into chemicals and fuel products in ionic liquids. Chem. Rev. 2017, 117, 6834–6880. [Google Scholar] [CrossRef] [PubMed]
- Olivier-Bourbigou, H.; Magna, L. Ionic liquids: Perspectives for organic and catalytic reactions. J. Mol. Catal. A Chem. 2002, 182–183, 419–437. [Google Scholar] [CrossRef]
- Wasserscheid, P.; Keim, W. Ionic liquids—New “solutions” for transition metal catalysis. Angew. Chem. Int. Ed. 2000, 39, 3772–3789. [Google Scholar] [CrossRef]
- Petkovic, M.; Ferguson, J.L.; Gunaratne, H.Q.N.; Ferreira, R.; Leitao, M.C.; Seddon, K.R.; Rebelo, L.P.N.; Pereira, C.S. Novel biocompatible cholinium-based ionic liquids-toxicity and biodegradability. Green Chem. 2010, 12, 643–649. [Google Scholar] [CrossRef]
- Tang, S.; Baker, G.A.; Zhao, H. Ether- and alcohol-functionalized task-specific ionic liquids: Attractive properties and applications. Chem. Soc. Rev. 2012, 41, 4030–4066. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Mecerreyes, D.; Antonietti, M. Poly(ionic liquid)s: An update. Prog. Polym. Sci. 2013, 38, 1009–1036. [Google Scholar] [CrossRef]
- Thuy Pham, T.P.; Cho, C.-W.; Yun, Y.-S. Environmental fate and toxicity of ionic liquids: A review. Water Res. 2010, 44, 352–372. [Google Scholar] [CrossRef] [PubMed]
- Hallett, J.P.; Welton, T. Room-temperature ionic liquids: Solvents for synthesis and catalysis. 2. Chem. Rev. 2011, 111, 3508–3576. [Google Scholar] [CrossRef] [PubMed]
- Steinrück, H.-P.; Wasserscheid, P. Ionic liquids in catalysis. Catal. Lett. 2015, 145, 380–397. [Google Scholar] [CrossRef]
- Anderson, J.L.; Ding, R.; Ellern, A.; Armstrong, D.W. Structure and properties of high stability geminal dicationic ionic liquids. J. Am. Chem. Soc. 2005, 127, 593–604. [Google Scholar] [CrossRef] [PubMed]
- Gardas, R.L.; Costa, H.F.; Freire, M.G.; Carvalho, P.J.; Marrucho, I.M.; Fonseca, I.M.A.; Ferreira, A.G.M.; Coutinho, J.A.P. Densities and derived thermodynamic properties of imidazolium-, pyridinium-, pyrrolidinium-, and piperidinium-based ionic liquids. J. Chem. Eng. Data 2008, 53, 805–811. [Google Scholar] [CrossRef]
- Pádua, A.A.H.; Costa Gomes, M.F.; Canongia Lopes, J.N.A. Molecular solutes in ionic liquids: A structural perspective. Acc. Chem. Res. 2007, 40, 1087–1096. [Google Scholar] [CrossRef] [PubMed]
- Gardas, R.L.; Freire, M.G.; Carvalho, P.J.; Marrucho, I.M.; Fonseca, I.M.A.; Ferreira, A.G.M.; Coutinho, J.A.P. High-pressure densities and derived thermodynamic properties of imidazolium-based ionic liquids. J. Chem. Eng. Data 2007, 52, 80–88. [Google Scholar] [CrossRef]
- Tokuda, H.; Hayamizu, K.; Ishii, K.; Susan, M.A.B.H.; Watanabe, M. Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation. J. Phys. Chem. B 2005, 109, 6103–6110. [Google Scholar] [CrossRef] [PubMed]
- Chiappe, C.; Pieraccini, D. Ionic liquids: Solvent properties and organic reactivity. J. Phys. Org. Chem. 2005, 18, 275–297. [Google Scholar] [CrossRef]
- Lazarus, L.L.; Riche, C.T.; Malmstadt, N.; Brutchey, R.L. Effect of ionic liquid impurities on the synthesis of silver nanoparticles. Langmuir 2012, 28, 15987–15993. [Google Scholar] [CrossRef] [PubMed]
- Cassol, C.C.; Ebeling, G.; Ferrera, B.; Dupont, J. A simple and practical method for the preparation and purity determination of halide-free imidazolium ionic liquids. Adv. Synth. Catal. 2006, 348, 243–248. [Google Scholar] [CrossRef]
- Burrell, A.K.; Sesto, R.E.D.; Baker, S.N.; McCleskey, T.M.; Baker, G.A. The large scale synthesis of pure imidazolium and pyrrolidinium ionic liquids. Green Chem. 2007, 9, 449–454. [Google Scholar] [CrossRef]
- Holbrey, J.D.; Seddon, K.R.; Wareing, R. A simple colorimetric method for the quality control of 1-alkyl-3-methylimidazolium ionic liquid precursors. Green Chem. 2001, 3, 33–36. [Google Scholar] [CrossRef]
- Wheeler, J.L.; Dreyer, C.B.; Poshusta, J.; Martin, J.L.; Porter, J.M. Real-time monitoring of room-temperature ionic liquid purity through optical diode-based sensing. Sens. Actuators B 2015, 220, 309–313. [Google Scholar] [CrossRef]
- Swatloski, R.P.; Spear, S.K.; Holbrey, J.D.; Rogers, R.D. Dissolution of cellose with ionic liquids. J. Am. Chem. Soc. 2002, 124, 4974–4975. [Google Scholar] [CrossRef] [PubMed]
- Pu, Y.; Jiang, N.; Ragauskas, A.J. Ionic liquid as a green solvent for lignin. J. Wood Chem. Technol. 2007, 27, 23–33. [Google Scholar] [CrossRef]
- Pinkert, A.; Goeke, D.F.; Marsh, K.N.; Pang, S. Extracting wood lignin without dissolving or degrading cellulose: Investigations on the use of food additive-derived ionic liquids. Green Chem. 2011, 13, 3124–3136. [Google Scholar] [CrossRef]
- Chatel, G.; Rogers, R.D. Review: Oxidation of lignin using ionic liquids—An innovative strategy to produce renewable chemicals. ACS Sustain. Chem. Eng. 2014, 2, 322–339. [Google Scholar] [CrossRef]
- Qin, Y.; Lu, X.; Sun, N.; Rogers, R.D. Dissolution or extraction of crustacean shells using ionic liquids to obtain high molecular weight purified chitin and direct production of chitin films and fibers. Green Chem. 2010, 12, 968–971. [Google Scholar] [CrossRef]
- Wu, Y.; Sasaki, T.; Irie, S.; Sakurai, K. A novel biomass-ionic liquid platform for the utilization of native chitin. Polymer 2008, 49, 2321–2327. [Google Scholar] [CrossRef]
- Kadokawa, J.-I. Dissolution, gelation, functionalization, and material preparation of chitin using ionic liquids. Pure Appl. Chem. 2016, 88, 621. [Google Scholar] [CrossRef]
- Xu, A.; Zhang, Y.; Zhao, Y.; Wang, J. Cellulose dissolution at ambient temperature: Role of preferential solvation of cations of ionic liquids by a cosolvent. Carbohydr. Polym. 2013, 92, 540–544. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Zhou, B.; Li, H.-S.; Li, Y.-Q.; Ou, S.-Y. Green composite films composed of nanocrystalline cellulose and a cellulose matrix regenerated from functionalized ionic liquid solution. Carbohydr. Polym. 2011, 84, 383–389. [Google Scholar] [CrossRef]
- Ohno, E.; Miyafuji, H. Reaction behavior of cellulose in an ionic liquid, 1-ethyl-3-methylimidazolium chloride. J. Wood Sci. 2013, 59, 221–228. [Google Scholar] [CrossRef]
- Wang, X.; Li, H.; Cao, Y.; Tang, Q. Cellulose extraction from wood chip in an ionic liquid 1-allyl-3-methylimidazolium chloride (amimcl). Bioresour. Technol. 2011, 102, 7959–7965. [Google Scholar] [CrossRef] [PubMed]
- Hameed, N.; Guo, Q. Blend films of natural wool and cellulose prepared from an ionic liquid. Cellulose 2010, 17, 803–813. [Google Scholar] [CrossRef]
- Ding, Z.-D.; Chi, Z.; Gu, W.-X.; Gu, S.-M.; Liu, J.-H.; Wang, H.-J. Theoretical and experimental investigation on dissolution and regeneration of cellulose in ionic liquid. Carbohydr. Polym. 2012, 89, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Qian, X. The effects of acetate anion on cellulose dissolution and reaction in imidazolium ionic liquids. Carbohydr. Res. 2011, 346, 1985–1990. [Google Scholar] [CrossRef] [PubMed]
- Remsing, R.C.; Hernandez, G.; Swatloski, R.P.; Massefski, W.W.; Rogers, R.D.; Moyna, G. Solvation of carbohydrates in N,N′-dialkylimidazolium ionic liquids: A multinuclear NMR spectroscopy study. J. Phys. Chem. B 2008, 112, 11071–11078. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Zhang, D.; Duan, C.; Liu, C. Probing anion–cellulose interactions in imidazolium-based room temperature ionic liquids: A density functional study. Carbohydr. Res. 2010, 345, 2201–2205. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wu, J.; Zhang, J.; He, J. 1-allyl-3-methylimidazolium chloride room temperature ionic liquid: A new and powerful nonderivatizing solvent for cellulose. Macromolecules 2005, 38, 8272–8277. [Google Scholar] [CrossRef]
- Youngs, T.G.A.; Hardacre, C.; Holbrey, J.D. Glucose solvation by the ionic liquid 1,3-dimethylimidazolium chloride: A simulation study. J. Phys. Chem. B 2007, 111, 13765–13774. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.-T.; Xia, K.-F.; Cai, W.-H.; Yang, R.-D.; Wang, L.-Q.; Wang, B. Investigations about dissolution of cellulose in the 1-allyl-3-alkylimidazolium chloride ionic liquids. Carbohydr. Polym. 2012, 87, 1058–1064. [Google Scholar] [CrossRef]
- Liu, H.; Sale, K.L.; Holmes, B.M.; Simmons, B.A.; Singh, S. Understanding the interactions of cellulose with ionic liquids: A molecular dynamics study. J. Phys. Chem. B 2010, 114, 4293–4301. [Google Scholar] [CrossRef] [PubMed]
- Lindman, B.; Karlström, G.; Stigsson, L. On the mechanism of dissolution of cellulose. J. Mol. Liq. 2010, 156, 76–81. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, J.; Zhang, H.; He, J.; Ren, Q.; Guo, M. Homogeneous acetylation of cellulose in a new ionic liquid. Biomacromolecules 2004, 5, 266–268. [Google Scholar] [CrossRef] [PubMed]
- Isogai, A.; Atalla, R.H. Dissolution of cellulose in aqueous naoh solutions. Cellulose 1998, 5, 309–319. [Google Scholar] [CrossRef]
- El Seoud, O.A.; Marson, G.A.; Ciacco, G.T.; Frollini, E. An efficient, one-pot acylation of cellulose under homogeneous reaction conditions. Macromol. Chem. Phys. 2000, 201, 882–889. [Google Scholar] [CrossRef]
- Heinze, T.; Liebert, T.; Klüfers, P.; Meister, F. Carboxymethylation of cellulose in unconventional media. Cellulose 1999, 6, 153–165. [Google Scholar] [CrossRef]
- Ciacco, G.T.; Liebert, T.F.; Frollini, E.; Heinze, T.J. Application of the solvent dimethyl sulfoxide/tetrabutyl-ammonium fluoride trihydrate as reaction medium for the homogeneous acylation of sisal cellulose. Cellulose 2003, 10, 125–132. [Google Scholar] [CrossRef]
- Nagel, M.C.V.; Heinze, T. Esterification of cellulose with acyl-1h-benzotriazole. Polym. Bull. 2010, 65, 873–881. [Google Scholar] [CrossRef]
- Hussain, M.A.; Liebert, T.; Heinze, T. Acylation of cellulose with N,N′-carbonyldiimidazole-activated acids in the novel solvent dimethyl sulfoxide/tetrabutylammonium fluoride. Macromol. Rapid Commun. 2004, 25, 916–920. [Google Scholar] [CrossRef]
- Köhler, S.; Heinze, T. New solvents for cellulose: Dimethyl sulfoxide/ammonium fluorides. Macromol. Biosci. 2007, 7, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Jeihanipour, A.; Karimi, K.; Taherzadeh, M.J. Enhancement of ethanol and biogas production from high-crystalline cellulose by different modes of nmo pretreatment. Biotechnol. Bioeng. 2010, 105, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Nishiyama, Y.; Kuga, S. Surface esterification of cellulose by vapor-phase treatmentwith trifluoroacetic anhydride. Cellulose 2005, 12, 543–549. [Google Scholar] [CrossRef]
- Kim, H.-T.; Lee, K. Application of insoluble cellulose xanthate for the removal of heavy metals from aqueous solution. Korean J. Chem. Eng. 1999, 16, 298–302. [Google Scholar] [CrossRef]
- Brewer, R. Process for Preparing Cellulose Sulfate Esters. U.S. Patent 4,480,091, 30 October 1984. [Google Scholar]
- Pinkert, A.; Marsh, K.N.; Pang, S.; Staiger, M.P. Ionic liquids and their interaction with cellulose. Chem. Rev. 2009, 109, 6712–6728. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Wu, Y.; Chen, Q.; Yu, Z.; Wang, C.; Jin, S.; Ding, Y.; Wu, G. Dissolution of cellulose with ionic liquids and its application: A mini-review. Green Chem. 2006, 8, 325–327. [Google Scholar] [CrossRef]
- Mäki-Arvela, P.; Anugwom, I.; Virtanen, P.; Sjöholm, R.; Mikkola, J.P. Dissolution of lignocellulosic materials and its constituents using ionic liquids—A review. Ind. Crops Prod. 2010, 32, 175–201. [Google Scholar] [CrossRef]
- Isik, M.; Sardon, H.; Mecerreyes, D. Ionic liquids and cellulose: Dissolution, chemical modification and preparation of new cellulosic materials. Int. J. Mol. Sci. 2014, 15, 11922–11940. [Google Scholar] [CrossRef] [PubMed]
- El Seoud, O.A.; Koschella, A.; Fidale, L.C.; Dorn, S.; Heinze, T. Applications of ionic liquids in carbohydrate chemistry: A window of opportunities. Biomacromolecules. 2007, 8, 2629–2647. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Gurau, G.; Rogers, R.D. Ionic liquid processing of cellulose. Chem. Soc. Rev. 2012, 41, 1519–1537. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Cheng, G. From cellulose fibrils to single chains: Understanding cellulose dissolution in ionic liquids. Phys. Chem. Chem. Phys. 2015, 17, 31592–31607. [Google Scholar] [CrossRef] [PubMed]
- Stark, A.; Sellin, M.; Ondruschka, B.; Massonne, K. The effect of hydrogen bond acceptor properties of ionic liquids on their cellulose solubility. Sci. China Chem. 2012, 55, 1663–1670. [Google Scholar] [CrossRef]
- Kamlet, M.J.; Taft, R.W. The solvatochromic comparison method. I. The .beta.-scale of solvent hydrogen-bond acceptor (HBA) basicities. J. Am. Chem. Soc. 1976, 98, 377–383. [Google Scholar] [CrossRef]
- Avent, A.G.; Chaloner, P.A.; Day, M.P.; Seddon, K.R.; Welton, T. Evidence for hydrogen bonding in solutions of 1-ethyl-3-methylimidazolium halides, and its implications for room-temperature halogenoaluminate(III) ionic liquids. J. Chem. Soc. Dalton Trans. 1994, 3405–3413. [Google Scholar] [CrossRef]
- Crowhurst, L.; Mawdsley, P.R.; Perez-Arlandis, J.M.; Salter, P.A.; Welton, T. Solvent-solute interactions in ionic liquids. Phys. Chem. Chem. Phys. 2003, 5, 2790–2794. [Google Scholar] [CrossRef]
- Fukaya, Y.; Sugimoto, A.; Ohno, H. Superior solubility of polysaccharides in low viscosity, polar, and halogen-free 1,3-dialkylimidazolium formates. Biomacromolecules 2006, 7, 3295–3297. [Google Scholar] [CrossRef] [PubMed]
- Ohno, H.; Fukaya, Y. Task specific ionic liquids for cellulose technology. Chem. Lett. 2009, 38, 2–7. [Google Scholar] [CrossRef]
- Fukaya, Y.; Hayashi, K.; Wada, M.; Ohno, H. Cellulose dissolution with polar ionic liquids under mild conditions: Required factors for anions. Green Chem. 2008, 10, 44–46. [Google Scholar] [CrossRef]
- Cao, Y.; Chen, Y.; Wang, X.; Mu, T. Predicting the hygroscopicity of imidazolium-based ILs varying in anion by hydrogen-bonding basicity and acidity. RSC Adv. 2014, 4, 5169–5176. [Google Scholar] [CrossRef]
- Lungwitz, R.; Spange, S. A hydrogen bond accepting (HBA) scale for anions, including room temperature ionic liquids. New J. Chem. 2008, 32, 392–394. [Google Scholar] [CrossRef]
- Ngo, H.L.; LeCompte, K.; Hargens, L.; McEwen, A.B. Thermal properties of imidazolium ionic liquids. Thermochim. Acta 2000, 357–358, 97–102. [Google Scholar] [CrossRef]
- Abe, M.; Fukaya, Y.; Ohno, H. Extraction of polysaccharides from bran with phosphonate or phosphinate-derived ionic liquids under short mixing time and low temperature. Green Chem. 2010, 12, 1274–1280. [Google Scholar] [CrossRef]
- Bonhôte, P.; Dias, A.-P.; Papageorgiou, N.; Kalyanasundaram, K.; Grätzel, M. Hydrophobic, highly conductive ambient-temperature molten salts. Inorg. Chem. 1996, 35, 1168–1178. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Qi, X.; Ma, X.; Lu, L.; Zhang, Q.; Deng, Y. Investigation of cation–anion interaction in 1-(2-hydroxyethyl)-3-methylimidazolium-based ion pairs by density functional theory calculations and experiments. J. Phys. Org. Chem. 2012, 25, 248–257. [Google Scholar] [CrossRef]
- Doherty, T.V.; Mora-Pale, M.; Foley, S.E.; Linhardt, R.J.; Dordick, J.S. Ionic liquid solvent properties as predictors of lignocellulose pretreatment efficacy. Green Chem. 2010, 12, 1967–1975. [Google Scholar] [CrossRef]
- Lungwitz, R.; Strehmel, V.; Spange, S. The dipolarity/polarisability of 1-alkyl-3-methylimidazolium ionic liquids as function of anion structure and the alkyl chain length. New J. Chem. 2010, 34, 1135–1140. [Google Scholar] [CrossRef]
- Oehlke, A.; Hofmann, K.; Spange, S. New aspects on polarity of 1-alkyl-3-methylimidazolium salts as measured by solvatochromic probes. New J. Chem. 2006, 30, 533–536. [Google Scholar] [CrossRef]
- Ab Rani, M.A.; Brant, A.; Crowhurst, L.; Dolan, A.; Lui, M.; Hassan, N.H.; Hallett, J.P.; Hunt, P.A.; Niedermeyer, H.; Perez-Arlandis, J.M.; et al. Understanding the polarity of ionic liquids. Phys. Chem. Chem. Phys. 2011, 13, 16831–16840. [Google Scholar] [CrossRef] [PubMed]
- Gaciño, F.M.; Regueira, T.; Lugo, L.; Comuñas, M.J.P.; Fernández, J. Influence of molecular structure on densities and viscosities of several ionic liquids. J. Chem. Eng. Data 2011, 56, 4984–4999. [Google Scholar] [CrossRef]
- Tokuda, H.; Ishii, K.; Susan, M.A.B.H.; Tsuzuki, S.; Hayamizu, K.; Watanabe, M. Physicochemical properties and structures of room-temperature ionic liquids. 3. Variation of cationic structures. J. Phys. Chem. B 2006, 110, 2833–2839. [Google Scholar] [CrossRef] [PubMed]
- Gardas, R.L.; Coutinho, J.A.P. Group contribution methods for the prediction of thermophysical and transport properties of ionic liquids. AlChE J. 2009, 55, 1274–1290. [Google Scholar] [CrossRef]
- Crosthwaite, J.M.; Muldoon, M.J.; Dixon, J.K.; Anderson, J.L.; Brennecke, J.F. Phase transition and decomposition temperatures, heat capacities and viscosities of pyridinium ionic liquids. J. Chem. Thermodyn. 2005, 37, 559–568. [Google Scholar] [CrossRef]
- Almeida, H.F.D.; Passos, H.; Lopes-da-Silva, J.A.; Fernandes, A.M.; Freire, M.G.; Coutinho, J.A.P. Thermophysical properties of five acetate-based ionic liquids. J. Chem. Eng. Data 2012, 57, 3005–3013. [Google Scholar] [CrossRef]
- Huddleston, J.G.; Visser, A.E.; Reichert, W.M.; Willauer, H.D.; Broker, G.A.; Rogers, R.D. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem. 2001, 3, 156–164. [Google Scholar] [CrossRef]
- Wu, D.; Wu, B.; Zhang, Y.M.; Wang, H.P. Density, viscosity, refractive index and conductivity of 1-allyl-3-methylimidazolium chloride + water mixture. J. Chem. Eng. Data 2010, 55, 621–624. [Google Scholar] [CrossRef]
- Freire, M.G.; Teles, A.R.R.; Rocha, M.A.A.; Schröder, B.; Neves, C.M.S.S.; Carvalho, P.J.; Evtuguin, D.V.; Santos, L.M.N.B.F.; Coutinho, J.A.P. Thermophysical characterization of ionic liquids able to dissolve biomass. J. Chem. Eng. Data 2011, 56, 4813–4822. [Google Scholar] [CrossRef]
- Fröba, A.P.; Kremer, H.; Leipertz, A. Density, refractive index, interfacial tension, and viscosity of ionic liquids [EMIM][EtSO4], [EMIM][NTf2], [EMIM][N(CN)2], and [OMA][NTf2] in dependence on temperature at atmospheric pressure. J. Phys. Chem. B 2008, 112, 12420–12430. [Google Scholar] [CrossRef] [PubMed]
- Gómez, E.; Calvar, N.; Domínguez, Á.; Macedo, E.A. Synthesis and temperature dependence of physical properties of four pyridinium-based ionic liquids: Influence of the size of the cation. J. Chem. Thermodyn. 2010, 42, 1324–1329. [Google Scholar]
- Zarrougui, R.; Raouafi, N.; Lemordant, D. New series of green cyclic ammonium-based room temperature ionic liquids with alkylphosphite-containing anion: Synthesis and physicochemical characterization. J. Chem. Eng. Data 2014, 59, 1193–1201. [Google Scholar] [CrossRef]
- Seddon, K.; Stark, A.; Torres, M. Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. In Proceedings of the 15th International Conference on Physical Organic Chemistry (ICPOC 15), Gothenburg, Sweden, 8–13 July 2000; Volume 72, pp. 2275–2287. [Google Scholar]
- Xu, H.; Zhao, D.; Xu, P.; Liu, F.; Gao, G. Conductivity and viscosity of 1-allyl-3-methyl-imidazolium chloride + water and + ethanol from 293.15 K to 333.15 K. J. Chem. Eng. Data 2005, 50, 133–135. [Google Scholar] [CrossRef]
- Lu, F.; Cheng, B.; Song, J.; Liang, Y. Rheological characterization of concentrated cellulose solutions in 1-allyl-3-methylimidazolium chloride. J. Appl. Polym. Sci. 2012, 124, 3419–3425. [Google Scholar] [CrossRef]
- Cao, Y.; Wu, J.; Meng, T.; Zhang, J.; He, J.; Li, H.; Zhang, Y. Acetone-soluble cellulose acetates prepared by one-step homogeneous acetylation of cornhusk cellulose in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl). Carbohydr. Polym. 2007, 69, 665–672. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, J.; He, J.; Li, H.; Zhang, Y. Homogeneous acetylation of cellulose at relatively high concentrations in an ionic liquid. Chin. J. Chem. Eng. 2010, 18, 515–522. [Google Scholar] [CrossRef]
- Kosan, B.; Michels, C.; Meister, F. Dissolution and forming of cellulose with ionic liquids. Cellulose 2008, 15, 59–66. [Google Scholar] [CrossRef]
- Le, K.A.; Rudaz, C.; Budtova, T. Phase diagram, solubility limit and hydrodynamic properties of cellulose in binary solvents with ionic liquid. Carbohydr. Polym. 2014, 105, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Wu, J.; Zhang, J.; Niu, Y.; Liu, C.-Y.; He, J.; Zhang, J. Rheological properties of cellulose/ionic liquid/dimethylsulfoxide (DMSO) solutions. Polymer 2012, 53, 2524–2531. [Google Scholar] [CrossRef]
- Härdelin, L.; Thunberg, J.; Perzon, E.; Westman, G.; Walkenström, P.; Gatenholm, P. Electrospinning of cellulose nanofibers from ionic liquids: The effect of different cosolvents. J. Appl. Polym. Sci. 2012, 125, 1901–1909. [Google Scholar] [CrossRef]
- Ahosseini, A.; Ortega, E.; Sensenich, B.; Scurto, A.M. Viscosity of n-alkyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)amide ionic liquids saturated with compressed CO2. Fluid Phase Equilib. 2009, 286, 72–78. [Google Scholar] [CrossRef]
- Blanchard, L.A.; Hancu, D.; Beckman, E.J.; Brennecke, J.F. Green processing using ionic liquids and CO2. Nature 1999, 399, 28–29. [Google Scholar] [CrossRef]
- Sun, X.; Chi, Y.; Mu, T. Studies on staged precipitation of cellulose from an ionic liquid by compressed carbon dioxide. Green Chem. 2014, 16, 2736–2744. [Google Scholar] [CrossRef]
- Barber, P.S.; Griggs, C.S.; Gurau, G.; Liu, Z.; Li, S.; Li, Z.; Lu, X.; Zhang, S.; Rogers, R.D. Coagulation of chitin and cellulose from 1-ethyl-3-methylimidazolium acetate ionic-liquid solutions using carbon dioxide. Angew. Chem. Int. Ed. 2013, 52, 12350–12353. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wu, W.; Han, B.; Dong, Z.; Zhao, G.; Wang, J.; Jiang, T.; Yang, G. Study on the phase behaviors, viscosities, and thermodynamic properties of CO2/[C4mim][PF6]/methanol system at elevated pressures. Chem. Eur. J. 2003, 9, 3897–3903. [Google Scholar] [CrossRef] [PubMed]
- Tomida, D.; Kenmochi, S.; Qiao, K.; Bao, Q.; Yokoyama, C. Viscosity of ionic liquid mixtures of 1-alkyl-3-methylimidazolium hexafluorophosphate + CO2. Fluid Phase Equilib. 2011, 307, 185–189. [Google Scholar] [CrossRef]
- Tomida, D.; Kumagai, A.; Qiao, K.; Yokoyama, C. Viscosity of 1-butyl-3-methylimidazolium hexafluorophosphate + co2 mixture. J. Chem. Eng. Data 2007, 52, 1638–1640. [Google Scholar] [CrossRef]
- Lopes, J.M.; Kareth, S.; Bermejo, M.D.; Martín, Á.; Weidner, E.; Cocero, M.J. Experimental determination of viscosities and densities of mixtures carbon dioxide + 1-allyl-3-methylimidazolium chloride. Viscosity correlation. J. Supercrit. Fluids 2016, 111, 91–96. [Google Scholar] [CrossRef]
- Iguchi, M.; Kasuya, K.; Sato, Y.; Aida, T.M.; Watanabe, M.; Smith, R.L. Viscosity reduction of cellulose + 1-butyl-3-methylimidazolium acetate in the presence of CO2. Cellulose 2013, 20, 1353–1367. [Google Scholar] [CrossRef]
- Visser, A.E.; Reichert, W.M.; Swatloski, R.P.; Willauer, H.D.; Huddleston, J.G.; Rogers, R.D. Characterization of hydrophilic and hydrophobic ionic liquids: Alternatives to volatile organic compounds for liquid-liquid separations. In Ionic Liquids; American Chemical Society: Washington, DC, USA, 2002; Volume 818, pp. 289–308. [Google Scholar]
- Tran, C.D.; De Paoli Lacerda, S.H.; Oliveira, D. Absorption of water by room-temperature ionic liquids: Effect of anions on concentration and state of water. Appl. Spectrosc. 2003, 57, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Cammarata, L.; Kazarian, S.G.; Salter, P.A.; Welton, T. Molecular states of water in room temperature ionic liquids. Phys. Chem. Chem. Phys. 2001, 3, 5192–5200. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Sale, K.L.; Simmons, B.A.; Singh, S. Molecular dynamics study of polysaccharides in binary solvent mixtures of an ionic liquid and water. J. Phys. Chem. B 2011, 115, 10251–10258. [Google Scholar] [CrossRef] [PubMed]
- Rabideau, B.D.; Ismail, A.E. Mechanisms of hydrogen bond formation between ionic liquids and cellulose and the influence of water content. Phys. Chem. Chem. Phys. 2015, 17, 5767–5775. [Google Scholar] [CrossRef] [PubMed]
- Lenzing. Sustainability Report. Available online: http://www.lenzing.com/fileadmin/template/pdf/konzern/nachhaltigkeit/Sustainability_Report_2012_EN.pdf (accessed on 19 February 2016).
- Kang, H.; Liu, R.; Huang, Y. Cellulose derivatives and graft copolymers as blocks for functional materials. Polym. Int. 2013, 62, 338–344. [Google Scholar] [CrossRef]
- Varshney, V.K.; Naithani, S. Chemical functionalization of cellulose derived from nonconventional sources. In Cellulose Fibers: Bio- and Nano-Polymer Composites; Kalia, S., Kaith, B.S., Kaur, I., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 43–60. [Google Scholar]
- Seymour, G.W.; White, B.B. Preparation of Cellulose Esters. U.S. Patent 2,363,091, 21 November 1944. [Google Scholar]
- Heinze, T.; Liebert, T. Unconventional methods in cellulose functionalization. Prog. Polym. Sci. 2001, 26, 1689–1762. [Google Scholar] [CrossRef]
- Eastman. Eastman Cellulose-Based Specialty Polymers. Available online: http://www.eastman.com/Literature_Center/E/E325.pdf (accessed on 19 February 2016).
- Edgar, K.J. Cellulose esters in drug delivery. Cellulose 2007, 14, 49–64. [Google Scholar] [CrossRef]
- Tang, S.; Li, X.; Wang, F.; Liu, G.; Li, Y.; Pan, F. Synthesis and hplc chiral recognition of regioselectively carbamoylated cellulose derivatives. Chirality 2012, 24, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Wondraczek, H.; Pfeifer, A.; Heinze, T. Water soluble photoactive cellulose derivatives: Synthesis and characterization of mixed 2-[(4-methyl-2-oxo-2H-chromen-7-yl)oxy]acetic acid–(3-carboxypropyl)trimethylammonium chloride esters of cellulose. Cellulose 2012, 19, 1327–1335. [Google Scholar] [CrossRef]
- Trombino, S.; Cassano, R.; Bloise, E.; Muzzalupo, R.; Leta, S.; Puoci, F.; Picci, N. Design and synthesis of cellulose derivatives with antioxidant activity. Macromol. Biosci. 2008, 8, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Karakawa, M.; Chikamatsu, M.; Yoshida, Y.; Azumi, R.; Yase, K.; Nakamoto, C. Organic memory device based on carbazole-substituted cellulose. Macromol. Rapid Commun. 2007, 28, 1479–1484. [Google Scholar] [CrossRef]
- Thakur, V.K.; Thakur, M.K.; Gupta, R.K. Rapid synthesis of graft copolymers from natural cellulose fibers. Carbohydr. Polym. 2013, 98, 820–828. [Google Scholar] [CrossRef] [PubMed]
- Fox, S.C.; Li, B.; Xu, D.; Edgar, K.J. Regioselective esterification and etherification of cellulose: A review. Biomacromolecules 2011, 12, 1956–1972. [Google Scholar] [CrossRef] [PubMed]
- Dow. Cellulose Ethers. Available online: http://www.dowconstructionchemicals.com/na/en/pdfs/832-00226.pdf (accessed on 25 February 2016).
- Amin, M.; Abbas, N.S.; Hussain, M.A.; Edgar, K.J.; Tahir, M.N.; Tremel, W.; Sher, M. Cellulose ether derivatives: A new platform for prodrug formation of fluoroquinolone antibiotics. Cellulose 2015, 22, 2011–2022. [Google Scholar] [CrossRef]
- Malm, C.; Tanghe, L. Chemical reactions in the making of cellulose acetate. Ind. Eng. Chem. 1955, 47, 995–999. [Google Scholar] [CrossRef]
- Hearon, W.M.; Hiatt, G.D.; Fordyce, C.R. Cellulose trityl ether1a. J. Am. Chem. Soc. 1943, 65, 2449–2452. [Google Scholar] [CrossRef]
- Xia, K.; Chen, J.; Yang, R.; Cheng, F.; Liu, D. Green synthesis and crystal structure of regioselectively substituting 6-O-tritylcellulose derivatives. J. Biobased. Mater. Bioenergy 2014, 8, 587–593. [Google Scholar] [CrossRef]
- Marson, G.A.; El Seoud, O.A. A novel, efficient procedure for acylation of cellulose under homogeneous solution conditions. J. Appl. Polym. Sci. 1999, 74, 1355–1360. [Google Scholar] [CrossRef]
- Sassi, J.-F.; Chanzy, H. Ultrastructural aspects of the acetylation of cellulose. Cellulose 1995, 2, 111–127. [Google Scholar] [CrossRef]
- Gannon, J.M.; Graveson, I.; Mortimer, S.A. Process for the Manufacture of Lyocell Fiber. U.S. Patent 5,725,821, 10 March 1998. [Google Scholar]
- Sixta, H.; Michud, A.; Hauru, L.; Asaadi, S.; Ma, Y.; King, A.W.T.; Kilpeläinen, I.; Hummel, M. Ioncell-F: A high-strength regenerated cellulose fiber. Nord. Pulp Pap. Res. J. 2015, 30, 43–57. [Google Scholar] [CrossRef]
- Fink, H.P.; Weigel, P.; Purz, H.J.; Ganster, J. Structure formation of regenerated cellulose materials from nmmo-solutions. Prog. Polym. Sci. 2001, 26, 1473–1524. [Google Scholar] [CrossRef]
- Röder, T.; Moosbauer, J.; Kliba, G.; Schlader, S.; Zuckerstätter, G.; Sixta, H. Comparative characterisation of man-made regenerated cellulose fibers. Lenzinger Berichte 2009, 87, 98–105. [Google Scholar]
- Mayr, G.; Zeppetzauer, F.; Zweckmair, T.; Bauer, D.; Hild, S.; Potthast, A.; Rosenau, T.; Röder, T. The reactions of cellulose and hemicellulose degradation products in the viscose fiber spin bath. Lenzinger Berichte 2015, 92, 53–58. [Google Scholar]
- Röder, T.; Moosbauer, J.; Wöss, K.; Schlader, S.; Kraft, G. Man-made cellulose fibers—A comparison based on morphology and mechanical properties. Lenzinger Berichte 2013, 91, 7–12. [Google Scholar]
- Kim, S.-J.; Jang, J. Effect of degree of polymerization on the mechanical properties of regenerated cellulose fibers using synthesized 1-allyl-3-methylimidazolium chloride. Fibers Polym. 2013, 14, 909–914. [Google Scholar] [CrossRef]
- Nemec, H. Fibrillation of cellulose materials—Can previous literature offer s solution? Lenzinger Berichte 1994, 9, 69–72. [Google Scholar]
- Mortimer, S.A.; Péguy, A.A. Methods for reducing the tendency of lyocell fibers to fibrillate. J. Appl. Polym. Sci. 1996, 60, 305–316. [Google Scholar] [CrossRef]
- Zhang, W.; Okubayashi, S.; Bechtold, T. Fibrillation tendency of cellulosic fibers. Part 1: Effects of swelling. Cellulose 2005, 12, 267–273. [Google Scholar] [CrossRef]
- Zhang, W.; Okubayashi, S.; Bechtold, T. Fibrillation tendency of cellulosic fibers—Part 3. Effects of alkali pretreatment of lyocell fiber. Carbohydr. Polym. 2005, 59, 173–179. [Google Scholar] [CrossRef]
- Rosenau, T.; Potthast, A.; Sixta, H.; Kosma, P. The chemistry of side reactions and byproduct formation in the system NMMO/cellulose (lyocell process). Prog. Polym. Sci. 2001, 26, 1763–1837. [Google Scholar] [CrossRef]
- Hermanutz, F.; Gähr, F.; Uerdingen, E.; Meister, F.; Kosan, B. New developments in dissolving and processing of cellulose in ionic liquids. Macromol. Symp. 2008, 262, 23–27. [Google Scholar] [CrossRef]
- De la Parra, C.J.; Navarrete, A.; Bermejo, M.D.; Cocero, M.J. Patents review on lignocellulosic biomass processing using ionic liquids. Recent Pat. Eng. 2012, 6, 159–181. [Google Scholar] [CrossRef]
- Luan, Y.; Zhang, J.; Zhan, M.; Wu, J.; Zhang, J.; He, J. Highly efficient propionylation and butyralation of cellulose in an ionic liquid catalyzed by 4-dimethylminopyridine. Carbohydr. Polym. 2013, 92, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Gericke, M.; Fardim, P.; Heinze, T. Ionic liquids—Promising but challenging solvents for homogeneous derivatization of cellulose. Molecules 2012, 17, 7458–7502. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Wang, B.; Cao, Y.; Li, H.; Wang, J.; Lin, W.; Mu, C.; Liao, D. Homogeneous preparation of cellulose acetate propionate (CAP) and cellulose acetate butyrate (CAB) from sugarcane bagasse cellulose in ionic liquid. J. Agric. Food. Chem. 2011, 59, 5376–5381. [Google Scholar] [CrossRef] [PubMed]
- Heinze, T.; Schwikal, K.; Barthel, S. Ionic liquids as reaction medium in cellulose functionalization. Macromol. Biosci. 2005, 5, 520–525. [Google Scholar] [CrossRef] [PubMed]
- Granström, M.; Kavakka, J.; King, A.; Majoinen, J.; Mäkelä, V.; Helaja, J.; Hietala, S.; Virtanen, T.; Maunu, S.-L.; Argyropoulos, D.S.; et al. Tosylation and acylation of cellulose in 1-allyl-3-methylimidazolium chloride. Cellulose 2008, 15, 481–488. [Google Scholar]
- Schöbitz, M.; Meister, F.; Heinze, T. Unconventional reactivity of cellulose dissolved in ionic liquids. Macromol. Symp. 2009, 280, 102–111. [Google Scholar] [CrossRef]
- Gericke, M.; Schaller, J.; Liebert, T.; Fardim, P.; Meister, F.; Heinze, T. Studies on the tosylation of cellulose in mixtures of ionic liquids and a co-solvent. Carbohydr. Polym. 2012, 89, 526–536. [Google Scholar] [CrossRef] [PubMed]
- Köhler, S.; Heinze, T. Efficient synthesis of cellulose furoates in 1-N-Butyl-3-methylimidazolium chloride. Cellulose 2007, 14, 489–495. [Google Scholar] [CrossRef]
- Barthel, S.; Heinze, T. Acylation and carbanilation of cellulose in ionic liquids. Green Chem. 2006, 8, 301–306. [Google Scholar] [CrossRef]
- Schlufter, K.; Schmauder, H.-P.; Dorn, S.; Heinze, T. Efficient homogeneous chemical modification of bacterial cellulose in the ionic liquid 1-N-Butyl-3-methylimidazolium chloride. Macromol. Rapid Commun. 2006, 27, 1670–1676. [Google Scholar] [CrossRef]
- Chun-xiang, L.; Huai-yu, Z.; Ming-hua, L.; Shi-yu, F.; Jia-jun, Z. Preparation of cellulose graft poly(methyl methacrylate) copolymers by atom transfer radical polymerization in an ionic liquid. Carbohydr. Polym. 2009, 78, 432–438. [Google Scholar] [CrossRef]
- Sui, X.; Yuan, J.; Zhou, M.; Zhang, J.; Yang, H.; Yuan, W.; Wei, Y.; Pan, C. Synthesis of cellulose-graft-poly (N,N-dimethylamino-2-ethyl methacrylate) copolymers via homogeneous ATRP and their aggregates in aqueous media. Biomacromolecules 2008, 9, 2615–2620. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wu, J.; Cao, Y.; Sang, S.; Zhang, J.; He, J. Synthesis of cellulose benzoates under homogeneous conditions in an ionic liquid. Cellulose 2009, 16, 299–308. [Google Scholar] [CrossRef]
- Heinze, T.; Dorn, S.; Schöbitz, M.; Liebert, T.; Köhler, S.; Meister, F. Interactions of ionic liquids with polysaccharides–2: Cellulose. Macromol. Symp. 2008, 262, 8–22. [Google Scholar] [CrossRef]
- Gericke, M.; Liebert, T.; Heinze, T. Interaction of ionic liquids with polysaccharides, 8-synthesis of cellulose sulfates suitable for polyelectrolyte complex formation. Macromol. Biosci. 2009, 9, 343–353. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.F.; Sun, R.C.; Zhang, A.P.; Ren, J.L. Preparation of sugarcane bagasse cellulosic phthalate using an ionic liquid as reaction medium. Carbohydr. Polym. 2007, 68, 17–25. [Google Scholar] [CrossRef]
- Liu, C.F.; Sun, R.C.; Zhang, A.P.; Ren, J.L.; Geng, Z.C. Structural and thermal characterization of sugarcane bagasse cellulose succinates prepared in ionic liquid. Polym. Degrad. Stab. 2006, 91, 3040–3047. [Google Scholar] [CrossRef]
- Liu, C.-F.; Zhang, A.-P.; Li, W.-Y.; Yue, F.-X.; Sun, R.-C. Homogeneous modification of cellulose in ionic liquid with succinic anhydride using N-bromosuccinimide as a catalyst. J. Agric. Food. Chem. 2009, 57, 1814–1820. [Google Scholar] [CrossRef] [PubMed]
- Li, W.Y.; Jin, A.X.; Liu, C.F.; Sun, R.C.; Zhang, A.P.; Kennedy, J.F. Homogeneous modification of cellulose with succinic anhydride in ionic liquid using 4-dimethylaminopyridine as a catalyst. Carbohydr. Polym. 2009, 78, 389–395. [Google Scholar] [CrossRef]
- Liu, C.F.; Zhang, A.P.; Li, W.Y.; Yue, F.X.; Sun, R.C. Succinoylation of cellulose catalyzed with iodine in ionic liquid. Ind. Crops Prod. 2010, 31, 363–369. [Google Scholar] [CrossRef]
- Buchanan, C.M.; Buchanan, N.L.; Donelson, M.E.; Gorbunova, M.G.; Kuo, T.; Wang, B. Regioselectively Substituted Cellulose Esters Produced in a Halogenated Ionic Liquid Process and Products Produced Therefrom. Patent WO 2,010,019,245, 20 August 2010. [Google Scholar]
- Buchanan, C.M.; Buchanan, N.L.; Guzman-Morales, E. Regioselectively Substituted Cellulose Esters Produced in a Tetraalkylammonium Alkylphosphate Ionic Liquid Process and Products produced Therefrom. U.S. Patent 20,100,267,942, 21 October 2010. [Google Scholar]
- Buchanan, C.M.; Buchanan, N.L.; Hembre, R.T.; Lambert, J.L. Cellulose Esters and Their Production in Carboxylated Ionic Liquids. U.S. Patent 20,120,142,910, 5 April 2012. [Google Scholar]
- Granström, M.; Mormann, W.; Frank, P. Method of Chlorinating Polysaccharides or Oligosaccharides. Patent WO 2011086082 A1, 21 July 2011. [Google Scholar]
- Scheibel, J.J.; Kenneally, C.J.; Menkaus, J.A.; Seddon, K.R.; Chwala, P. Methods for Modifying Cellulosic Polymers in Ionic Liquids. WO 2,007,112,382, 21 July 2007. [Google Scholar]
- Zhang, J.; Chen, W.; Feng, Y.; Wu, J.; Yu, J.; He, J.; Zhang, J. Homogeneous esterification of cellulose in room temperature ionic liquids. Polym. Int. 2015, 64, 963–970. [Google Scholar] [CrossRef]
- Buchanan, C.M.; Buchanan, N.L. Production of cellulose esters in the Presence of a Cosolvent. U.S. Patent 20,120,238,742, 13 August 2012. [Google Scholar]
- Myllymaki, V.; Aksela, R. Method for Preparing a Cellulose Ether. U.S. Patent 20,070,112,185, 17 May 2007. [Google Scholar]
- Mormann, W.; Wezstein, M. Trimethylsilylation of cellulose in ionic liquids. Macromol. Biosci. 2009, 9, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Erdmenger, T.; Haensch, C.; Hoogenboom, R.; Schubert, U.S. Homogeneous tritylation of cellulose in 1-butyl-3-methylimidazolium chloride. Macromol. Biosci. 2007, 7, 440–445. [Google Scholar] [CrossRef] [PubMed]
- Granström, M.; Olszewska, A.; Mäkelä, V.; Heikkinen, S.; Kilpeläinen, I. A new protection group strategy for cellulose in an ionic liquid: Simultaneous protection of two sites to yield 2,6-di-O-substituted mono-p-methoxytrityl cellulose. Tetrahedron Lett. 2009, 50, 1744–1747. [Google Scholar] [CrossRef]
- Lv, Y.; Chen, Y.; Shao, Z.; Zhang, R.; Zhao, L. Homogeneous tritylation of cellulose in 1-allyl-3-methylimidazolium chloride and subsequent acetylation: The influence of base. Carbohydr. Polym. 2015, 117, 818–824. [Google Scholar] [CrossRef] [PubMed]
- Köhler, S.; Liebert, T.; Heinze, T.; Vollmer, A.; Mischnick, P.; Möllmann, E.; Becker, W. Interactions of ionic liquids with polysaccharides 9. Hydroxyalkylation of cellulose without additional inorganic bases. Cellulose 2010, 17, 437–448. [Google Scholar] [CrossRef]
- Moellmann, E.; Heinze, T.; Liebert, T.; Koehler, S. Homogeneous Synthesis of Cellulose Ethers in Ionic Liquids. U.S. Patent 8,541,571, 24 September 2013. [Google Scholar]
- Lehmann, A.; Volkert, B. Method for Producing Polysaccharide Derivatives. U.S. Patent 20120088909, 12 April 2012. [Google Scholar]
- Massonne, K.; Stegmann, V.; D′Andola, G.; Mormann, W.; Wezstein, M.; Leng, W. Process for Silylating Cellulose. U.S. Patent 20,090,281,303, 12 November 2009. [Google Scholar]
- Holtkötter, T.; Michel, S.; Sonnenberg, G. Process and Apparatus for the Industrial Preparation of Methylhydroxyalkylcellulose. U.S. Patent 6,667,395, 13 December 2003. [Google Scholar]
- Medronho, B.; Lindman, B. Brief overview on cellulose dissolution/regeneration interactions and mechanisms. Adv. Colloid Interface Sci. 2015, 222, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Sun, X.; Hao, M.; Huang, C.; Xue, Z.; Mu, T. Preparation and characterization of regenerated cellulose from ionic liquid using different methods. Carbohydr. Polym. 2015, 117, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Chen, J.Y.; Jiang, W.; Lynch, V. Crystalline characteristics of cellulose fiber and film regenerated from ionic liquid solution. Carbohydr. Polym. 2015, 118, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Olsson, C.; Hedlund, A.; Idström, A.; Westman, G. Effect of methylimidazole on cellulose/ionic liquid solutions and regenerated material therefrom. J. Mater. Sci. 2014, 49, 3423–3433. [Google Scholar] [CrossRef]
- Michud, A.; Hummel, M.; Sixta, H. Influence of molar mass distribution on the final properties of fibers regenerated from cellulose dissolved in ionic liquid by dry-jet wet spinning. Polymer 2015, 75, 1–9. [Google Scholar] [CrossRef]
- Östlund, Å.; Idström, A.; Olsson, C.; Larsson, P.T.; Nordstierna, L. Modification of crystallinity and pore size distribution in coagulated cellulose films. Cellulose 2013, 20, 1657–1667. [Google Scholar] [CrossRef]
- Jiang, G.; Huang, W.; Zhu, T.; Zhang, C.; Kumi, A.K.; Zhang, Y.; Wang, H.; Hu, L. Diffusion dynamics of 1-butyl-3-methylimidazolium chloride from cellulose filament during coagulation process. Cellulose 2011, 18, 921–928. [Google Scholar] [CrossRef]
- Li, B.; Asikkala, J.; Filpponen, I.; Argyropoulos, D.S. Factors affecting wood dissolution and regeneration of ionic liquids. Ind. Eng. Chem. Res. 2010, 49, 2477–2484. [Google Scholar] [CrossRef]
- Mai, N.L.; Ahn, K.; Koo, Y.-M. Methods for recovery of ionic liquids—A review. Process. Biochem. 2014, 49, 872–881. [Google Scholar] [CrossRef]
- Shi, J.-Z.; Stein, J.; Kabasci, S.; Pang, H. Purification of EMIMOAC used in the acetylation of lignocellulose. J. Chem. Eng. Data 2013, 58, 197–202. [Google Scholar] [CrossRef]
- Huang, K.; Wu, R.; Cao, Y.; Li, H.; Wang, J. Recycling and reuse of ionic liquid in homogeneous cellulose acetylation. Chin. J. Chem. Eng. 2013, 21, 577–584. [Google Scholar] [CrossRef]
ILs (Cellulose Solubility > 1%) 1,2 | η (mPa·s) | Tm (°C) | Tdec (°C) | Kamlet–Taft Parameters 3 | Ref. | ILs (Cellulose Solubility < 1%) | β | Ref. | ||
---|---|---|---|---|---|---|---|---|---|---|
β | α | π* | ||||||||
[Amim]Cl | 2090 | 256 | 0.83 | 0.46 | 1.17 | [87] | [Bmim]BF4 | 0.38 | [86] | |
[Emim]HCO2 | 52 | 212 | [87] | [Bmim]PF6 | 0.21 | [86] | ||||
[Prmim]HCO2 | 117 | 0.99 | 0.48 | 1.08 | [87] | [Emim]MeOSO3 | 0.61 | [89] | ||
[Amim]HCO2 | 66 | 205 | 0.99 | 0.48 | 1.08 | [87] | [Emim]MeSO3 | 0.70 | [89] | |
[Bmim]OAc | 1.09 | 0.55 | 0.99 | [88] | [Emim]CF3CO2 | 0.74 | [91] 4 | |||
[Bmim]Cl | 66 | 254 | 0.95 | 0.47 | 1.10 | [91] | [Emim]SCN | 0.71 | [91] | |
[Bmim]HCO2 | 1.01 | 0.56 | 1.03 | [88] | [Emim]BF4 | 0.55 | [91,92] 5 | |||
[Emim](MeO)2PO2 | 265 | 21 | 289 | 1.00 | 0.51 | 1.06 | [89] | [Emim]N(CN)2 | 0.64 | [91] |
[Emim](MeO)HPO2 | 107 | 275 | 1.00 | 0.52 | 1.06 | [89] | [Emim]I | 0.75 | [91] | |
[Emim](MeO)MePO2 | 510 | 262 | 1.07 | 0.50 | 1.04 | [89] | [Emim]PF6 | 0.44 | [91] | |
[Emim](EtO)2PO2 | 1.00 | [89] | [Bmim]CH3SO3 | 0.85 | [91] | |||||
[Emim]Cl | 89 | 285 | [92] | [Bmim]Br | 0.87 | [91] | ||||
[Emim]H2PO2 | 17 | 260 | 0.97 | 0.52 | 1.09 | [93] | ||||
[Amim](MeO)HPO2 | 123 | 265 | 0.99 | 0.51 | 1.06 | [93] | ||||
[Prmim](MeO)HPO2 | 219 | 277 | 1.00 | 0.54 | 1.02 | [93] | ||||
[Bmim](MeO)HPO2 | 287 | 277 | 1.02 | 0.52 | 1.01 | [93] | ||||
[Emim]OAc 6,7 | 162 | 0.95 | 0.40 | 1.09 | [94,95] | |||||
|
IL 1 | T (°C) | η (mPa·s) | ρ (kg/m3) | Water (wt %) 2 | Ref. |
---|---|---|---|---|---|
Methylimidazolium | |||||
[Bmim]OAc | 20 | 646 | 1.100 | [103] | |
ECOENG 41M | 20 | 1676 | 0.083 | [103] | |
[Bmim]OAc | 20 | 429 | 1055 | 0.085 | [104] |
[Bmim]Cl | 25 | 1080 | 0.220 | [105] | |
[Amim]Cl | 25 | 821 | 1166 | 0.180 | [106] |
[Emim]OAc | 20 | 202 | 1102 | 0.124 | [107] |
[Emim](MeO)HPO2 | 20 | 286 | 1212 | 0.078 | [107] |
[Emim]CH3SO3 | 20 | 232 | 1246 | 0.029 | [107] |
[Emim]CF3SO3 | 20 | 52 | 1390 | 0.002 | [107] |
[Emim]Tos | 30 | 1417 | 1223 | 0.056 | [107] |
[Emim](MeO)2PO2 | 30 | 193 | 1214 | 0.014 | [107] |
[Emim]EtSO4 | 20 | 125 | 1240 | 0.105 | [108] |
Pyridinium | |||||
[Empy]EtSO4 | 20 | 204 | 0.026 | [103] | |
[Epy]EtSO4 | 20 | 183 | 0.068 | [103] | |
[EEpy]EtSO4 | 25 | 325 | 1220 | <0.08 | [109] |
[Mpy]CH3SO4 | 25 | 116 | 1345 | <0.06 | [109] |
[MMpy]CH3SO4 | 25 | 129 | 1302 | <0.06 | [109] |
[EMpy]CH3SO4 | 25 | 456 | 1285 | <0.08 | [109] |
Pyrrolidinium | |||||
[Bmpyr]OAc | 25 | 107 | 1021 | 0.070 | [104] |
[Bmpyr]CF3SO3 | 20 | 222 | 1256 | 0.072 | [100] |
[Bmpyr](BtO)HPO2 | 25 | 321 | 1082 | 0.025 | [110] |
[Empyr](EtO)HPO2 | 25 | 320 | 1123 | 0.021 | [110] |
|
Fiber/Solvent 1 | Cross-Section Shape | Tenacity Cond. (cN/tex) | Elongation Cond. (%) | Commercial/Experimental Fiber | Ref. |
---|---|---|---|---|---|
Viscose | Lobate | 22 | com. | [156] | |
NMMO | Round | 40.2 | 13.0 | com. | [157] |
[Emim]Cl | Round | 43.0 | 9.6 | exp. | [157] |
[Bmim]Cl | Round | 50.1 | 9.3 | exp. | [157] |
[Emim]OAc | Round | 44.7 | 10.4 | exp. | [157] |
1 N-methylmorpholine-N-oxide, NMMO;
|
IL 1 | Co-Solvent 2 | Catalyst | Base | wt % 3 | Reagent | Conditions 4 | DS 5 | Ref. |
---|---|---|---|---|---|---|---|---|
[Amim]Cl | DMAP | 4 | Propionic anhydride, butyric anhydride | 1:1–5:1; 2–180 min; 20–100 °C | Prop: 0.89–2.89, But: 0.91–2.76 | [168] | ||
[Amim]Cl | 4 | Propionic anhydride, acetic anhydride, butyric anhydride | 5:1, 9:1, 13:1; 60–300 min; 80–100 °C | Prop: 0.93–2.46, But: 0.86–2.07 | [170] | |||
[Bmim]Cl | Py | 11 | Acetyl chloride | 3:1, 5:1, 10:1; 2 h; 80 °C | Ac < 3.00 | [171] | ||
[Amim]Cl | Py/Et3N | 10 | Acetic anhydride, tosyl chloride | 3:1, 8:1; 48 h, r.t. | Ac: 2.99, Tos: 0.84 | [172] | ||
[Emim]OAc | IM | 3 | Tosyl chloride | 2:1; 300 min; 7 °C | Tos: 0.55 | [173] | ||
[Bmim]Cl | DMI | Py, BIM | 11 | Tosyl chloride | 1:1–5:1; 1–48 h; 25 °C | Tos: 1.14, Cl: 0.16 | [174] | |
[Bmim]Cl | Py | 11 | 2-furoyl chloride | 1:1, 3:1, 5:1; 0.5–17 h; 65 °C | 0.46–3.00 | [175] | ||
[Bmim]Cl [Emim]Cl [Bdmim]Cl [Admim]Br | Py | 11 | Acetyl chloride Phenyl isocyanate | 3:1, 5:1, 10:1; 15–120 min; 80 °C | Ac: 2.81–3.0 Carb:0.26–3.0 | [176] | ||
[Bmim]Cl | 6 | Phenyl isocyanate Acetic anhydride | 1:1–10:1; 120–240 min; 80 °C | Carb: 0.29–3.0 Ac: 0.69–3.0 | [177] | |||
[Bmim]Cl | 3 | Chloroacetyl chloride | 3:1, 5:1; 60–300 min; 30–50 °C | 0.33–1.87 | [178] | |||
[Amim]Cl | DMF | 4 | 2-bromopropionyl bromide | 5:1; 480 min; r.t. | 0.7 | [179] | ||
[Amim]Cl | 3–7 | Benzoyl chloride, 4-toluoyl chloride, 4-chlorobenzoyl chloride, 4-nitrobenzoyl chloride | 2:1–10:1; 60–240 min; 40–100 °C | 1–3.0 | [180] | |||
[Bmim]Cl | Py | 10–12 | Acetic anhydride, Propionic anhydride, Butyric anhydride, Pentanoic anhydride, Hexanoic anhydride | 1:1, 3:1, 5:1; 2 h; 80 °C | 0.4–3.0 | [181] | ||
[Bmim]Cl, [Amim]Cl, [Emim]OAc | DMF | 11 | Sulfur trioxide, chlorosulfonic acid | 1.3:1–3:1; 120–240 min; 25 °C | 0.22–0.89 | [182] | ||
[Bmim]Cl | 2.35 | Phthalic anhydride | 2:1–10:1; 20–120 min; 85–105 °C | 0.12–2.54 | [183] | |||
[Bmim]Cl | 2 | Succinic anhydride | 1:1–12:1; 5–120 min; 85–105 °C | 0.037–0.53 | [184] | |||
[Bmim]Cl | DMSO | NBS | 2 | Succinic anhydride | 4:1; 30–240 min; 90–120 °C | 0.24–2.31 | [185] | |
[Bmim]Cl | DMAP | 2 | Succinic anhydride | 4:1; 30–120 min; 60–110 °C | 0.24–2.34 | [186] | ||
[Bmim]Cl | Iodine | Succinic anhydride | 4:1; 30–120 min; 85–110 °C | 0.56–1.54 | [187] | |||
[Bmim]Oac [Bmim]Cl [Bmim]OPr | Carboxylic anhydrides, carboxylic acid halides, diketene, or acetoacetic acid esters | <0.2 (molar ratio) | 0.1–3.0 | [188] | ||||
6 | Ci to C20 straight- or branched-chain alkyl or aryl carboxylic anhydrides, carboxylic acid halides, diketene, or acetoacetic acid esters | 0.1–3.0 | [189] | |||||
7 | Acetic anhydride, Propionic anhydride, Butyric anhydride, 2-ethylhexanoic anhydride, Nonanoic anhydride | ≤3.0 | [190] | |||||
6 | 0.1–50 | Thionyl chloride, Methanesulfonyl chloride, Chlorodimethyliminium chloride, Phosphoryl chloride, Tosyl chloride | 30–150 °C | 0.5–3.0 | [191] | |||
6 | Py | 5–10 | Chlorosulfonic acid, Sulfur trioxide, Sulphuric acid, Sulfamic acid | 1:1–6:1; 1–720 min; 130 °C | 0.05–2.5 | [192] | ||
|
IL1 | Co-Solvent 2 | Base | Cellulose (wt %) 3 | Reagent | Conditions 4 | DS 5 | Ref. |
---|---|---|---|---|---|---|---|
[Emim]OAc [Emim]Cl | DMSO/DMA | Hexamethyldisilazane | 3:1, 5:1, 8:1; 1 h; 80 °C | 1.6–2.9 | [181] | ||
[Emim]Cl [Bmim]Cl [Emim]Oac [Bmim]OAc [Bmim]PrO | 10 | Hexamethyldisilazane | 1.8:1–9.2:1; 16 h, 80–120 °C | 1.2–2.9 | [196] | ||
[Bmim]Cl | Py | 11 | Trityl chloride | 1–14 h, 100 °C | 0.80–1.37 | [197] | |
[Amim]Cl | Py | 4-methoxytrityl chloride | 3:1, 6 h, 60 °C | ~2 | [198] | ||
[Amim]Cl | Py/BIM | 10 | Trityl chloride | 3:1, 6:1; 1–20 h; 90 °C | 0.02–0.95 | [199] | |
[Emim]OAc | DMSO | 4–11.5 | Propylene oxide, ethylene oxide | 5:1–50:1; 19 h; 80 °C | 0.09–1.34 | [200] | |
[Emim]OAc, [Bmim]Cl | H2O, DMSO, DMF, DME, CHCl3 | Propylene oxide, ethylene oxide, 1-allyloxy-2,3-epoxypropane, 2,3-epoxypropyl isopropyl, etherepichlorohydrine, 2,3-epoxypropyltrimethylammonium chloride, phenylglycidyether, 2,3-epoxypropyl isopropyl ether | 5:1, 10:1, 30:1; 3–72 h; 21–100 °C | 0.09–2.16 6 | [201] | ||
|
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopes, J.M.; Bermejo, M.D.; Martín, Á.; Cocero, M.J. Ionic Liquid as Reaction Media for the Production of Cellulose-Derived Polymers from Cellulosic Biomass. ChemEngineering 2017, 1, 10. https://doi.org/10.3390/chemengineering1020010
Lopes JM, Bermejo MD, Martín Á, Cocero MJ. Ionic Liquid as Reaction Media for the Production of Cellulose-Derived Polymers from Cellulosic Biomass. ChemEngineering. 2017; 1(2):10. https://doi.org/10.3390/chemengineering1020010
Chicago/Turabian StyleLopes, Joana Maria, María Dolores Bermejo, Ángel Martín, and María José Cocero. 2017. "Ionic Liquid as Reaction Media for the Production of Cellulose-Derived Polymers from Cellulosic Biomass" ChemEngineering 1, no. 2: 10. https://doi.org/10.3390/chemengineering1020010